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Geometry III/IV, Solutions: weeks 13–14

Hyperbolic geometry: conformal models

13.1. Draw in each of the two conformal models (Poincaré disc and upper half-plane):

(a) two intersecting lines;

(b) two parallel lines;

(c) two ultra-parallel lines;

(d) infinitely many disjoint half-planes;

(e) a circle tangent to a line.

Solution: One solution is indicated by colors: (a), (b), (c), (d), (e).

13.2. In the upper half-plane model draw

(a) a line through the points i and i+ 2;

(b) a line through i+ 1 orthogonal to the line represented by the ray {ki | k > 0};
(c) a circle centred at i (just sketch it, no formula needed);

(d) a triangle with all three vertices at the absolute (such a triangle is called ideal).

Solution:
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13.3. Prove SSS, ASA and SAS theorems of congruence of hyperbolic triangles.

Solution:

1. SSS: Let A1B1C1 and A2B2C2 be two hyperbolic triangles satisfying SSS (i.e. having the same side
lengths). First we apply an isometry which takes A2 to A1 and B2 to B1. Then the points C1 and C2 lie on
the intersection of (hyperbolic) circles γA (centred at A1 of radius A1C1) and γB (centred at B1 of radius
B1C1). Consider these circles in Poincaré disc or half-plane model. Since hyperbolic circles are represented
by Euclidean circles, two circles have at most two intersection points. Moreover, the two intersection points
are symmetric with respect to the (hyperbolic) line A1B1 Hence, there is an isometry which takes A2B2C2

to A1B1C1.

2. ASA: Suppose that A1B1 = A2B2 ∠A1 = ∠A2 and ∠B1 = ∠B2. Apply an isometry which takes A2 to
A1 and B2 to B1. Then C1 and C2 lie on a (hyperbolic) ray starting from A1 and making angle ∠A1 with
A1B1. There exists exactly one such ray in each half-plane with respect to the line A1B1 (this is especially
clear if A1 is the centre of the Poincaré disc model). Similarly, C1 and C2 lie on a (hyperbolic) ray starting
from B1 and making angle ∠B1 with A1B1. As two rays have at most one intersection, we get at most one
candidate for the point C1 and C2 in each of two half-planes, also these two candidates are symmetric with
respect to A1B1. Hence, A2B2C2 can be transformed to A1B1C1 by an isometry.

3. SAS: Suppose that A1B1 = A2B2, ∠A1 = ∠A2 and A1C1 = A2C2. First, map the angle ∠A2 to ∠A1,
then the points C1 and C2 lie on the given distances on the given lines.

13.4. Let ABC be a triangle. Let B1 ∈ AB and C1 ∈ AC be two points such that ∠AB1C1 = ∠ABC.
Show that ∠AC1B1 > ∠ACB.

Solution:

Consider the quadrilateral B1BCC1. If ∠AC1B1 ≤ ∠ACB then the sum of angles of B1BCC1 is greater or
equal to 2π. On the other hand, we can divide B1BCC1 by a diagonal into two triangles, each having a sum
of angles less than π. The contradiction shows that ∠AC1B1 > ∠ACB.

13.5. Show that there is no “rectangle” in hyperbolic geometry (i.e. no quadrilateral has four right
angles).

Solution:

Suppose there is a rectangle ABCD. Then its sum of angles is 2π. Decompose it into two triangles by a
diagonal AC. The sum of angles of ABC is smaller than π, the sum of angles of ACD is smaller than π but
the sum of these two sums of angles equal to the sum of angles of ABCD. Contradiction.

13.6. (?) Given an acute-angled polygon P (i.e. a polygon with all angles smaller or equal to π/2) and
lines m and l containing two disjoint sides of P , show that l and m are ultra-parallel.

Solution:

Let A1A2 . . . An be an acute-angled n-gon.

First, let us prove that the lines containing two “almost adjacent” rays A1A2 and A4A3 are disjoint: i.e.
suppose B = A1A2 ∩ A4A3. Then the triangle A2A3B has at least two non-acute angles, which contradicts
the fact the angle sum of a hyperbolic triangle is less than π.

Similarly, assuming that the rays A1A2 and A5A4 do intersect, we see a (non-convex) quadrilateral, with
two non-acute angles and one angle bigger than π, which again contradicts the angle sum.

In general, intersection of the rays A1A2 and AkAk−1 will result in an (k − 1)-gon breaking the angle sum
theorem (one can use induction to show that).



14.1. Given non-negative real numbers α, β, γ such that α+β+γ < π, show that there exists a hyperbolic
triangle with angles α, β, γ.

Solution:

Put a vertex A of angle α in the centre of the Poincaré disc model. Let AX and AY be the rays forming
the angle. Let T be a point on AX. Let TZ be a ray emanating from T and such that ∠ZTA = β.
Consider the point C(T ) = TZ ∩ AY . When T is very close to A the hyperbolic line TZ is very close to a
Euclidean line through the same points, so the hyperbolic sum of angles of the triangle 4ATC(T ) is very
close to π (and thus the angle ∠AC(T )T is close to π − (α + β). As T runs away from A to Y , the angle
∠AC(T )T monotonically decreases to zero (when TZ is parallel to AY ). Since 0 ≤ γ < π− (α+β), for some
intermediate point T0 the angle ∠AC(T0)T0 will be equal to γ, so 4AT0C(T0) is the required triangle.

14.2. Show that there exists a hyperbolic pentagon with five right angles.

Solution:

Consider a Euclidean regular pentagon PEucl. Draw PEucl so that the centre of PEucl coincides with the
centre O of Poincaré disc model. Consider the hyperbolic pentagon P spanned by the vertices of PEucl.
When PEucl is very small (but still centred at O) the angle of P are almost the same as the angles of PEucl.
When PEucl is inscribed into the absolute the angles of P are equal to zero. Notice that the angles of
PEucl are obtuse (more precisely, they are equal to 3π/5). So, by continuity we see that there exists some
intermediate size of PEucl such that the corresponding hyperbolic regular pentagon has right angles.

14.3. An ideal triangle is a hyperbolic triangle with all three vertices on the absolute.

(a) Show that all ideal triangles are congruent.

(b) Show that the altitudes of an ideal triangle are concurrent.

(c) Show that an ideal triangle has an inscribed circle.

Solution:

(a) There exists a hyperbolic isometry which takes any given triple of points on the absolute to any other
triple. So, it takes a triangle spanned by the given three points to the triangle spanned by the other
three points.

(b) Part (a) implies that any ideal triangle can be represented by a “regular” ideal triangle in the Poincaré
disc model (i.e. by a triangle with vertices 1, eiπ/3, e2iπ/3). The symmetry shows that all altitudes of
this triangle pass through the centre O of the model.

(c) Similarly to part (b), looking at the “regular” representative, we can see that there is an inscribed
circle centred at O (we can take a very small circle and start to blow it up till it will touch one of the
sides; by symmetry reasons it will touch all other sides at the same time).

14.4. It was proved in lectures that an isometry fixing 3 points of the absolute is the identity map. How
many isometries fix two points of the absolute? Classify the isometries fixing 0 and∞ in the upper
half-plane model.

Solution:

We will work in the upper half-plane model. Let f be an isometry fixing two points of the absolute. First,
we can conjugate f by an isometry h which takes the fixpoints of f to 0 and ∞. Then h−1 ◦ f ◦h fixes 0 and
∞. Moreover, for every isometry f ′ fixing the same two points as f , the isometry h−1 ◦ f ′ ◦ h fixes 0 and ∞.
This implies that for answering the question it is sufficient to consider isometries fixing 0 and ∞.

Now, any orientation-preserving isometry of the upper half-plane can be written as az+b
cz+d with real a, b, c, d.

Preserving 0 and ∞ means b = 0 and c = 0, so any orientation-preserving isometry fixing 0 and ∞ can be
written as z 7→ az, a ∈ R+. Hence, we get a one-parameter family of orientation-preserving isometries (all
hyperbolic).

Similarly, we obtain a one-parameter family of orientation-reversing isometries −az̄, a ∈ R+.



14.5. (?)

(a) Show that the group of isometries of the hyperbolic plane is generated by reflections.

(b) How many reflections do you need to map a triangle ABC to a congruent triangle A′B′C ′?

Solution:

We can do (a) and (b) simultaneously, using the same procedure as in E2 or S2: first apply reflection r1 to
take A to A′ (with respect to the perpendicular bisector of AA′); then use the reflection r2 in A′M (where
M is the midpoint of B′r1(B)); finally, if needed, apply the reflection in A′B′. Thus, we need at most 3
reflections.

14.6. (?)

(a) Does there exist a regular triangle on hyperbolic plane?

(b) Does there exist a right-angled regular polygon on hyperbolic plane? How many edges does it
have (if exists)?

Solution:

(a) In the Poincaré disc model, consider a triangle whose vertices are represented by vertices of a regular
Euclidean triangle with centre at O. By symmetry, this triangle is also a regular hyperbolic triangle
(in other words, all Euclidean isometries we would use to check that the Euclidean triangle is regular
are also isometries of the hyperbolic plane).

(b) The same construction as in (a) shows that there is a regular n-gon for all integer n ≥ 3 in hyperbolic
plane. When we make this n-gon very small, its sides are almost Euclidean lines, so its angles are almost
the same as the angles of a regular Euclidean n-gon, i.e. (n − 2)π/n. When the regular Euclidean n-
gon grows, the angles of the corresponding hyperbolic n-gon decrease monotonically (to see this use
Question 13.4), when all vertices of the n-gon are on the absolute, the angles are 0. So, the angles take
every intermediate value between (n − 2)π/n and 0. In particular, if n > 4 then (n − 2)π/n > π/2,
which implies that there is a right-angled n-gon for every n > 4. We also know (from the sum of angles)
that there are no right angled triangles and quadrilaterals.

14.7. (a) Show that the angle bisectors in a hyperbolic triangle are concurrent.

(b) Show that every hyperbolic triangle has an inscribed circle.

(c) Does every hyperbolic triangle have a circumscribed circle?

Solution:

(a) Similarly to Euclidean/spherical cases, an angle bisector is a locus of points that lie on the same distance
from the rays forming the angle (this is most clear if you put the vertex of the angle at the centre of
the Poincare disc model). So, the intersection point of two angle bisectors lies on the same distance
from all three sides of the triangle, which implies that it actually lies on the third angle bisector.

(The intersection point does exists since the two ends of one angle bisector – say AA1 – lie on two
different sides of the other angle: A ∈ BA, A1 ∈ BC, so they are separated by the angle bisector BB1).

(b) Take the circle centred at the point of intersection of angle bisectors with radius equal to the distance
to each of the three sides – this is the inscribed circle.

(c) Consider the Euclidean circle γ passing through the vertices of the triangle. If γ lies entirely inside
the hyperbolic plane (i.e. in the disc or in the upper half-plane) then it represents some hyperbolic
circle passing through the given points. However, the circle γ may intersect the boundary of hyperbolic
plane. Then it does not represent any hyperbolic circle. Moreover, in the latter case no hyperbolic
circle passes through the given points.


