Epiphany 2019

Geometry III/IV, Term 2 (Section 7)

7 Other (projective) models of hyperbolic geometry

7.1 Klein disc revisited

Reminder: lines are represented by chords, distance in Klein disc $d(A, B) = \frac{1}{2} \left| \ln [A, B, X, Y] \right|$, isometries are projective maps preserving the disc.

Theorem 7.1. Geometry of the Klein disc coincides with geometry of the Poincaré disc.

Remark. Hemisphere model can be projected to Klein disc, Poincare disc and upper half-plane.

Remark. When to use the Klein disc model? Working with lines and right angles.

Example. Construction of perpendicular lines, common perpendicular to two ultra-parallel lines.

7.2 The model in two-sheet hyperboloid

Define a quadratic from in \mathbb{R}^3 by $x^2 = x_1^2 + x_2^2 - x_3^2$, $x = (x_1, x_2, x_3)$, and consider the hyperboloid $H = \{x \in \mathbb{R}^3 \mid x^2 = -1, x_3 > 0\}.$

<u>Model</u>: $\mathbb{H}^2 = H$ (alternatively, lines through O);

 $\partial \mathbb{H}^2 = \{ \text{lines spanning the cone } \mathbf{x}^2 = 0 \};$

lines in \mathbb{H}^2 : intersections of planes through O with H;

distance: $d(A, B) = \frac{1}{2} \ln[A, B, X, Y]$ cross-ratio of four lines in \mathbb{R}^3 ;

isometries: projective transformations preserving the quadratic from (and thus the cone).

Theorem 7.2. This determines the same hyperbolic geometry as the Klein model.

Given a quadratic from, one can define a symmetric bilinear form by

$$(x, y) = \frac{1}{2}((x + y)^2 - x^2 - y^2),$$

which in our case gives

$$(x, y) = x_1y_1 + x_2y_2 - x_3y_3.$$

Then • points of the \mathbb{H}^2 : $x^2 = (x, x) = -1$;

• points of the $\partial \mathbb{H}^2$: $x^2 = (x, x) = 0$;

• hyperbolic line l_a : intersection of the cone with the plane $a^{\perp} = \{x \mid (a, x) = 0\}, a^2 > 0.$

Exercise. If (a, a) > 0 then a^{\perp} intersects the cone (and thus gives a hyperbolic line l_a);

if (a, a) = 0 then a^{\perp} is tangent to the cone (and thus gives a point on the absolute);

if (a, a) < 0 then a^{\perp} does not intersect the cone (and thus a gives a point of \mathbb{H}^2).

Theorem 7.3. $\cosh^2 d(\boldsymbol{u}, \boldsymbol{v}) = \frac{(\boldsymbol{u}, \boldsymbol{v})^2}{(\boldsymbol{u}, \boldsymbol{u})(\boldsymbol{v}, \boldsymbol{v})}$ for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{H}^2$, i.e. for $\boldsymbol{u}, \boldsymbol{v}$ satisfying $(\boldsymbol{u}, \boldsymbol{u}) < 0$, $(\boldsymbol{v}, \boldsymbol{v}) < 0$.

Theorem 7.4. More distance formulae in terms of $Q = \left| \frac{(u,v)^2}{(u,u)(v,v)} \right|$:

- if (u, u) < 0, (v, v) > 0, then u gives a point and v gives a line l_v in H², and sinh² d(u, l_v) = Q;
 if (u, u) > 0, (v, v) > 0 then u and v define two lines l_u and l_v on H² and
- If (u, u) > 0, (v, v) > 0 then u and v define two fines i_u and i_v of m and • if Q < 1, then l_u intersects l_v forming angle φ satisfying $Q = \cos^2 \varphi$; • if Q = 1, then l_u is parallel to l_v ;

 \circ if Q > 1, then l_u and l_v are ultra-parallel lines satisfying $Q = \cosh^2 d(l_u, l_v)$.