Riemannian Geometry IV, Problems class 4 (Week 20): Solutions

P4.1. Let $c: [0, a] \to M$ be a geodesic. Find explicitly geodesic variations F(s, t) and $F^0(s, t)$ of c such that their variational vector fields are non-orthogonal Jacobi fields tc'(t) and c'(t) respectively.

Solution:

Let J(t) = tc'(t). Since J(0) = 0, we can apply the procedure used in the proof of Lemma 9.9. Namely, $F(s,t) = \exp_{c(0)} tv(s)$, where v(s) is a curve in $T_{c(0)}M$ satisfying v(0) = c'(0) and $v'(0) = \frac{D}{dt}J(0)$.

Observe that

$$\frac{D}{dt}J(0) = \left.\frac{D}{dt}\right|_{t=0} tc'(t) = c'(0) + t \left.\frac{D}{dt}\right|_{t=0} c'(t) = c'(0)$$

so the curve v(s) should satisfy v(0) = v'(0) = c'(0). We can take, for example, v(s) = (s+1)c'(0). Therefore, $F(s,t) = \exp_{c(0)}(tc'(0)(s+1))$.

Now let J(t) = c'(t). This Jacobi field does not vanish at t = 0, so we need to apply the method used in the proof of HW 6.2. Namely, $F^0(s,t) = \exp_{\gamma(s)} tV(s)$, where $\gamma(s)$ is a curve in M, V(s) is a vector field along the curve $\gamma(s)$, and $\gamma(0) = c(0)$, $\gamma'(0) = J(0)$, V(0) = c'(0), $\frac{D}{ds}V(0) = \frac{D}{dt}J(0)$.

For our particular J(t) this implies that $\gamma(0) = c(0)$, $\gamma'(0) = c'(0)$, V(0) = c'(0), $\frac{D}{ds}V(0) = 0$. Thus, we can take $\gamma(s) = c(s)$, V(s) = c'(s)f(s), where f(0) = 1, f'(0) = 0. For example, $f(s) = 1 + s^2$ works. Therefore, we can take $F^0(s,t) = \exp_{c(s)}(tc'(s)(1+s^2))$.

Note that both variations F(s,t) and $F^0(s,t)$ lie entirely in the trace of c (which should not be surprising).

P4.2. Let $\mathbb{H}^3 = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}$ be the upper half-space model of the 3-dimensional hyperbolic space, where the metric is given by $(g_{ij}) = 1/z^2 I$. Given $a \in \mathbb{R}_{>0}$, show that the transformation $f_a : (x, y, z) \mapsto (ax, ay, az)$ is an isometry of \mathbb{H}^3 .

Solution:

Let $\gamma(t)$ be a curve in \mathbb{H}^3 , let us find $Df_{\gamma(0)}\gamma'(0)$:

$$Df_{\gamma(0)}\gamma'(0) = \left.\frac{d}{dt}\right|_{t=0} f(\gamma(t)) = \left.\frac{d}{dt}\right|_{t=0} a\gamma(t) = a\gamma'(0),$$

which implies that $Df_{\gamma(0)} = aI$ (note that this doesn't depend on the point $\gamma(0)$). Therefore, for every $p = (x, y, z) \in \mathbb{H}^3$ and for every $v, w \in T_p \mathbb{H}^3$ we have

$$\langle Df(v), Df(w) \rangle_{f(p)} = \langle av, aw \rangle_{f(p)} = \frac{a^2 \langle v, w \rangle_{\text{Eucl}}}{(az)^2} = \frac{\langle v, w \rangle_{\text{Eucl}}}{z^2} = \langle v, w \rangle_p$$

P4.3. Show that the cone $z^2 = x^2 + y^2$ in \mathbb{H}^3 is isometric to Euclidean cylinder $x^2 + y^2 = 1$ in \mathbb{R}^3 .

Solution:

Let us first check that the sectional curvature on the cone M vanishes identically (formally speaking, this is not required, but at least indicates that the question makes sense).

Parametrize M by $(x, y, z) = (r \cos \varphi, r \sin \varphi, r)$, then

$$\frac{\partial}{\partial r} = (\cos \varphi, \sin \varphi, 1) \frac{\partial}{\partial \varphi} = (-\sin \varphi, \cos \varphi, 0),$$

so the metric is given by the matrix $(g_{ij}) = \frac{1}{r^2} \begin{pmatrix} 2 & 0 \\ 0 & r^2 \end{pmatrix} = \begin{pmatrix} 2/r^2 & 0 \\ 0 & 1 \end{pmatrix}$. Therefore, the only non-zero Christoffel symbol is $\Gamma_{11}^1 = -1/r$, and thus the Riemann curvature tensor vanishes identically.

We now need to construct an isometry $f: M \to C$ between M and the cylinder C. Observe that any "horizontal slice" of M at height z is a circle of (Euclidean) radius z, and thus its length is equal to $(2\pi z)/z = 2\pi$. So, it would be natural if f mapped these slices to parallels of C. A natural candidate for the preimage of a meridian of C would be a generating curve of Mparametrized by arc length.

Parametrize a generating curve of M by $c(x) = (\alpha(x), 0, \alpha(x))$. Then $c'(x) = (\alpha'(x), 0, \alpha'(x))$, so $\|c'(x)\|^2 = 2\alpha'(x)^2/\alpha(x)^2$. The quation $\|c'(x)\| = 1$ is then equivalent to $\alpha'(x) = \alpha(x)/\sqrt{2}$, so we can take $\alpha(x) = e^{x/\sqrt{2}}$.

Thus, we have a parametrization of M by $(e^{r/\sqrt{2}}\cos\varphi, e^{r/\sqrt{2}}\sin\varphi, e^{r/\sqrt{2}}) = e^{r/\sqrt{2}}(\cos\varphi, \sin\varphi, 1)$. The cylinder C is parametrized by $(\cos\vartheta, \sin\vartheta, z)$. Define a map $f : M \to C$ by $f(r, \varphi) = (z(r, \varphi), \vartheta(r, \varphi) = (r, \varphi)$, i.e.

$$f: e^{r/\sqrt{2}}(\cos\varphi, \sin\varphi, 1) \mapsto (\cos\varphi, \sin\varphi, r)$$

. Then

$$\begin{split} \frac{\partial}{\partial z}(z(r,\varphi),\vartheta(r,\varphi)) &= \frac{\partial}{\partial z}(r,\varphi) = \left. \frac{d}{dt} \right|_{t=0} \left(\cos\varphi, \sin\varphi, r+t \right) = \\ &= \left. \frac{d}{dt} \right|_{t=0} f(e^{(r+t)/\sqrt{2}}(\cos\varphi, \sin\varphi, 1)) = Df(\frac{\partial}{\partial r}(r,\varphi)), \end{split}$$

$$\begin{split} \frac{\partial}{\partial \vartheta}(z(r,\varphi),\vartheta(r,\varphi)) &= \frac{\partial}{\partial \vartheta}(r,\varphi) = \left. \frac{d}{dt} \right|_{t=0} \left(\cos(\varphi+t),\sin(\varphi+t),r \right) = \\ &= \left. \frac{d}{dt} \right|_{t=0} f(e^{(r)/\sqrt{2}}(\cos(\varphi+t),\sin(\varphi+t),1)) = Df(\frac{\partial}{\partial \varphi}(r,\varphi)). \end{split}$$

Now observe that both metrics on C and M are given by the identity matrices, so f is indeed an isometry. **P4.4.** Let G be a Lie group with bi-invariant metric. Show that it has non-negative sectional curvature.

Solution:

Let $g \in G$ and take any $x, y \in T_gG$. Take left-invariant vector fields X, Y such that X(g) = x, Y(g) = y. We want to compute $\langle R(X, Y)Y, X \rangle$ and show that it is never less than zero.

Recall from HW 3.1, that for left-invariant vector fields $\nabla_X Y = \frac{1}{2}[X, Y]$. Thus, we can compute R(X, Y)Y:

$$R(X,Y)Y = \nabla_X \nabla_Y Y - \nabla_Y \nabla_X Y - \nabla_{[X,Y]} Y = \frac{1}{2} \nabla_X \underbrace{[Y,Y]}_{=0} - \frac{1}{2} \nabla_Y [X,Y] - \nabla_{[X,Y]} Y = -\frac{1}{4} [Y, [X,Y]] - \frac{1}{2} [[X,Y],Y] = -\frac{1}{4} [[X,Y],Y]$$

Using the equality $\langle [U,X],V\rangle = -\langle U,[V,X]\rangle$ proved in Corollary 6.18, we obtain

$$\langle R(X,Y)Y,X \rangle = \langle -\frac{1}{4}[[X,Y],Y],X \rangle = \frac{1}{4} \langle [X,Y],[X,Y] \rangle = \frac{1}{4} \| [X,Y] \|^2 \ge 0.$$