Riemannian Geometry IV, Problems class 4 (Week 20)

- **P4.1.** Let $c: [0, a] \to M$ be a geodesic. Find explicitly geodesic variations F(s, t) and $F^0(s, t)$ of c such that their variational vector fields are non-orthogonal Jacobi fields tc'(t) and c'(t) respectively.
- **P4.2.** Let $\mathbb{H}^3 = \{(x, y, z) \in \mathbb{R}^3 \mid z > 0\}$ be the upper half-space model of the 3-dimensional hyperbolic space, where the metric is given by $(g_{ij}) = \frac{1}{z^2}I$. Given $a \in \mathbb{R}_{>0}$, show that the transformation $f_a : (x, y, z) \mapsto (ax, ay, az)$ is an isometry of \mathbb{H}^3 .
- **P4.3.** Show that the cone $z^2 = x^2 + y^2$ in \mathbb{H}^3 is isometric to Euclidean cylinder $x^2 + y^2 = 1$ in \mathbb{R}^3 .
- **P4.4.** Let G be a Lie group with bi-invariant metric. Show that it has non-negative sectional curvature.