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Riemannian Geometry IV, Problems class 4 (Week 20): Solutions

P4.1. Let c : [0, a]→M be a geodesic. Find explicitly geodesic variations F (s, t) and F 0(s, t)
of c such that their variational vector fields are non-orthogonal Jacobi fields tc′(t) and
c′(t) respectively.

Solution:

Let J(t) = tc′(t). Since J(0) = 0, we can apply the procedure used in the proof of Lemma 9.9.
Namely, F (s, t) = expc(0) tv(s), where v(s) is a curve in Tc(0)M satisfying v(0) = c′(0) and

v′(0) = D
dtJ(0).

Observe that
D

dt
J(0) =

D

dt

∣∣∣∣
t=0

tc′(t) = c′(0) + t
D

dt

∣∣∣∣
t=0

c′(t) = c′(0),

so the curve v(s) should satisfy v(0) = v′(0) = c′(0). We can take, for example, v(s) =
(s+ 1)c′(0). Therefore, F (s, t) = expc(0)(tc

′(0)(s+ 1)).

Now let J(t) = c′(t). This Jacobi field does not vanish at t = 0, so we need to apply the
method used in the proof of HW 6.2. Namely, F 0(s, t) = expγ(s) tV (s), where γ(s) is a curve
in M , V (s) is a vector field along the curve γ(s), and γ(0) = c(0), γ′(0) = J(0), V (0) = c′(0),
D
dsV (0) = D

dtJ(0).

For our particular J(t) this implies that γ(0) = c(0), γ′(0) = c′(0), V (0) = c′(0), D
dsV (0) = 0.

Thus, we can take γ(s) = c(s), V (s) = c′(s)f(s), where f(0) = 1, f ′(0) = 0. For example,
f(s) = 1 + s2 works. Therefore, we can take F 0(s, t) = expc(s)(tc

′(s)(1 + s2)).

Note that both variations F (s, t) and F 0(s, t) lie entirely in the trace of c (which should not be

surprising).

P4.2. Let H3 = {(x, y, z) ∈ R3 | z > 0} be the upper half-space model of the 3-dimensional
hyperbolic space, where the metric is given by (gij) = 1/z2I. Given a ∈ R>0, show that
the transformation fa : (x, y, z) 7→ (ax, ay, az) is an isometry of H3.

Solution:

Let γ(t) be a curve in H3, let us find Dfγ(0)γ
′(0):

Dfγ(0)γ
′(0) =

d

dt

∣∣∣∣
t=0

f(γ(t)) =
d

dt

∣∣∣∣
t=0

aγ(t) = aγ′(0),

which implies that Dfγ(0) = aI (note that this doesn’t depend on the point γ(0)). Therefore,
for every p = (x, y, z) ∈ H3 and for every v, w ∈ TpH3 we have

〈Df(v), Df(w)〉f(p) = 〈av, aw〉f(p) =
a2〈v, w〉Eucl

(az)2
=
〈v, w〉Eucl

z2
= 〈v, w〉p.



P4.3. Show that the cone z2 = x2 + y2 in H3 is isometric to Euclidean cylinder x2 + y2 = 1 in
R3.

Solution:

Let us first check that the sectional curvature on the cone M vanishes identically (formally
speaking, this is not required, but at least indicates that the question makes sense).

Parametrize M by (x, y, z) = (r cosϕ, r sinϕ, r), then

∂

∂r
= (cosϕ, sinϕ, 1)

∂

∂ϕ
= (− sinϕ, cosϕ, 0),

so the metric is given by the matrix (gij) = 1
r2

(
2 0
0 r2

)
=

(
2/r2 0

0 1

)
. Therefore, the only

non-zero Christoffel symbol is Γ1
11 = −1/r, and thus the Riemann curvature tensor vanishes

identically.

We now need to construct an isometry f : M → C between M and the cylinder C. Observe
that any “horizontal slice” of M at height z is a circle of (Euclidean) radius z, and thus its
length is equal to (2πz)/z = 2π. So, it would be natural if f mapped these slices to parallels of
C. A natural candidate for the preimage of a meridian of C would be a generating curve of M
parametrized by arc length.

Parametrize a generating curve of M by c(x) = (α(x), 0, α(x)). Then c′(x) = (α′(x), 0, α′(x)),
so ‖c′(x)‖2 = 2α′(x)2/α(x)2. The quation ‖c′(x)‖ = 1 is then equivallent to α′(x) = α(x)/

√
2,

so we can take α(x) = ex/
√
2.

Thus, we have a parametrization of M by (er/
√
2 cosϕ, er/

√
2 sinϕ, er/

√
2) = er/

√
2(cosϕ, sinϕ, 1).

The cylinder C is parametrized by (cosϑ, sinϑ, z). Define a map f : M → C by f(r, ϕ) =
(z(r, ϕ), ϑ(r, ϕ) = (r, ϕ), i.e.

f : er/
√
2(cosϕ, sinϕ, 1) 7→ (cosϕ, sinϕ, r)

. Then

∂

∂z
(z(r, ϕ), ϑ(r, ϕ)) =

∂

∂z
(r, ϕ) =

d

dt

∣∣∣∣
t=0

(cosϕ, sinϕ, r + t) =

=
d

dt

∣∣∣∣
t=0

f(e(r+t)/
√
2(cosϕ, sinϕ, 1)) = Df(

∂

∂r
(r, ϕ)),

∂

∂ϑ
(z(r, ϕ), ϑ(r, ϕ)) =

∂

∂ϑ
(r, ϕ) =

d

dt

∣∣∣∣
t=0

(cos(ϕ+ t), sin(ϕ+ t), r) =

=
d

dt

∣∣∣∣
t=0

f(e(r)/
√
2(cos(ϕ+ t), sin(ϕ+ t), 1)) = Df(

∂

∂ϕ
(r, ϕ)).

Now observe that both metrics on C and M are given by the identity matrices, so f is indeed

an isometry.



P4.4. Let G be a Lie group with bi-invariant metric. Show that it has non-negative sectional
curvature.

Solution:

Let g ∈ G and take any x, y ∈ TgG. Take left-invariant vector fields X,Y such that X(g) = x,
Y (g) = y. We want to compute 〈R(X,Y )Y,X〉 and show that it is never less than zero.

Recall from HW 3.1, that for left-invariant vector fields ∇XY = 1
2 [X,Y ]. Thus, we can compute

R(X,Y )Y :

R(X,Y )Y = ∇X∇Y Y −∇Y∇XY −∇[X,Y ]Y =
1

2
∇X [Y, Y ]︸ ︷︷ ︸

=0

−1

2
∇Y [X,Y ]−∇[X,Y ]Y =

− 1

4
[Y, [X,Y ]]− 1

2
[[X,Y ], Y ] = −1

4
[[X,Y ], Y ]

Using the equality 〈[U,X], V 〉 = −〈U, [V,X]〉 proved in Corollary 6.18, we obtain

〈R(X,Y )Y,X〉 = 〈−1

4
[[X,Y ], Y ], X〉 =

1

4
〈[X,Y ], [X,Y ]〉 =

1

4
‖[X,Y ]‖2 ≥ 0.


