Geometry III/IV, Term 2 (Section 6)

6 Hyperbolic geometry: conformal models

6.1 Poincaré disc model

Model: $\mathbb{H}^{2}=$ unit disc $D=\{|z|<1, z \in \mathbb{C}\} ;$
$\partial \mathbb{H}^{2}=\{|z|=1\}$ - boundary (called absolute); $\overline{\mathbb{H}}^{2}=\mathbb{H}^{2} \cup \partial \mathbb{H}^{2} ;$
lines: parts of circles or lines orthogonal to $\partial \mathbb{H}^{2}$;
isometries: Möbius transformations, inversions, reflections (preserving the disc);
distance: a function of cross-ratio;
angles: same as Euclidean angles.
Proposition 6.1. For any two points $A, B \in \mathbb{H}^{2}$ there exists a unique hyperbolic line through A, B.
Remark. The same holds for $A, B \in \mathbb{H}^{2} \cup \partial \mathbb{H}^{2}$.
Definition 6.2. $d(A, B)=|\ln |[A, B, X, Y]| |=\left|\ln \frac{|X A|}{|X B|} / \frac{|Y A|}{|Y B|}\right|$, where X, Y are the points of the absolute contained in the (hyperbolic) line $A B$.

Theorem 6.3. $d(A, B)$ satisfies axioms of the distance.
Remark 6.4. $[A, B, X, Y]$ in Definition 6.2 is also the "usual" complex cross-ratio if we consider A, B, C, D as points in \mathbb{C}.

Therefore, Möbius transformations (as well as inversions and reflections) preserving the disc are indeed isometries of \mathbb{H}^{2}.

Example. Rotation about the centre of the model, reflection with respect to a diameter, inversion with respect to a circle representing a hyperbolic line are isometries of the Poincaré disc model.

Corollary 6.5. The isometry group of \mathbb{H}^{2} acts transitively on
(a) triples of points of the absolute;
(b) points of \mathbb{H}^{2}.

Proposition 6.6. Let $l \subset \mathbb{H}^{2}$ be a (hyperbolic) line, $A \in \overline{\mathbb{H}}^{2}$ a point, $A \notin l$. Then there exists a unique line l^{\prime} through A orthogonal to l.

Proposition 6.7. Let $l \subset \mathbb{H}^{2}$ be a (hyperbolic) line, $A \in \overline{\mathbb{H}}^{2}$ a point, $A \in l$. Then there exists a unique line l^{\prime} through A orthogonal to l.

Proposition 6.8. For $B \in A C, d(A, B)+d(B, C)=d(A, C)$.
Lemma 6.9. In a right-angled triangle $A B C$ with $\angle A=\pi / 2, d(A, B)<d(C, B)$.
Corollary 6.10. Triangle inequality: for $B \notin A C, \quad d(A, B)+d(B, C)>d(A, C)$.

Remark. Triangle inequality implies that
(a) distance is well-defined, and
(b) hyperbolic lines are geodesics in the model.

Isometries of \mathbb{H}^{2}

Lemma 6.11. Hyperbolic circles are represented by Euclidean circles in the Poincaré disc model.
Remark. Isometries of \mathbb{H}^{2} act transitively on flags.
Lemma 6.12. An isometry of \mathbb{H}^{2} is uniquely determined by the image of any flag.
Theorem 6.13. Every isometry of the Poincaré disc model can be written as either $z \mapsto \frac{a z+b}{c z+d}$ (Möbius transformation) or $z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d}$ (anti-Möbius transformation), $a d-b c \neq 0$.

Corollary. An isometry of \mathbb{H}^{2} is uniquely determined by the images of any three points of the absolute.
Corollary. Isometries preserve angles.
Proposition 6.14. The sum of angles in a hyperbolic triangle is less than π.
Remark. If $\alpha+\beta+\gamma<\pi$ then there exists a triangle with angles α, β, γ.
Example. Let $a, b \in \mathbb{C},|a|^{2}-|b|^{2}=1$. Then

$$
f: z \rightarrow \frac{a z+b}{\bar{b} z+\bar{a}} \in \operatorname{Isom}\left(\mathbb{H}^{2}\right) .
$$

Remark. All Möbius isometries of the Poincaré disc model are of the form

$$
z \mapsto \frac{a z+b}{\bar{b} z+\bar{a}}
$$

for some $a, b \in \mathbb{C}$ with $|a|^{2}-|b|^{2}=1$.

6.2 Upper half-plane model

Model: $\mathbb{H}^{2}=\{z \in \mathbb{C}, \operatorname{Im} z>0\} ;$
$\partial \mathbb{H}^{2}=\{\operatorname{Im} z=0\}-$ absolute;
lines: rays and half-circles orthogonal to $\partial \mathbb{H}^{2}$;
distance: $d(A, B)=|\ln |[A, B, X, Y]| |$;
isometries: Möbius transformations, inversions, reflections (preserving the half-plane);
angles: same as Euclidean angles.
Proposition 6.15. This defines the same geometry as Poincaré disc model.
Proposition 6.16. In the upper half-plane, hyperbolic circles are represented by Euclidean circles.
Theorem 6.17. Every isometry of the upper half-plane model can be written as either $z \mapsto \frac{a z+b}{c z+d}$ or $z \mapsto \frac{a(-\bar{z})+b}{c(-\bar{z})+d}$ with $a, b, c, d \in \mathbb{R}, a d-b c>0$.

Remark. - Equivalently, orientation-preserving isometries can be written as $z \mapsto \frac{a z+b}{c z+d}$ with
$a, b, c, d \in \mathbb{R}, a d-b c=1$; orientation-reversing isometries can be written as $z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d}$ with $a, b, c, d \in \mathbb{R}, a d-b c=-1$.

- Hence, for the group $\operatorname{Isom}{ }^{+}\left(\mathbb{H}^{2}\right)$ of orientation-preserving isometries we have Isom ${ }^{+}\left(\mathbb{H}^{2}\right)=P S L(2, \mathbb{R})=S L(2, \mathbb{R}) / \pm I$.
Theorem 6.18. In the upper half-plane model, $\cosh d(z, w))=1+\frac{|z-w|^{2}}{2 \operatorname{Im}(z) \operatorname{Im}(w)}$.
Remark. Lines with a common point at the absolute are called parallel, lines that do not intersect in $\overline{\mathbb{H}}^{2}$ are called ultra-parallel (or divergent).
Example. Let l, l^{\prime} be parallel lines. Then $d\left(l, l^{\prime}\right)=0$. (where by distance between the sets α and β we mean $\left.d(\alpha, \beta)=\inf _{A \in \alpha, B \in \beta} d(A, B)\right)$.

6.3 Elementary hyperbolic geometry

Remark. - In hyperbolic geometry, all Euclid's Axioms (except for the Parallel Axiom) hold.

- The Parallel Axiom for hyperbolic geometry says that there is more than one line disjoint from a given line l through a given point $A \notin l$.

Definition 6.19. For a line l and a point $A \notin l$, the angle of parallelism $\varphi=\varphi(A, l)$ is the half-angle between the rays emanating from A and parallel to l.

Equivalently: drop a perpendicular $A H$ to l, then $\varphi=\angle H A Q, Q \in l \cap \partial \mathbb{H}^{2}$.
Equivalently: a ray $A X$ from A intersects l iff $\angle H A X<\varphi$.
Remark. $\varphi(A, l)$ depends on the distance from A to l only.
Proposition 6.20. For a line l and a point $A \notin l$, let $a=d(A, l)$ and φ be the angle of parallelism. Then $\cosh a=\frac{1}{\sin \varphi}$.
Theorem 6.21 (Hyperbolic Pythagoras' theorem). In a triangle with $\gamma=\pi / 2, \quad \cosh c=\cosh a \cosh b$.
Lemma 6.22. In a triangle with a right angle γ we have $\sinh a=\sinh c \sinh \alpha$.
Theorem 6.23 (Law of sines). $\quad \frac{\sinh a}{\sin \alpha}=\frac{\sinh b}{\sin \beta}=\frac{\sinh c}{\sin \gamma}$.
Theorem 6.24 (Law of cosines). $\quad \cosh a=\cosh b \cosh c-\sinh b \sinh c \cos \alpha$.
Remark. For small values of a, b, c we get Euclidean sine and cosine laws.
Theorem 6.25 (Second Law of cosines). $\quad \cos \alpha=-\cos \beta \cos \gamma+\sin \beta \sin \gamma \cosh a$.
Exercise. Prove SSS, SAS, ASA and AAA rules of congruence of triangles (do it in two ways: with sine/cosine law and without).

Example. Use sine law to compute length of circle of radius $r: l(r)=2 \pi \sinh r$.
Corollary. Uniform statement for sine law in S^{2}, \mathbb{E}^{2} or \mathbb{H}^{2} :

$$
\frac{l(a)}{\sin \alpha}=\frac{l(b)}{\sin \beta}=\frac{l(c)}{\sin \gamma}
$$

where $l(r)$ is the length of circle of radius r in the corresponding geometry.
Remark. In the hyperbolic geometry, the circle length $l(r)$ grows exponentially when $r \rightarrow \infty$.

6.4 Area of hyperbolic triangle

Theorem 6.26. $S_{\triangle A B C}=\pi-(\alpha+\beta+\gamma)$.
Corollary 6.27. Area of an n-gon: $S_{n}=(n-2) \pi-\sum_{i=1}^{n} \alpha_{i}$.
Example. Area of hyperbolic disc of radius r is $4 \pi \sinh ^{2}\left(\frac{r}{2}\right)$.

