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Geometry III/IV, Term 2 (Section 9)

9 Geometry in modern mathematics (some topics)

(NON-Examinable Section)

9.1 Taming infinity via horocycles

The idea is to choose a “ground level” for comparing infinite distances.

We illustrate this with horocycles:
- any point of a horocycle h is on infinite distance from the centre X of the horocycle;
- two concentric horocycles are on a (constant) finite distance from each other;
- choose “level zero” horocycle, and measure the (signed) distance to it.

Example (Penner, 80’s). Given X,Y ∈ ∂H2, choose horocycles hX and hY centred at these points.
Let lXY be the finite portion of the line XY lying outside of both hX and hY (it is a signed length,
may be zero or negative if hX intersects hY ). Define lambda-length λXY = exp(lXY /2).

Properties. If we change a horocycle hY by another horocycle h′Y , then any λ-length λZY is multiplied
by a constant factor exp(d/2), where d is the distance between hY and h′Y .

Recall that in Euclidean geometry we have a Ptolemy Theorem:

Theorem (Ptolemy Theorem). In E2, a cyclic quadrilateral ABCD satisfies

|AC| · |BD| = |AB| · |CD|+ |AD| · |BC|.

Theorem (Hyperbolic Ptolemy Theorem). For an ideal quadrilateral ABCD (i.e. A,B,C,D ∈ ∂H2)
choose any horocycles centred at A,B,C,D. Then

λAC · λBD = λAB · λCD + λAD · λBC .

Remark. The identity does not depend on the choice of the horocycles: if we change one horocycle,
all terms are multiplied by the same factor. Placing the vertices of ABCD in the UHP to 0, 1, X and
∞ respectively, and choosing appropriate horocycles (hD = {y = 1}, others are Euclidean circles of
diameter 1), the equality reduces to λAC = 1 + λBC , which is an easy exercise in UHP (do it!).

Exercise. Given an ideal triangle A1A2A3 and c12, c23, c31 ∈ R>0 there exists a unique choice of
horocycles centred at A1, A2, A3 such that λAiAj = cij .

Remark. This allows to introduce coordinates on the space of hyperbolic metrics on polygons and,
more generally, on triangulated surfaces; this is heavily used, in particular, in Teichmüller theory and
the theory of cluster algebras.



9.2 Three metric geometries: S2, E2, H2, unified

S2: d(A,B) = rϕ. (is tending to E2 when r →∞).
H2: d(A,B) = R|ln [A,B,X, Y ]| (is tending to E2 when R→∞).

We want to show that d(A,B) = ± r
2i |ln [A,B,X, Y ]| for S2.

(In case of H2 we consider the hyperboloid as a sphere x21 + x22 + x23 = −R2 of imaginary radius iR,
rewriting this for x′3 = ix3 we get exactly the hyperboloid model.)
To find the points X,Y we use the same rule as in the hyperboloid model: {X,Y } = ΠAB∩{(x,x)=0}.
- Here, the plane through A = (a1, a2, a3), B = (b1, b2, b3) is (a1 + λb1, a2 + λb2, a3 + λb3).
- Intersection with the cone (x,x) = 0 gives (a1 + λb1)

2 + (a2 + λb2)
2 + (a3 + λb3)

2 = 0.
- Taking into account (A,A) = r2 = (B,B) and (A,B) = r2 cosϕ this gives 1 + 2λ cosϕ+ λ2 = 0.
- Solving for λ we get X and Y : λ1,2 = − cosϕ± i sinϕ;
- [A,B,X, Y ] = [0,∞, λ1, λ2] = exp(∓2iϕ), i.e. ϕ = ∓ r

2i |ln [A,B,X, Y ]|, and d(A,B) = ± r
2i |ln [A,B,X, Y ]|.

Remark. This explains the appearance of similar formulae in spherical and hyperbolic geometries;
in particular, this gives a proof of the second cosine law in the hyperbolic case.

Theorem 9.1 (Comparison Theorem by Aleksandrov-Toponogov). Given a, b, c ∈ R>0 such that
a+ b < c, a+ c < b and b+ c < a, consider triangles in H2,E2 and S2 with sides a, b, c. Let mH2 , mE2

and mS2 be the medians connecting C with the midpoint of AB in each of the three triangles. Then
mH2 < mE2 < mS2 .

9.3 Discrete groups of isometries of H2: Examples

Idea: Tessellation by polygons (copies of F ) → side pairings (∀ai ∈ F there is gi : ai ∈ gF ) →
oriented graph Γ: vertices of Γ ↔ vertices Ai of F ,

edges of γ ↔ side pairings: Ai–Aj if gi(Ai) = Aj →
Γ is a union of cycles, vertices in one cycles are called equivalent.
Lemma. Let A1, . . . , Ak make one cycle, so that gi(Ai) = Ai+1, gk(Ak) = A1, where gi are side

pairings of F and A1, . . . , Ak ∈ H2 (but not ∂H2). Then g = gkgk1 . . . g1 is a rotation
about A1 by the angle α1 + · · ·+ αk, where αi is the angle of F at Ai.

Claim. Polygons gkF , gkgk−1F ,. . . ,gkgk−1 . . . g1F have a common vertex A1 with angles
αk, αk−1, . . . , α1 at A1.

Corollary. Elements of the group 〈g1, . . . , gn〉 generated by side pairings tile the
neighbourhood of A1 iff α1 + . . . αk = 2π/m for m ∈ N.

This necessary condition is also sufficient:

Theorem (Poincaré Theorem). Let F ⊂ H2 be a convex polygon with finitely many sides and no
ideal vertices, s.t.

(a) its sides are paired by orientation preserving isometries {g1, . . . , gn};

(b) angle sum in equivalent vertices is 2π/mi for mi ∈ N.

Then the group G = 〈g1, . . . , gn〉 is discrete, F is its fundamental domain, and G has a presentation
G = 〈g1, . . . , gn | (h±1i,ki

h±1i,ki−1 . . . h
±1
i,1 )mi = 1〉, where all hi,j are pairing maps gk, and the relations are

the vertex relations.

Examples. - F is a regular hexagon in E2, G generated by translations pairing the opposite sides
of P .

- F is a regular hexagon in E2, G generated by rotations by 2π/3 about three non-adjacent vertices.



- F is a regular hyperbolic octagon with angles π/(4m), m ∈ N, G is generated by hyperbolic
isometries pairing the opposite sides of F .

- F is a polygon all whose angles are integer submultiples of π, i.e. π/m (called a Coxeter polygon),
G is generated by reflections with respect to the sides of F . In this case G = 〈r1, . . . , rn | r2i =
(rirj)

mij = 1〉 is a Coxeter group.

- More generally, in En, Sn,Hn one can consider Coxeter polytopes as convex polytopes with all
dihedral angles of type π/m. These give rise to discrete groups of isometries generated by
reflections. Such polytopes in En, Sn are classified by Coxeter (1934), though the hyperbolic
ones are not yet classified.

9.4 Hyperbolic surfaces

Definition. A hyperbolic surface S is a surface s.t. every point p ∈ S has a neighbourhood isometric
to a disc in H2.

How to construct?

9.4.1 Glue from hyperbolic polygons

Examples. Euclidean torus glued from a square with identified opposite sides; hyperbolic surface of
genus 2 glued from a regular octagon with angles π/4 (opposite sides identified).

9.4.2 Pants decompositions (Hatcher, Thurston)

A pair of pants is a sphere with three holes. A hyperbolic pair of pants may be glued from two
congruent right-angled hyperbolic hexagons. Gluing several pairs of pants along the boundaries,
one can get (almost) every compact topological surface. Exceptions are a sphere and a torus which
naturally carry spherical and Euclidean geometry respectively (but not the hyperbolic one).

9.4.3 Quotient of H2 by a discrete group

Let G : H2 be a discrete group action by isometries. Consider an orbit space H2/G. Sometimes we
get a hyperbolic surface, but not always.

Example. A regular hyperbolic quadrilateral with angles π/4 and opposite sides identified gives a
torus with a cone point (angle π around the image of the vertices). It is not a manifold (this structure
is called an orbifold).

9.4.4 Uniformisation theorem

A closed oriented surface is a quotient of H2 (or E2, or S2) by an action of a discrete group of isometries
without fixed points.

9.5 Review via 3D

9.5.1 Four models of H3

9.5.1.1 Upper half-space

Ia. Space: H3 = {(x, y, t) ∈ R3 | t > 0}.
Absolute: ∂H3 = {(x, y, t) ∈ R3 | t = 0}.
Hyperbolic lines: vertical rays and half-circles orthogonal to the absolute.



Hyperbolic planes: vertical (Euclidean) half-planes and half-spheres centred at the absolute.
d(A,B) = |ln[A,B,X, Y ]| (X,Y the ends of the line, cross-ratio computed in a vertical plane).

cosh d(u, v) = 1 + |u−v|2
2u3v3

.

Isometries.
Example: Hyperbolic reflections = (Euclidean) reflections with respect to the vertical planes and

Inversions with respect to the spheres centred at the absolute.
- f ∈ Isom(H3) is determined by its restriction to the absolute.
- Isom(H3) is generated by reflections (every isometry is a composition of at most 4).
- Restrictions to ∂H3 are compositions of (Euclidean) reflections and inversions.
- Isom+H3 = Möb.

Spheres: Euclidean spheres (another centre).
Horospheres (limits of spheres): horizontal planes and spheres tangent to the absolute.
Equidistant (to a line): vertical cone (or banana for “half-circle” lines).
Equidistant (to a plane Π): two (Eucl) planes at the same angle to a vertical plane (at Π ∩ ∂H3)

or two pieces of spheres at the same angle to the sphere representing Π.

9.5.1.2 Poincaré ball

Ib. Obtained by inversion from the upper half-space model.
Space: H3 = {(x, y, t) ∈ R3 | x2 + y2 + t2 < 1}.
Absolute: ∂H3 = {(x, y, t) ∈ R3 | x2 + y2 + t2 = 1}.
Hyperbolic lines: parts of lines and circles orthogonal to ∂H3.
Hyperbolic planes: parts of planes and spheres orthogonal to ∂H3.
d(A,B) = |ln [A,B,X, Y ]| (X,Y the ends of the line, cross-ratio computed in a plane).

Both Poincaré models are conformal: hyperbolic angles are represented by Euclidean angles of the
same size.

9.5.1.3 Klein model

Ic. Space: H3 = {(x, y, t) ∈ R3 | x2 + y2 + t2 < 1}.
Absolute: ∂H3 = {(x, y, t) ∈ R3 | x2 + y2 + t2 = 1}.
Hyperbolic lines: chords.
Hyperbolic planes: intersections with Euclidean planes.
d(A,B) = 1

2 |ln [A,B,X, Y ]| (X,Y the ends of the line).
Angles are distorted (except ones at the centre).
Right angles are easy to control.

9.5.1.4 Hyperboloid model

Id. Hyperboloid: x21 + x22 + x23 − x24 = −1, x ∈ R4.
Pseudo-scalar product: (x,y) = x1y1 + x2y2 + x3y3 − x4y4.
Space: (x,x) = −1.
Absolute: (x,x) = 0.
Hyperbolic planes: (x,a) = 0 for a s.t. (a,a) > 0.
d(A,B) = 1

2 |ln [A,B,X, Y ]| (cross-ratio of four lines).

cosh2(d(pt1, pt2) = Q(pt1, pt2) where Q(u,v) = (u,v)2

(u,u)(v,v) .



9.5.1.5 Orientation-preserving isometries of H3

In the upper half-space, orientation-preserving isometries correspond to Möbius transformations of
∂H3: z 7→ az+b

cz+d with z ∈ ∂H3, a, b, c, d ∈ C, ad− bc 6= 0.

- Parabolic: 1 fixed point on ∂H3, conjugate to z 7→ z + 1.
- Non-parabolic: 2 fixed points on ∂H3, conjugate to z 7→ az.

elliptic, |a| = 1, rotation about a vertical line.
hyperbolic, a ∈ R>0, (Euclidean) dilation.
loxodromic, (otherwise), composition of rotation and dilation.

9.6 Some polytopes in H3

• Ideal tetrahedron. It is not unique up to isometry (there are 2 parameters = 2 dihedral angles).

• Regular right-angled dodecahedron.

• Regular right-angled ideal octahedron.

9.7 Geometric structures on 3-manifolds

Similar to surfaces from polygones, can glue 3-manifolds from polyhedra. Need to check angles around
edges (Poincaré Polyhedron Theorem).

9.8 Geometrisation conjecture

Conjecture (Thurston). All topological 3-manifolds are geometric manifolds, i.e. every oriented
compact 3-manifold without boundary can be cut into pieces having one of the following 8 geometries:
S3, E3, H3, S2 × R, H2 × R, Nil, Sol and universal cover of SL(2,R).

(1982) Thurston: proved geometrisation conjecture for Haken manifolds. (Fields medal, 1982)
In particular, closed atoroidal Haken manifolds are hyperbolic.

(2003) Perelman: general proof of the geometrisation conjecture. (Fields medal, 2006)
This also proves Poincaré conjecture:

Every simply-connected closed 3-manifold is a 3-sphere. (Clay Millennium Prize).


