Riemannian Geometry IV, Problems class 4 (Week 20)

P4.1. Let $c:[0, a] \rightarrow M$ be a geodesic. Find explicitly geodesic variations $F(s, t)$ and $F^{0}(s, t)$ of c such that their variational vector fields are non-orthogonal Jacobi fields $t c^{\prime}(t)$ and $c^{\prime}(t)$ respectively.

P4.2. Let $\mathbb{H}^{3}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>0\right\}$ be the upper half-space model of the 3-dimensional hyperbolic space, where the metric is given by $\left(g_{i j}\right)=\frac{1}{z^{2}} I$. Given $a \in \mathbb{R}_{>0}$, show that the transformation $f_{a}:(x, y, z) \mapsto(a x, a y, a z)$ is an isometry of \mathbb{H}^{3}.

P4.3. Show that the cone $z^{2}=x^{2}+y^{2}$ in \mathbb{H}^{3} is isometric to Euclidean cylinder $x^{2}+y^{2}=1$ in \mathbb{R}^{3}.

P4.4. Let G be a Lie group with bi-invariant metric. Show that it has non-negative sectional curvature.

