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Geometry III/IV, Solutions: weeks 17–18

Isometries of the hyperbolic plane

17.1. Show that any pair of parallel lines can be transformed to any other pair of parallel lines by an
isometry.

Solution:

Consider a pair of parallel lines l1 and l2. Let X be the common point (lying at the absolute) of these lines
and Y1 and Y2 be other endpoints of these lines. By triple transitivity of the action of isometries on points
of the absolute, we can see that X,Y1, Y2 can be taken to the endpoints of any other pair of parallel lines.

Remark: another option is just to look at these line in the upper half-plane, assuming X = ∞, and to

construct the required isometry explicitly.

17.2. Let A,B ∈ γ be two points on a horocycle γ. Show that the perpendicular bisector to the segment
AB (of a hyperbolic line!) is orthogonal to γ.

Solution:

Consider the upper half-plane model, let ∞ be the centre of the horocycle. Then γ is represented by a

horizontal (Euclidean) line, the perpendicular bisector to AB is represented by a vertical ray, which is

obviously orthogonal to the horocycle.

17.3. Let f be a composition of three reflections. Show that f is a glide reflection, i.e. a hyperbolic
translation along some line composed with a reflection with respect to the same line.

Solution:

Consider first the restriction of f to the absolute (parametrized by the angle ϕ ∈ [0, 2π)). As f is orientation-
reversing, the function f(ϕ) (considered modulo 2π) is monotonically decreasing. Hence, there are exactly
two points where f(ϕ) = ϕ (the intersection points of the graph of f with the diagonal). This implies that
f preserves two points of the absolute.

Now, in Problem 14.4 we have already classified all isometries preserving two points of the absolute. In

particular, for the orientation-reversing case we have seen that there is a one-parameter family of such

isometries, and that in the upper half-plane (with 0 and ∞ fixed) any such isometry can be written as

z 7→ −az̄, a ∈ R+. Notice that this is a composition of a hyperbolic translation along the line {Re z = 0}

and the reflection with respect to the same line.

17.4. (⋆) Let f be an isometry of the hyperbolic plane such that the distance from A to f(A) is the same
for all points A ∈ H

2. Show that f is an identity map.

Solution:

This follows from the classification of isometries. If f is not an identity, then it is of one of five types: elliptic,
parabolic, hyperbolic, reflection or glide reflection.

Elliptic isometries and reflections have fixed points in H
2 (i.e., there are points such that the distance from

A to f(A) is zero), so this is not the case.



Hyperbolic isometries and glide reflections preserve equidistant curves, and it is easy to see (say, in the upper
half-plane model conjugating f to either z 7→ kz or z 7→ −kz̄) that the distance between f(A) and A is an
increasing function on the distance from A to the axis of f .

Finally, parabolic isometries preserve horocycles, and, again, considering f in the upper half-plane model

(and conjugating it to z 7→ z + 1) it is easy to see that the distance between f(A) and A is an increasing

function on the “distance” from A to the fixed point of f (although the distance is infinite and thus is not

defined, one can compare distances from different points to a point on the absolute by considering appropriate

horocycles).

17.5. (⋆) Let a and b be two vectors in the hyperboloid model such that (a,a) > 0 and (b, b) > 0. Let
la and lb be the lines determined by equations (x,a) = 0 and (x, b) = 0 respectively, and let ra
and rb be the reflections with respect to la and lb.

(a) For a = (0, 1, 0) and b = (1, 0, 0) write down ra and rb. Find rb ◦ ra(v), where v = (0, 1, 2).

(b) What is the type of the isometry ϕ = rb ◦ ra for a = (1, 1, 1) and b = (1, 1,−1)?
(Hint: you don’t need to compute ra and rb).

(c) Find an example of a and b such that ϕ = rb ◦ ra is a rotation by π/2.

Solution:

(a) ra(x) = x− 2 (x,a)
(a,a)a = x− 2x2a, rb(x) = x− 2 (x,b)

(b,b) b = x− 2x1b;

(a,a) = 1, (v,a) = 1, so,

u := ra(v) = ra((0, 1, 2)) = (0, 1, 2)− 2 1
1 (0, 1, 0) = (0,−1, 2).

(b, b) = 1, (u, b) = 0, so,

rb ◦ ra(v) = rb(u) = (0,−1, 2)− 0 = (0,−1, 2).

(b) To find the type of isometry ϕ = rb ◦ ra it is sufficient to determine whether the lines la and lb are
intersecting, or parallel, or ultraparallel:

• if they do intersect ϕ is elliptic;

• if they are parallel ϕ is parabolic;

• if they are ultraparallel ϕ is hyperbolic.

The behavior of two lines is determined by the value Q = (a,b)2

(a,a)(b,b) :

• la intersects lb if Q < 1;

• la is parallel to lb if Q = 1;

• la is ultraparallel to lb if Q > 1.

In our case, Q = 9
1·1 > 1, so that the lines are ultraparallel. This implies that ϕ is hyperbolic.

(c) To get a rotation by π/2 we need to find two lines making the angle π/4. The easiest way to get such a
pair of lines is to put their intersection into the centre of the model where the angles do coincide with
Euclidean ones.

Take the lines defined by a = (1, 0, 0) and b = (
√
2
2 ,

√
2
2 , 0)). Then cos2(∠ab) = Q =

(
√

2

2
)2

1·1 = 2
4 . So,

∠ab = arccos
√
2
2 = π/4.

Equidistant curves

18.1. Let l be a hyperbolic line, and let El be an equidistant curve for l.

(a) Let C1 and C2 be two connected components of the same equidistant curve El. Show that C1

is also equidistant from C2, i.e. given a point A ∈ C1 the distance d(A,C2) from A to C2 does
not depend on the choice of A.



(b) Let A ∈ El be a point on the equidistant curve, and let Al ∈ l be the point of l closest to A.
Show that the line AAl is orthogonal to the equidistant curve El.

(c) Let P,Q ∈ l be two points on l, and let A ∈ El. Continue the rays AP and AQ till the next
intersection points with El, denote the resulting intersection points by B and C. Let T be a
curvilinear triangle ABC (with geodesic sides AB and AC, but BC being a segment of the
equidistant curve). Assuming that all angles of ABC are acute, show that the area of T does
not depend on the choice of A ∈ El.

(d) In the assumptions of (c), show that the area of the geodesic triangle ABC does not depend
on the choice of A.

Solution:

(a) Any hyperbolic translation along the line l preserves both C1 and C2 (not pointwise) and moves A
along C1. Moreover, for any B ∈ C1 there is a suitable translation T along l such that T (A) = B. So,
the distance from B to C2 is the same as d(A,C2).

(b) In the upper half-plane model, let l be a vertical ray on the line x = 0. Then the equidistant curve is
the union of two rays from the origin, the line AAl is represented by a half of a circle centred at the
origin and is obviously orthogonal to the rays forming the equidistant curve. As the upper half-plane
model is conformal, this implies that AAl is orthogonal to El.

(c) Let lP be the line through P orthogonal to l and let X1 and Y1 be the intersections of lP with C1 and
C2 respectively lying on distance c0 from P . Similarly, we construct the line lQ through Q, lQ ⊥ l, and
its intersection points X2 and Y2 with C1 and C2.

Consider the curvilinear triangles PAX1 and PBY1. The rotation R by π around P swaps these
triangles (indeed, R preserves all lines through P and swaps the circles C1 and C2). This implies
that these curvilinear triangles have equal areas. Similarly, the curvilinear triangles QAX2 and QCY2

have equal areas. So, the area of the curvilinear triangle ABC coincides with the area of curvilinear
quadrilateral X1X2Y2Y1 (with geodesic sides X1X2 and Y1Y2, but sides X1X2 and Y1Y2 being the
segments of the equidistant curve). The latter area does not depend on the choice of A. Notice, that
here we use that ABC is acute-angled (if angle B or C is obtuse the diagram is more complicated).

l

A

B C

P Q

X1
X2

Y1
Y2

(d) It is sufficient to prove that the distance between B and C does not depend on the choice of A (then
the area of △ABC differs from the area of the curvilinear triangle ABC by the area of a lune BC
formed by the geodesic segment and a segment of the equidistant curve).

To see that d(B,C) is independent of the choice of A, consider the orthogonal projections Al, Bl and Cl

of the points A,B,C to the line l. Clearly, d(Bl, P ) = d(Al, P ) and d(Cl, Q) = d(Al, Q). This implies
that d(Bl, Cl) = 2d(P,Q), (here we use that ABC is acute-angled and hence, Al ∈ PQ), which does
not depend on A. Therefore, d(B,C) does not depend on A.

18.2. (⋆)

(a) Let l and l′ be ultra-parallel lines. Let El be an equidistant curve for l intersecting l′ in two
points A and B. Denote by h the common perpendicular to l and l′ and let H = h∩ l′ be the
intersection point. Show that AH = HB.



(b) Let l be a line and El be an equidistant curve for l. For two points A,B on El, show that the
perpendicular bisector of AB is also orthogonal to l.

(c) Let ABC be a triangle in the Poincaré disc model. Let γ be a Euclidean circumscribed circle
(i.e. a circumscribed circle for ABC considered as a Euclidean triangle). Suppose that γ
intersects the absolute at points X and Y . Show that the (hyperbolic) perpendicular bisector
to AB is orthogonal to the hyperbolic line XY .

(d) Show that three perpendicular bisectors in a hyperbolic triangle are either concurrent, or
parallel, of have a common perpendicular.

Solution:

(a) Consider the reflection rh with respect to h. It preserves l (as l ⊥ h), and thus preserves El. By the
same reason, rh preserves l′. Thus, the intersection A ∈ l′ ∩ El should be mapped by rh to another
point in l′ ∩ El, which is B. This implies that h is the perpendicular bisector of AB.

(b) This is just another wording of part (a). Let l′ be the line AB, then we have proved that the common
perpendicular to l and l′ coincides with the perpendicular bisector of AB. In particular, the latter is
orthogonal to l.

(c) The part of the curve γ lying inside H
2 is an equidistant curve to the line XY (as it is a part of a

Euclidean circle passing through the endpoints of XY ). Therefore, it is orthogonal to XY by part (b).

(d) Consider the triangle ABC in the Poincaré disc model. Let γ be the Euclidean circle through A,B,C.
Consider three cases: γ lies inside hyperbolic plane, is tangent to the absolute or intersects the absolute
at two different points.

If γ intersects the absolute at two points X and Y , then as shown in part (c) all perpendicular bisectors
are orthogonal to XY .

If γ is tangent to the absolute at X , then γ is a horocycle centred at X . It is shown in Problem 17.2
that all perpendicular bisectors are orthogonal to γ, which implies they are passing through the centre
X of γ (cf. the upper half-plane with X = ∞), and thus are parallel to each other.

If γ lies entirely inside the hyperbolic plane, it actually represents a hyperbolic circle. So, ABC has a
circumscribed circle, whose centre is the point of concurrence of all three perpendicular bisectors.

Here are the diagrams showing what can happen in (c) and (d):
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or, even more precisely:
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