Riemannian Geometry IV, Problems class 4 (Week 20): Solutions

P4.1. Let $c:[0, a] \rightarrow M$ be a geodesic. Find explicitly geodesic variations $F(s, t)$ and $F^{0}(s, t)$ of c such that their variational vector fields are non-orthogonal Jacobi fields $t c^{\prime}(t)$ and $c^{\prime}(t)$ respectively.

Solution:

Let $J(t)=t c^{\prime}(t)$. Since $J(0)=0$, we can apply the procedure used in the proof of Lemma 9.9. Namely, $F(s, t)=\exp _{c(0)} t v(s)$, where $v(s)$ is a curve in $T_{c(0)} M$ satisfying $v(0)=c^{\prime}(0)$ and $v^{\prime}(0)=\frac{D}{d t} J(0)$.
Observe that

$$
\frac{D}{d t} J(0)=\left.\frac{D}{d t}\right|_{t=0} t c^{\prime}(t)=c^{\prime}(0)+\left.t \frac{D}{d t}\right|_{t=0} c^{\prime}(t)=c^{\prime}(0),
$$

so the curve $v(s)$ should satisfy $v(0)=v^{\prime}(0)=c^{\prime}(0)$. We can take, for example, $v(s)=$ $(s+1) c^{\prime}(0)$. Therefore, $F(s, t)=\exp _{c(0)}\left(t c^{\prime}(0)(s+1)\right)$.
Now let $J(t)=c^{\prime}(t)$. This Jacobi field does not vanish at $t=0$, so we need to apply the method used in the proof of HW 6.2. Namely, $F^{0}(s, t)=\exp _{\gamma(s)} t V(s)$, where $\gamma(s)$ is a curve in $M, V(s)$ is a vector field along the curve $\gamma(s)$, and $\gamma(0)=c(0), \gamma^{\prime}(0)=J(0), V(0)=c^{\prime}(0)$, $\frac{D}{d s} V(0)=\frac{D}{d t} J(0)$.
For our particular $J(t)$ this implies that $\gamma(0)=c(0), \gamma^{\prime}(0)=c^{\prime}(0), V(0)=c^{\prime}(0), \frac{D}{d s} V(0)=0$. Thus, we can take $\gamma(s)=c(s), V(s)=c^{\prime}(s) f(s)$, where $f(0)=1, f^{\prime}(0)=0$. For example, $f(s)=1+s^{2}$ works. Therefore, we can take $F^{0}(s, t)=\exp _{c(s)}\left(t c^{\prime}(s)\left(1+s^{2}\right)\right)$.
Note that both variations $F(s, t)$ and $F^{0}(s, t)$ lie entirely in the trace of c (which should not be surprising).

P4.2. Let $\mathbb{H}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>0\right\}$ be the upper half-space model of the 3-dimensional hyperbolic space, where the metric is given by $\left(g_{i j}\right)=1 / z^{2} I$. Given $a \in \mathbb{R}_{>0}$, show that the transformation $f_{a}:(x, y, z) \mapsto(a x, a y, a z)$ is an isometry of \mathbb{H}^{3}.

Solution:

Let $\gamma(t)$ be a curve in \mathbb{H}^{3}, let us find $D f_{\gamma(0)} \gamma^{\prime}(0)$:

$$
D f_{\gamma(0)} \gamma^{\prime}(0)=\left.\frac{d}{d t}\right|_{t=0} f(\gamma(t))=\left.\frac{d}{d t}\right|_{t=0} a \gamma(t)=a \gamma^{\prime}(0),
$$

which implies that $D f_{\gamma(0)}=a I$ (note that this doesn't depend on the point $\gamma(0)$). Therefore, for every $p=(x, y, z) \in \mathbb{H}^{3}$ and for every $v, w \in T_{p} \mathbb{H}^{3}$ we have

$$
\langle D f(v), D f(w)\rangle_{f(p)}=\langle a v, a w\rangle_{f(p)}=\frac{a^{2}\langle v, w\rangle_{\mathrm{Eucl}}}{(a z)^{2}}=\frac{\langle v, w\rangle_{\mathrm{Eucl}}}{z^{2}}=\langle v, w\rangle_{p} .
$$

P4.3. Show that the cone $z^{2}=x^{2}+y^{2}$ in \mathbb{H}^{3} is isometric to Euclidean cylinder $x^{2}+y^{2}=1$ in \mathbb{R}^{3}.

Solution:

Let us first check that the sectional curvature on the cone M vanishes identically (formally speaking, this is not required, but at least indicates that the question makes sense).
Parametrize M by $(x, y, z)=(r \cos \varphi, r \sin \varphi, r)$, then

$$
\begin{aligned}
\frac{\partial}{\partial r} & =(\cos \varphi, \sin \varphi, 1) \\
\frac{\partial}{\partial \varphi} & =(-\sin \varphi, \cos \varphi, 0)
\end{aligned}
$$

so the metric is given by the matrix $\left(g_{i j}\right)=\frac{1}{r^{2}}\left(\begin{array}{cc}2 & 0 \\ 0 & r^{2}\end{array}\right)=\left(\begin{array}{cc}2 / r^{2} & 0 \\ 0 & 1\end{array}\right)$. Therefore, the only non-zero Christoffel symbol is $\Gamma_{11}^{1}=-1 / r$, and thus the Riemann curvature tensor vanishes identically.
We now need to construct an isometry $f: M \rightarrow C$ between M and the cylinder C. Observe that any "horizontal slice" of M at height z is a circle of (Euclidean) radius z, and thus its length is equal to $(2 \pi z) / z=2 \pi$. So, it would be natural if f mapped these slices to parallels of C. A natural candidate for the preimage of a meridian of C would be a generating curve of M parametrized by arc length.
Parametrize a generating curve of M by $c(x)=(\alpha(x), 0, \alpha(x))$. Then $c^{\prime}(x)=\left(\alpha^{\prime}(x), 0, \alpha^{\prime}(x)\right)$, so $\left\|c^{\prime}(x)\right\|^{2}=2 \alpha^{\prime}(x)^{2} / \alpha(x)^{2}$. The quation $\left\|c^{\prime}(x)\right\|=1$ is then equivallent to $\alpha^{\prime}(x)=\alpha(x) / \sqrt{2}$, so we can take $\alpha(x)=e^{x / \sqrt{2}}$.
Thus, we have a parametrization of M by $\left(e^{r / \sqrt{2}} \cos \varphi, e^{r / \sqrt{2}} \sin \varphi, e^{r / \sqrt{2}}\right)=e^{r / \sqrt{2}}(\cos \varphi, \sin \varphi, 1)$. The cylinder C is parametrized by $(\cos \vartheta, \sin \vartheta, z)$. Define a map $f: M \rightarrow C$ by $f(r, \varphi)=$ $(z(r, \varphi), \vartheta(r, \varphi)=(r, \varphi)$, i.e.

$$
f: e^{r / \sqrt{2}}(\cos \varphi, \sin \varphi, 1) \mapsto(\cos \varphi, \sin \varphi, r)
$$

Then

$$
\begin{aligned}
& \frac{\partial}{\partial z}(z(r, \varphi), \vartheta(r, \varphi))=\frac{\partial}{\partial z}(r, \varphi)=\left.\frac{d}{d t}\right|_{t=0}(\cos \varphi, \sin \varphi, r+t)= \\
& =\left.\frac{d}{d t}\right|_{t=0} f\left(e^{(r+t) / \sqrt{2}}(\cos \varphi, \sin \varphi, 1)\right)=D f\left(\frac{\partial}{\partial r}(r, \varphi)\right), \\
& \begin{aligned}
& \frac{\partial}{\partial \vartheta}(z(r, \varphi), \vartheta(r, \varphi))=\frac{\partial}{\partial \vartheta}(r, \varphi)=\left.\frac{d}{d t}\right|_{t=0}(\cos (\varphi+t), \sin (\varphi+t), r)= \\
&=\left.\frac{d}{d t}\right|_{t=0} f\left(e^{(r) / \sqrt{2}}(\cos (\varphi+t), \sin (\varphi+t), 1)\right)=D f\left(\frac{\partial}{\partial \varphi}(r, \varphi)\right) .
\end{aligned}
\end{aligned}
$$

Now observe that both metrics on C and M are given by the identity matrices, so f is indeed an isometry.

P4.4. Let G be a Lie group with bi-invariant metric. Show that it has non-negative sectional curvature.

Solution:

Let $g \in G$ and take any $x, y \in T_{g} G$. Take left-invariant vector fields X, Y such that $X(g)=x$, $Y(g)=y$. We want to compute $\langle R(X, Y) Y, X\rangle$ and show that it is never less than zero.
Recall from HW 3.1, that for left-invariant vector fields $\nabla_{X} Y=\frac{1}{2}[X, Y]$. Thus, we can compute $R(X, Y) Y$:

$$
\begin{aligned}
R(X, Y) Y=\nabla_{X} \nabla_{Y} Y-\nabla_{Y} \nabla_{X} Y-\nabla_{[X, Y]} Y & =\frac{1}{2} \nabla_{X} \underbrace{[Y, Y]}_{=0}-\frac{1}{2} \nabla_{Y}[X, Y]-\nabla_{[X, Y]} Y= \\
& -\frac{1}{4}[Y,[X, Y]]-\frac{1}{2}[[X, Y], Y]=-\frac{1}{4}[[X, Y], Y]
\end{aligned}
$$

Using the equality $\langle[U, X], V\rangle=-\langle U,[V, X]\rangle$ proved in Corollary 6.18, we obtain

$$
\langle R(X, Y) Y, X\rangle=\left\langle-\frac{1}{4}[[X, Y], Y], X\right\rangle=\frac{1}{4}\langle[X, Y],[X, Y]\rangle=\frac{1}{4}\|[X, Y]\|^{2} \geq 0 .
$$

