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Riemannian Geometry IV, Problems class 4 (Week 20): Solutions

P4.1. Let ¢: [0,a] — M be a geodesic. Find explicitly geodesic variations F(s,t) and F°(s,t)
of ¢ such that their variational vector fields are non-orthogonal Jacobi fields ¢¢/(t) and
' (t) respectively.

Solution:

Let J(t) = tc/(t). Since J(0) = 0, we can apply the procedure used in the proof of Lemma 9.9.
Namely, F(s,t) = expg)tv(s), where v(s) is a curve in T, M satisfying v(0) = ¢/(0) and
v'(0) = £.J(0).
Observe that I 5 I
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so the curve v(s) should satisfy v(0) = v/(0) = ¢/(0). We can take, for example, v(s) =
(s +1)c'(0). Therefore, F(s,t) = expg) (tc'(0)(s + 1)).
Now let J(t) = /(t). This Jacobi field does not vanish at ¢ = 0, so we need to apply the
method used in the proof of HW 6.2. Namely, FO(s,t) = exp. )tV (s), where y(s) is a curve
in M, V(s) is a vector field along the curve 7(s), and v(0) = ¢(0), 7/(0) = J(0), V(0) = ¢/(0),
Dy 0)=L2.7(0).
For our particular J(¢) this implies that v(0) = ¢(0), /(0) = ¢/(0), V(0) = ¢(0), 2V (0) = 0.
Thus, we can take y(s) = ¢(s), V(s) = ¢(s)f(s), where f(0) = 1, f/(0) = 0. For example,
f(s) =1+ s? works. Therefore, we can take F(s,t) = exXpe(s) (tc'(s)(1 + s2)).

Note that both variations F(s,t) and FY(s,t) lie entirely in the trace of ¢ (which should not be
surprising).

P4.2. Let H? = {(z,y,2) € R® | 2 > 0} be the upper half-space model of the 3-dimensional
hyperbolic space, where the metric is given by (g;;) = 1/2%I. Given a € R, show that
the transformation f, : (z,y, z) — (ax,ay, az) is an isometry of H?3.

Solution:

Let v(t) be a curve in H3, let us find D f )Y (0):

Do =L o) = L an(t) = ' (0),

dt];—o dt 1=
which implies that D,y = al (note that this doesn’t depend on the point 7(0)). Therefore,
for every p = (x,y,z) € H? and for every v, w € TpH3 we have

a2 <U7 w)Eucl o </U7 w>Euc1

(Df(v), Df(w)) jp) = (av, aw) yp) = @2Z - = (v, W),
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P4.3. Show that the cone z? = 2% + y? in H? is isometric to Euclidean cylinder 22 + %> = 1 in
R3.
Solution:

Let us first check that the sectional curvature on the cone M vanishes identically (formally
speaking, this is not required, but at least indicates that the question makes sense).

Parametrize M by (z,y,z) = (rcosp,rsing,r), then
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o (cos p,singp, 1)
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so the metric is given by the matrix (g;;) = %2 <O 72) = < /07“ (1)> Therefore, the only
non-zero Christoffel symbol is T'1; = —1/r, and thus the Riemann curvature tensor vanishes
identically.

We now need to construct an isometry f : M — C between M and the cylinder C. Observe
that any “horizontal slice” of M at height z is a circle of (Euclidean) radius z, and thus its
length is equal to (27z)/z = 2m. So, it would be natural if f mapped these slices to parallels of
C. A natural candidate for the preimage of a meridian of C' would be a generating curve of M
parametrized by arc length.

Parametrize a generating curve of M by ¢(z) = (a(z),0,a(x)). Then (z) = (a/(2),0,d (x)),
so ||d(2)|> = 2a/(x)?/a(z)?. The quation ||¢/(z)|| = 1 is then equivallent to o/(z) = a(z)/v/?2,

so we can take a(z) = %/V2,

Thus, we have a parametrization of M by (e"/V2 cos ¢, e"/V2sin g, e7/V2) = e"/V2(cos o, sin i, 1).
The cylinder C' is parametrized by (cos®,sin®, z). Define a map f : M — C by f(r,¢) =
(Z(T, ()0)7 19(7‘7 SD) = (7', QO), i.e.

f: er/ﬂ(cos ,sing, 1) — (cos p,sin ¢, r)

. Then
0 0 d .
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o dt

f(e(”)/\/i(cos(gp +t),sin(p +1),1)) = Df(ai(r, ©)).
t=0 7

Now observe that both metrics on C' and M are given by the identity matrices, so f is indeed
an isometry.



P4.4. Let G be a Lie group with bi-invariant metric. Show that it has non-negative sectional
curvature.

Solution:

Let g € G and take any z,y € T,G. Take left-invariant vector fields X, Y such that X(g) = =,
Y (9) = y. We want to compute (R(X,Y)Y, X) and show that it is never less than zero.

Recall from HW 3.1, that for left-invariant vector fields VxY = %[X ,Y]. Thus, we can compute
R(X,Y)Y:

1 1
R(X,Y)Y = VxVyY — VyVxY = Vix1 ¥ = =V [V, V] == Vy[X, Y] = Vixy ¥ =
’ 2 —— 2 ’
=0

1 1 1
- Z[K [Xv Y]] - 5[[X7 Y],Y] - _Z[[Xv Y]7Y]
Using the equality ([U, X|,V) = —(U, [V, X]) proved in Corollary 6.18, we obtain
(ROX Y)Y, X) = (X, Y], Y] X) = (XYL V) = £ Y] 2 0,



