Geometry III/IV, Solutions: weeks 17-18

Isometries of the hyperbolic plane

17.1. Show that any pair of parallel lines can be transformed to any other pair of parallel lines by an isometry.

Solution:

Consider a pair of parallel lines l_{1} and l_{2}. Let X be the common point (lying at the absolute) of these lines and Y_{1} and Y_{2} be other endpoints of these lines. By triple transitivity of the action of isometries on points of the absolute, we can see that X, Y_{1}, Y_{2} can be taken to the endpoints of any other pair of parallel lines.
Remark: another option is just to look at these line in the upper half-plane, assuming $X=\infty$, and to construct the required isometry explicitly.
17.2. Let $A, B \in \gamma$ be two points on a horocycle γ. Show that the perpendicular bisector to the segment $A B$ (of a hyperbolic line!) is orthogonal to γ.

Solution:

Consider the upper half-plane model, let ∞ be the centre of the horocycle. Then γ is represented by a horizontal (Euclidean) line, the perpendicular bisector to $A B$ is represented by a vertical ray, which is obviously orthogonal to the horocycle.
17.3. Let f be a composition of three reflections. Show that f is a glide reflection, i.e. a hyperbolic translation along some line composed with a reflection with respect to the same line.

Solution:

Consider first the restriction of f to the absolute (parametrized by the angle $\varphi \in[0,2 \pi)$). As f is orientationreversing, the function $f(\varphi)$ (considered modulo 2π) is monotonically decreasing. Hence, there are exactly two points where $f(\varphi)=\varphi$ (the intersection points of the graph of f with the diagonal). This implies that f preserves two points of the absolute.

Now, in Problem 14.4 we have already classified all isometries preserving two points of the absolute. In particular, for the orientation-reversing case we have seen that there is a one-parameter family of such isometries, and that in the upper half-plane (with 0 and ∞ fixed) any such isometry can be written as $z \mapsto-a \bar{z}, a \in R_{+}$. Notice that this is a composition of a hyperbolic translation along the line $\{\operatorname{Re} z=0\}$ and the reflection with respect to the same line.
17.4. (\star) Let f be an isometry of the hyperbolic plane such that the distance from A to $f(A)$ is the same for all points $A \in \mathbb{H}^{2}$. Show that f is an identity map.

Solution:

This follows from the classification of isometries. If f is not an identity, then it is of one of five types: elliptic, parabolic, hyperbolic, reflection or glide reflection.
Elliptic isometries and reflections have fixed points in \mathbb{H}^{2} (i.e., there are points such that the distance from A to $f(A)$ is zero), so this is not the case.

Hyperbolic isometries and glide reflections preserve equidistant curves, and it is easy to see (say, in the upper half-plane model conjugating f to either $z \mapsto k z$ or $z \mapsto-k \bar{z})$ that the distance between $f(A)$ and A is an increasing function on the distance from A to the axis of f.

Finally, parabolic isometries preserve horocycles, and, again, considering f in the upper half-plane model (and conjugating it to $z \mapsto z+1$) it is easy to see that the distance between $f(A)$ and A is an increasing function on the "distance" from A to the fixed point of f (although the distance is infinite and thus is not defined, one can compare distances from different points to a point on the absolute by considering appropriate horocycles).
17.5. (\star) Let \boldsymbol{a} and \boldsymbol{b} be two vectors in the hyperboloid model such that $(\boldsymbol{a}, \boldsymbol{a})>0$ and $(\boldsymbol{b}, \boldsymbol{b})>0$. Let $l_{\boldsymbol{a}}$ and $l_{\boldsymbol{b}}$ be the lines determined by equations $(\boldsymbol{x}, \boldsymbol{a})=0$ and $(\boldsymbol{x}, \boldsymbol{b})=0$ respectively, and let $r_{\boldsymbol{a}}$ and $r_{\boldsymbol{b}}$ be the reflections with respect to $l_{\boldsymbol{a}}$ and $l_{\boldsymbol{b}}$.
(a) For $\boldsymbol{a}=(0,1,0)$ and $\boldsymbol{b}=(1,0,0)$ write down $r_{\boldsymbol{a}}$ and $r_{\boldsymbol{b}}$. Find $r_{\boldsymbol{b}} \circ r_{\boldsymbol{a}}(\boldsymbol{v})$, where $\boldsymbol{v}=(0,1,2)$.
(b) What is the type of the isometry $\varphi=r_{\boldsymbol{b}} \circ r_{\boldsymbol{a}}$ for $\boldsymbol{a}=(1,1,1)$ and $\boldsymbol{b}=(1,1,-1)$? (Hint: you don't need to compute $r_{\boldsymbol{a}}$ and $r_{\boldsymbol{b}}$).
(c) Find an example of \boldsymbol{a} and \boldsymbol{b} such that $\varphi=r_{\boldsymbol{b}} \circ r_{\boldsymbol{a}}$ is a rotation by $\pi / 2$.

Solution:

(a) $r_{a}(\boldsymbol{x})=\boldsymbol{x}-2 \frac{(\boldsymbol{x}, \boldsymbol{a})}{(\boldsymbol{a}, \boldsymbol{a})} \boldsymbol{a}=\boldsymbol{x}-2 x_{2} \boldsymbol{a}, \quad r_{\boldsymbol{b}}(\boldsymbol{x})=\boldsymbol{x}-2 \frac{(\boldsymbol{x}, \boldsymbol{b})}{(\boldsymbol{b}, \boldsymbol{b})} \boldsymbol{b}=\boldsymbol{x}-2 x_{1} \boldsymbol{b}$;
$(\boldsymbol{a}, \boldsymbol{a})=1,(\boldsymbol{v}, \boldsymbol{a})=1$, so,
$\boldsymbol{u}:=r_{\boldsymbol{a}}(\boldsymbol{v})=r_{\boldsymbol{a}}((0,1,2))=(0,1,2)-2 \frac{1}{1}(0,1,0)=(0,-1,2)$.
$(\boldsymbol{b}, \boldsymbol{b})=1,(\boldsymbol{u}, \boldsymbol{b})=0$, so,
$r_{\boldsymbol{b}} \circ r_{\boldsymbol{a}}(\boldsymbol{v})=r_{\boldsymbol{b}}(\boldsymbol{u})=(0,-1,2)-0=(0,-1,2)$.
(b) To find the type of isometry $\varphi=r_{\boldsymbol{b}} \circ r_{\boldsymbol{a}}$ it is sufficient to determine whether the lines $l_{\boldsymbol{a}}$ and $l_{\boldsymbol{b}}$ are intersecting, or parallel, or ultraparallel:

- if they do intersect φ is elliptic;
- if they are parallel φ is parabolic;
- if they are ultraparallel φ is hyperbolic.

The behavior of two lines is determined by the value $Q=\frac{(\boldsymbol{a}, \boldsymbol{b})^{2}}{(\boldsymbol{a}, \boldsymbol{a})(\boldsymbol{b}, \boldsymbol{b})}$:

- $l_{\boldsymbol{a}}$ intersects $l_{\boldsymbol{b}}$ if $Q<1$;
- $l_{\boldsymbol{a}}$ is parallel to $l_{\boldsymbol{b}}$ if $Q=1$;
- $l_{\boldsymbol{a}}$ is ultraparallel to $l_{\boldsymbol{b}}$ if $Q>1$.

In our case, $Q=\frac{9}{1 \cdot 1}>1$, so that the lines are ultraparallel. This implies that φ is hyperbolic.
(c) To get a rotation by $\pi / 2$ we need to find two lines making the angle $\pi / 4$. The easiest way to get such a pair of lines is to put their intersection into the centre of the model where the angles do coincide with Euclidean ones.
Take the lines defined by $\boldsymbol{a}=(1,0,0)$ and $\left.\boldsymbol{b}=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right)\right)$. Then $\cos ^{2}(\angle \boldsymbol{a b})=Q=\frac{\left(\frac{\sqrt{2}}{2}\right)^{2}}{1 \cdot 1}=\frac{2}{4}$. So, $\angle \boldsymbol{a b}=\arccos \frac{\sqrt{2}}{2}=\pi / 4$.

Equidistant curves

18.1. Let l be a hyperbolic line, and let E_{l} be an equidistant curve for l.
(a) Let C_{1} and C_{2} be two connected components of the same equidistant curve E_{l}. Show that C_{1} is also equidistant from C_{2}, i.e. given a point $A \in C_{1}$ the distance $d\left(A, C_{2}\right)$ from A to C_{2} does not depend on the choice of A.
(b) Let $A \in E_{l}$ be a point on the equidistant curve, and let $A_{l} \in l$ be the point of l closest to A. Show that the line $A A_{l}$ is orthogonal to the equidistant curve E_{l}.
(c) Let $P, Q \in l$ be two points on l, and let $A \in E_{l}$. Continue the rays $A P$ and $A Q$ till the next intersection points with E_{l}, denote the resulting intersection points by B and C. Let T be a curvilinear triangle $A B C$ (with geodesic sides $A B$ and $A C$, but $B C$ being a segment of the equidistant curve). Assuming that all angles of $A B C$ are acute, show that the area of T does not depend on the choice of $A \in E_{l}$.
(d) In the assumptions of (c), show that the area of the geodesic triangle $A B C$ does not depend on the choice of A.

Solution:

(a) Any hyperbolic translation along the line l preserves both C_{1} and C_{2} (not pointwise) and moves A along C_{1}. Moreover, for any $B \in C_{1}$ there is a suitable translation T along l such that $T(A)=B$. So, the distance from B to C_{2} is the same as $d\left(A, C_{2}\right)$.
(b) In the upper half-plane model, let l be a vertical ray on the line $x=0$. Then the equidistant curve is the union of two rays from the origin, the line $A A_{l}$ is represented by a half of a circle centred at the origin and is obviously orthogonal to the rays forming the equidistant curve. As the upper half-plane model is conformal, this implies that $A A_{l}$ is orthogonal to E_{l}.
(c) Let l_{P} be the line through P orthogonal to l and let X_{1} and Y_{1} be the intersections of l_{P} with C_{1} and C_{2} respectively lying on distance c_{0} from P. Similarly, we construct the line l_{Q} through $Q, l_{Q} \perp l$, and its intersection points X_{2} and Y_{2} with C_{1} and C_{2}.
Consider the curvilinear triangles $P A X_{1}$ and $P B Y_{1}$. The rotation R by π around P swaps these triangles (indeed, R preserves all lines through P and swaps the circles C_{1} and C_{2}). This implies that these curvilinear triangles have equal areas. Similarly, the curvilinear triangles $Q A X_{2}$ and $Q C Y_{2}$ have equal areas. So, the area of the curvilinear triangle $A B C$ coincides with the area of curvilinear quadrilateral $X_{1} X_{2} Y_{2} Y_{1}$ (with geodesic sides $X_{1} X_{2}$ and $Y_{1} Y_{2}$, but sides $X_{1} X_{2}$ and $Y_{1} Y_{2}$ being the segments of the equidistant curve). The latter area does not depend on the choice of A. Notice, that here we use that $A B C$ is acute-angled (if angle B or C is obtuse the diagram is more complicated).

(d) It is sufficient to prove that the distance between B and C does not depend on the choice of A (then the area of $\triangle A B C$ differs from the area of the curvilinear triangle $A B C$ by the area of a lune $B C$ formed by the geodesic segment and a segment of the equidistant curve).
To see that $d(B, C)$ is independent of the choice of A, consider the orthogonal projections A_{l}, B_{l} and C_{l} of the points A, B, C to the line l. Clearly, $d\left(B_{l}, P\right)=d\left(A_{l}, P\right)$ and $d\left(C_{l}, Q\right)=d\left(A_{l}, Q\right)$. This implies that $d\left(B_{l}, C_{l}\right)=2 d(P, Q)$, (here we use that $A B C$ is acute-angled and hence, $A_{l} \in P Q$), which does not depend on A. Therefore, $d(B, C)$ does not depend on A.
18.2. (\star)
(a) Let l and l^{\prime} be ultra-parallel lines. Let E_{l} be an equidistant curve for l intersecting l^{\prime} in two points A and B. Denote by h the common perpendicular to l and l^{\prime} and let $H=h \cap l^{\prime}$ be the intersection point. Show that $A H=H B$.
(b) Let l be a line and E_{l} be an equidistant curve for l. For two points A, B on E_{l}, show that the perpendicular bisector of $A B$ is also orthogonal to l.
(c) Let $A B C$ be a triangle in the Poincaré disc model. Let γ be a Euclidean circumscribed circle (i.e. a circumscribed circle for $A B C$ considered as a Euclidean triangle). Suppose that γ intersects the absolute at points X and Y. Show that the (hyperbolic) perpendicular bisector to $A B$ is orthogonal to the hyperbolic line $X Y$.
(d) Show that three perpendicular bisectors in a hyperbolic triangle are either concurrent, or parallel, of have a common perpendicular.

Solution:

(a) Consider the reflection r_{h} with respect to h. It preserves l (as $l \perp h$), and thus preserves E_{l}. By the same reason, r_{h} preserves l^{\prime}. Thus, the intersection $A \in l^{\prime} \cap E_{l}$ should be mapped by r_{h} to another point in $l^{\prime} \cap E_{l}$, which is B. This implies that h is the perpendicular bisector of $A B$.
(b) This is just another wording of part (a). Let l^{\prime} be the line $A B$, then we have proved that the common perpendicular to l and l^{\prime} coincides with the perpendicular bisector of $A B$. In particular, the latter is orthogonal to l.
(c) The part of the curve γ lying inside \mathbb{H}^{2} is an equidistant curve to the line $X Y$ (as it is a part of a Euclidean circle passing through the endpoints of $X Y$). Therefore, it is orthogonal to $X Y$ by part (b).
(d) Consider the triangle $A B C$ in the Poincaré disc model. Let γ be the Euclidean circle through A, B, C. Consider three cases: γ lies inside hyperbolic plane, is tangent to the absolute or intersects the absolute at two different points.
If γ intersects the absolute at two points X and Y, then as shown in part (c) all perpendicular bisectors are orthogonal to $X Y$.
If γ is tangent to the absolute at X, then γ is a horocycle centred at X. It is shown in Problem 17.2 that all perpendicular bisectors are orthogonal to γ, which implies they are passing through the centre X of γ (cf. the upper half-plane with $X=\infty$), and thus are parallel to each other.
If γ lies entirely inside the hyperbolic plane, it actually represents a hyperbolic circle. So, $A B C$ has a circumscribed circle, whose centre is the point of concurrence of all three perpendicular bisectors.
Here are the diagrams showing what can happen in (c) and (d):

or, even more precisely:

