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Geometry III/IV, Solutions: weeks 15–16

Elementary hyperbolic geometry

15.1. (a) Let P and Q be the feet of the altitudes in an ideal hyperbolic triangle. Find PQ.

(b) Find the radius of a circle inscribed into an ideal hyperbolic triangle.

(c) Show that a radius of a circle inscribed into a hyperbolic triangle does not exceed arccosh(2/
√
3).

Solution:

(a) We use the upper half-plane model. Let X = −1, Y = 1, Z = ∞ (we can assume that since all ideal
triangles are congruent). By symmetry reasons, we can also assume that P and Q lie on XZ and Y Z
respectively. The line through Y orthogonal to XZ is represented by an arc of the circle |z + 1| = 2,
so P = −1 + 2i. Similarly, Q = 1 + 2i. Hence,

coshd(P,Q) = 1 +
4

2 · 2 · 2 =
3

2
.

(b) The centre I of the inscribed circle is the intersection of three altitudes (this becomes clear if we place
the ideal triangle in the Poincaré disc so that the vertices form a regular Euclidean triangle). One of
the altitudes is the circle |z + 1| = 2, another is the line Re z = 0. So, I = i

√
3. The required radius r

is the distance from I to (any) foot of an altitude, say to R = i. Hence,

cosh r = 1 +
(
√
3− 1)2

2
√
3

= 1 +
3− 2

√
3 + 1

2
√
3

=
2√
3
.

Alternatively, one can observe that the inscribed circle is represented by the Euclidean circle |z−2i| = 1,
and the segment of the line Re z = 0 between the two intersection points with the circle is a diameter.
Thus, the radius is the half of the distance between points i and 3i, i.e. r = (ln 3)/2.

(c) We will show that any triangle ABC can be enclosed by some ideal triangle. Notice that the inscribed
circle is the largest circle sitting inside a given triangle. So, the radius of the inscribed circle of △ABC
does not exceed the radius of the inscribed circle of the ideal triangle (which is (ln 3)/2, as computed
in (b)).

Let X,Y ∈ ∂H2 be the endpoints of the line AB, and let Z ∈ ∂H2 be the second endpoint of the line
XC. Then △ABC lies inside the ideal triangle XY Z.

15.2. For a right hyperbolic triangle (γ = π
2 ) show:

(a) tanh b = tanh c cosα, (b) sinh a = sinh c sinα.

Solution:

We will use the same notation as in the proof of Theorem 6.21 (Pythagorean Theorem), see Fig. 1. Also, we

will use the values cosh b = 1+k2

2k and cosh c = 1+k2

2k sinϕ computed in the proof of Theorem 6.21.

First, we show

sin2 α =
4k2 cos2 ϕ

(k + 1)2 − 4k2 sin2 ϕ
=

4k2 cos2 ϕ

(k2 − 1)2 + 4k2 cos2 ϕ
. (1)
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Figure 1: Notation for Problem 15.2

Let X = (x0, 0) be the (Euclidean) centre of the (Euclidean) circle representing the hyperbolic line AB.
Then α = ∠AXO (as XA is a radius, so is orthogonal to the circle and the horizontal line XO is orthogonal
to the vertical line AC). So,

sin2 α = sin2 ∠AXO =
k2

k2 + x2
0

.

To find x0, notice that XA = XB (as X is the centre of the circle), which implies

x2
0 + k2 = (cos2 ϕ− x0)

2 + sin2 ϕ ⇔ k2 = 1− 2x0 cosϕ,

i.e.

x0 =
1− k2

2 cosϕ
.

Hence,

sin2 α = sin2 ∠AXO =
k2

k2 + x2
0

=
k2

k2 − ( k2
−1

2 cosϕ )
2
=

4k2 cos2 ϕ

(k2 − 1)2 + 4k2 cos2 ϕ
=

4k2 cos2 ϕ

(k2 + 1)2 − 4k2 + 4k2 cos2 ϕ
=

4k2 cos2 ϕ

(k2 + 1)2 − 4k2 sin2 ϕ

(a) Using the expressions for cosh b and cosh c we get respectively

tanh2 b =
sinh2 b

cosh2 b
=

cosh2 b− 1

cosh2 b
= 1− 1

cosh2 b
= 1− 4k2

(1 + k2)
=

(

1− k2

1 + k2

)2

and

tanh2 c = 1− 1

cosh2 c
= 1− 4k2 sin2 ϕ

(1 + k2)2
=

(1 − k2)2 + 4k2 cos2 ϕ

(1 + k2)2
.

On the other hand,

cos2 α = 1− sin2 α = 1− 4k2 cos2 ϕ

(k2 − 1)2 + 4k2 cos2 ϕ
=

(k2 − 1)2

(k2 − 1)2 + 4k2 cos2 ϕ
,

which clearly satisfies the required identity tanh2 b = tanh2 c cos2 α.



(b) Similarly, using the expressions for cosha and cosh c we get respectively

sinh2 a = cosh2 a− 1 =
1

sin2 ϕ
− 1 =

cos2 ϕ

sin2 ϕ

and

sinh2 c = cosh2 c− 1 = (
1 + k2

2k sinϕ
)2 − 1 =

(k2 + 1)2 − 4k2 sin2 ϕ

4k2 sin2 ϕ
.

Hence, comparing to (1), we get sinh a = sinh c sinα.

15.3. Show that in the upper half-plane model the following distance formula holds:

4 sinh2
d

2
=

|z − w|2
Im(z)Im(w)

.

Solution:

sinh2
d

2
= (

ed/2 + e−d/2

2
)2 =

ed + e−d − 2

4
=

1

2
(coshd− 1) =

1

2

|z − w|2
2Im(z)Im(w)

.

15.4. Find an area of a right-angled hyperbolic pentagon.

Solution:

Subdividing the pentagon into 3 triangles, we see that S = 3π − 5π
2 = π

2 .

15.5. (⋆) In the upper half-plane model, find the locus of points that lie on distance d from the line
{Re z = 0}.
Solution:

Consider the isometry z 7→ kz for k > 0. Let z0 be a point on distance d from the line 0∞. Then every
point kz0 lies on the same distance from 0∞. So, we get a (Euclidean) ray lying in the locus. Now, applying
reflection with respect to the imaginary axis z 7→ −z̄, we see that the locus contains also all points on another
Euclidean ray −kz̄0.

Let us prove now that the locus contains no other points except the two rays described above. The distance
from a point A to a line l is the length of the segment AH perpendicular to l, H ∈ l. Clearly, each line
perpendicular to l contains exactly two points on the given distance d from l (one point in each half-plane).
All lines perpendicular to 0∞ are represented by circles centred in 0, and each of them intersects each of the
two rays. So, there are no other points in the locus.

Projective models

16.1. In the Klein disc model draw two parallel lines, two ultra-parallel lines, an ideal triangle, a triangle
with angles (0, π2 ,

π
3 ).

Solution:



16.2. (⋆) Show that three altitudes of a hyperbolic triangle either have a common point, or are all parallel
to each other, or there exists a unique line orthogonal to all three altitudes.

Solution:

First, assume the triangle is ideal. Then we can place its vertices to vertices of an equilateral Euclidean
triangle on the absolute (say, in the Klein disc), and thus the altitudes intersect at the origin by symmetry.

Therefore, we can now assume a vertex A belongs to H
2, so without loss of generality we may assume that

A is the centre of the Klein disc and B and C are any two other points in H
2
. Let AHa, BHb and CHc be

the (Euclidean) altitudes of the Euclidean triangle with vertices A,B,C. Then AHa, BHb and CHc are also
(hyperbolic) altitudes of hyperbolic triangle ABC. Indeed, AHa ⊥ BC since AHa lie on a diameter of the
disc, BHb ⊥ AC and CHc ⊥ AB since AC and AB lie on the diameter of the disc.

Being altitudes of a Euclidean triangle, the lines AHa, BHb and CHc have a common point T , however, T
doesn’t necessarily belongs to the disc. If T lies in the disc, the altitudes of △ABC have a common point.
If T lies on the boundary of the disc, then the altitudes of △ABC are all parallel. Finally, if T lies outside
the disc, then there exists a unique (hyperbolic) line l orthogonal to all three altitudes (to find this line l
consider the (Euclidean) lines t1 and t2 passing through T and tangent to the boundary of the disc, then l
is the line through the points t1 ∩ ∂H2 and t2 ∩ ∂H2).

16.3. Let u,v be two vectors in R
2,1. Denote Q = | (u,v)2

(u,u)(v,v) |, where (x, y) = x1y1 + x2y2 − x3y3. Show
the following distance formulae:

(a) if (u,u) < 0, (v,v) < 0, then u and v define two points in H
2, and Q = cosh2 d(u,v).

(b) if (u,u) < 0, (v,v) > 0, then u defines a point and v defines a line lv in H
2, and Q =

sinh2 d(u, lv).

(c) if (u,u) > 0, (v,v) > 0 then u and v define two lines lu and lv in H
2 and

• if Q < 1, then lu intersects lv forming angle ϕ satisfying Q = cos2 ϕ;

• if Q = 1, then lu is parallel to lv;

• if Q > 1, then lu and lv are ultra-parallel lines satisfying Q = cosh2 d(lu, lv).

Solution:

We will compute in the hyperboloid model. Moreover, we will use the isometry group to reduce the problem
to a 2-dimensional one.

(a) By transitivity of the isometry group on H
2 we may assume that u = (0, 0, 1). Applying a rotation

around this point (in the 3-dimensional space it is represented by a rotation around the third coordinate
axis) we may assume that v = (v1, 0, v3), v

2
1 − v23 = −1. We will also assume v1 > 0.

We find d(u,v) by definition, as a cross-ratio of four lines.

The line (plane in the model) through u and v has the equation x2 = 0, i.e. it is the line (x,a) = 0
for the vector a = (0, 1, 0). This line intersects the absolute at the points (x,x) = 0, x2 = 0, i.e. in
x2
1 − x2

3 = 0 which gives two solutions for x3 > 0: X = (−1, 0, 1) and Y = (1, 0, 1).To find the distance
d(u,v) we need to find a cross-ratio of four lines spanned by u,v,X and Y .

To find the cross-ratio of four lines we intersect all four lines by some line l (the result does not depend
on the choice of l). Choose l to be the horizontal line through (0, 0, 1) (it is given by equations x3 = 1,
x2 = 0). Renormalising v = (v1, 0, v3) so that it belongs to the plane x3 = 1 we get v′ = (v1v3 , 0, 1). So,
using the line x3 = 1, x2 = 0 we get

∣

∣[u,v,Y ,X]
∣

∣ =
∣

∣[0,
v1
v3

, 1,−1]
∣

∣ =
∣

∣

1− 0

1− v1
v3

/
−1− 0

−1− v1
v3

∣

∣ =
∣

∣

v1 + v3
v1 − v3

∣

∣ =
∣

∣

(v1 + v3)
2

v21 − v23

∣

∣ = (v1 + v3)
2,

so that

d(u,v) =
1

2

∣

∣ ln |[u,v,X,Y ]|
∣

∣ =
1

2
ln(v1 + v3)

2 = ln(v1 + v3),

which implies ed = v1 + v3, and

coshd =
v1 + v3 +

1
v1+v3

2
=

v3 +
1+v1(v1+v3)

v1+v3

2
=

v3 +
1+v2

1
+v1v3)

v1+v3

2
=

v3 +
v2

3
+v1v3)
v1+v3

2
= v3.



On the other hand,
(u,v)2

(u,u)(v,v)
=

v23
(−1)(−1)

= v23 .

Thus,

cosh2 d(u,v) = | (u,v)2

(u,u)(v,v)
|.

(b) Let t ∈ lv be an orthogonal projection of u to lv, i.e. the line tu is perpendicular to lv. Clearly,
d(u, lv) = d(u, t).

Without loss of generality we may assume that u = (0, 0, 1) and t = (t1, 0, t3), t
2
1 − t23 = −1. By part

(a),

cosh2 d(u, lv) = cosh2 d(u, t) = | t23
(−1)(−1)

| = t23.

Therefore,
sinh2 d(u, lv) = cosh2 d(u, lv)− 1 = t23 − 1 = t21.

Now, let us find the equation for the line lv. The line tu corresponds to the plane given by the equation
x2 = 0. The whole pattern (i.e. hyperboloid, the point u, the line lv the line tu) is symmetric with
respect to this plane. Hence, the vector v defining the line lv has zero second coordinate v2 = 0,
which implies v = (v1, 0, v3). Since the line lv contains the point t = (t1, 0, t3), we have (v, t) = 0, i.e.
v1t1 − v3t3 = 0. This implies v = λ(t3, 0, t1), or simply v = (t3, 0, t1) after rescaling (v,v) = 1. Hence,

| (u,v)2

(u,u)(v,v)
| = | t21

(−1) · 1 | = t21,

which coincides with the value of sinh2 d(u, lv).

(c) • lu and lv have a common point in H
2.

Applying an isometry, we may assume that the point of intersection of lu and lv is (0, 0, 1). Then
the planes through the origin representing the lines lu and lv are vertical planes (passing through
the third coordinate axis), these planes are represented by vectors (u1, u2, 0), (v1, v2, 0) (to see that,
notice that the vertical planes are symmetric with respect to the plane x3 = 0). Furthermore, due
to the rotational symmetry, the angles at the point (0, 0, 1) are Euclidean angles, i.e. ϕ (or π−ϕ)
coincides with the angle between (u1, u2, 0) and (v1, v2, 0). By Euclidean formula for computation
of angles we get

cosϕ = ± (u,v)
√

(u,u)(v,v)

(we may use pseudo-scalar product (·, ·) in a Euclidean formula since the third coordinate is zero).

• lu and lv are ultra-parallel.
Let h be a line orthogonal to both lu and lv. Let hu = h ∩ lu and hv = h ∩ lv be the intersection
points. Then d(lu, lv) = d(hu, hv).
Without loss of generality we may assume hu = (0, 0, 1) and hv = (t1, 0, t3), t

2
1 − t23 = 1 (so that h

corresponds to the plane x2 = 0). Then lu and lv are represented by the vectors u = (1, 0, 0) and
v = (t3, 0, t1) (since (hv,v) = 0 and v2 = 0). This implies that

cosh2 d(hu, hv) = | (hu, hv)
2

(hu, hu)(hv , hv)
| = t3

|t21 − t23|
= | (u,v)2

(u,u)(v,v)
|,

This proves the statement since d(lu, lv) = d(hu, hv).

• lu and lv are parallel.
The result for this case follows from two previous ones by continuity.
Alternatively, one can use an isometry to place the common point of two lines at (1, 0, 1), and the
other endpoints of lu and lv at (−1, 0, 1) and (0, 1, 1) respectively, i.e. u = (0, 1, 0) and v = (1, 1, 1).
Then

Q = | (u,v)2

(u,u)(v,v)
| = 1

1 · 1 = 1.



16.4. (⋆) Consider the two-sheet hyperboloid model {u = (u1, u2, u3) ∈ R
2,1 | (u,u) = −1, u3 > 0},

where (u,u) = u21 + u22 − u23.

(a) For the vectors

v1 = (2, 1, 2) v2 = (0, 1, 2) v3 = (3, 4, 5)
v4 = (1, 0, 0) v5 = (0, 1, 0) v6 = (1, 1, 2)

decide whether vi defines a point in H
2, a point on the absolute, or a line in H

2.

(b) Find the distance between the two points of H2 described in (a).

(c) Which pairs of lines in (a) are intersecting? Which lines are parallel? Which lines are ultra-
parallel? Justify your answer.

(d) Find the distances between all pairs of ultra-parallel lines in (a).

(e) Does any of the points in (a) lie on any of the lines above?

(f) Find the angles between the pairs of intersecting lines.

Solution:

(a) We need to check (vi, vi): if it is negative, vi corresponds to a point of hyperbolic plane, if it is equal
to zero, vi is a point of the absolute, if it is positive, then vi corresponds to a line (more precisely, it is
a normal vector to plane through (0, 0, 0) which determines a line in the model).

(v1, v1) = 4 + 1− 4 = 1 > 0, line;
(v2, v2) = 0 + 1− 4 = −3 < 0, point
(v3, v3) = 9 + 16− 25 = 0, point of the absolute;
(v4, v4) = 1 + 0− 0 = 1 > 0, line;
(v5, v5) = 0 + 1− 0 = 1 > 0, line;
(v6, v6) = 1 + 1− 4 = −2 < 0, point.

(b)

cosh2(d(v2, v6)) =
(v2, v6)

2

(v2, v2)(v6, v6)
=

(0 + 1− 4)2

(−3)(−2)
=

9

6
=

3

2
.

So, d(v2, v6) = arccosh
√

3
2 .

(c) | (v1,v4)
2

(v1,v1)(v4,v4)
| = 4

1·1 = 4 > 1, so, v1 and v4 are ultra-parallel lines.

| (v1,v5)
2

(v1,v1)(v5,v5)
| = 1

1·1 = 1, so, v1 is parallel to v5.

| (v4,v5)
2

(v4,v4)(v5,v5)
| = 0

1·1 = 0 < 1, so, v4 intersects v5.

(d) cosh2(d) = || (v1,v4)
2

(v1,v1)(v4,v4)
| = 4, so, d = arccosh 2.

(e) A point vi lies on a line vj if and only if (vi, vj) = 0.
This holds for the point v2 and the line v4.

This also holds for the point of the absolute v3 and the line v1.

(f) cos2 α = | (v4,v5)
2

(v4,v4)(v5,v5)
| = 0, so, the lines are orthogonal.

References:

Lectures (Elementary hyperbolic geometry, area, Klein model and hyperboloid model) are based on
Lectures VII, VIII, VI and XIII of Prasolov’s book.


