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Riemannian Geometry IV, Solutions 1 (Week 11)

1.1. (x) Consider the upper half-plane M = {(z,y) € R? |y > 0} with the metric

(9i5) = <(1) g)

(a) Show that all the Christoffel symbols are zero except I'3, = —

—5-
(b) Show that the vertical segment z = 0, ¢ < y < 1 with 0 < ¢ < 1 is a geodesic curve when
parametrized proportionally to arc length.

(c) Show that the length of the segment x =0, e <y < 1 with 0 < & < 1 tends to 2 as € tends to
Zero.

(d) Show that (M, g) is not geodesically complete.
Solution:

(a) We use the formula

1 n
I‘fj =3 Z gkm(gim,j + Gim,i — Gij,m)

m=1
The only non-zero g;; x is ga2.2 = —1/y?. Thus, the only non-zero Christoffel symbol is
1 1
T2 — 422 _
22 29 (922,2) %

(b) Solution 1. Parametrize the segment by c(t) = (0, a(t)), where «(0) = €, a(1) = 1, and «(t) is increasing.
Then ¢(t) = o/ (t)-Z, and we obtain

oy’
0 o/ (¢) o (t)
IOl =l @O 51l = =
Y VY a(t)
Since we want c¢(t) to be parametrized proportionally to arc length, we have
o' (1)
I @)1l = =k
a(t)

for some k € R, so
(%) o/ (t) = kr/a(t).

To show that c(t) is geodesic, we need to show that £¢/(t) = 0, where £ denotes covariant derivative
along ¢(t). Computing, we obtain

D, D(,. 0 o @, D
%c(t) == (a (t)ay> =d't)—+dt)—=— =

_ M 7] / . g 12 10 _ " O/z(t) 9

Applying (*), we obtain o () = k2/2, and o/*(t)/20(t) = k2/2 as well, so Do) =o.




Solution 2. (based on symmetry and uniqueness).

Consider the map R : M — M, R(z,y) = (—x,y) (reflection with respect to the y-axis). As the

metric g;; depends on y only (which is preserved by R), R is an isometry. (Indeed, the differential
-1 0

0 1), S0 DR(%) = 73% and DR(%) = g. Hence,

(DR(v), DR(w)) = (v, w) for any v,w € T(, ,)M.) (here we use that the metric is diagonal). Thus,

is an isometry of M, so R takes each geodesic to a geodesic.

Now, let v(t) be the geodesic such that v(0) = (0, 1), v/(0) = (0,—1). Suppose that v does not belong

entirely to the vertical line, i.e. for some ¢y the point y(tp) has non-zero x-coordinate (say, positive).

Then the geodesic R(y(t)) obtained from « by the reflection R does not coincide with ~(¢) (it has

strictly negative xz-coordinate at t) and satisfies the same initial conditions as (¢). This contradicts

the uniqueness of a geodesic starting from a given point in a given direction.

of this map is the diagonal matrix DR = (

1

1
! t 12
/ ) g /2 (Val)' dt = 2¢/a(l) - 2/af0) = 2 - 2v2
0 0
which tends to 2 as ¢ tends to zero.

(d) It follows from (c) that the sequence 1/n is a Cauchy sequence, but does not converge in M. Thus,
(M, g) is not complete, and by the Hopf — Rinow theorem it is not geodesically complete.

1.2. Let G, H be Lie groups. A map ¢ : G — H is called a homomorphism (of Lie groups) if it is smooth
and it is a homomorphism of abstract groups.
Denote by g, b Lie algebras of G and H, and let ¢ : G — H be a homomorphism.

(a) Show that the differential Dy(e) : T.G — T. H induces a linear map Dy : g — b, where Dp(X)
for X € g is the unique left-invariant vector field on H such that Dp(X)(e) = Dp(X(e)).

(b) Show that for any g € G
Log) o9 =@ o Ly

(c¢) Show that for any X € gand g € G
De(X)(¢(9)) = Dp(X(9))

(d) Show that Dy : g — b is a homomorphism of Lie algebras, i.e. a linear map satisfying
Do([X,Y]) = [Dp(X), Dp(Y)] for any X,V € g.
Solution:
(a) The map Dy : g — b defined by Dp(X)(e) = Dp(X(e)) is clearly linear.
(b) Since ¢ is a homomorphism, we have for h € G
(Lo(g) 0 ) () = 0(g)p(h) = @(gh) = @(Lg(h)) = o Ly(h)
(¢) Since Dy(X) € b, we have
Dp(X)(9(9)) = DLyg)(e)Dp(X)(€) = DLy(g)(e)Dp(X(€)) = D(Le(g) © ) (€)X (€) =
= D(poLg)X(e) = Dp(DLyX(e)) = Dp(X(g))

(d) Reproducing the proof of Prop. 6.8 (substituting L, by ¢ and making use of (c¢) and Lemma 6.7), we
have for every f € C*°(H) and g € G

(Dp o [X,Y](9)(f) = [X,Y](9)(f o) X(9)Y(fop)=Y(9)X(fop)=
= X(9)((DpoY)(f)) —Y(9)((Dpo X)(f)) =
= X(9)(De(Y)(f)op) — ()( P(X)(f)oyp) =
= Dp(X(9)(De(Y)(f)) — ( (@) (Dp(X)(f)) =
= Dop(X)(@(9)(Dp(Y)(f)) = De(Y)(p(9))(Dp(X)(f)) =

[De(X), De(Y)|(2(9))(f)



In particular, taking g = e, we have (Dy o [X,Y])(e) = [De(X), De(Y)](e). According to (c), we have
Dy([X,Y])op = Dpo[X, Y] S0 (D<po[ Y])(e) = Do([X,Y])(e). Therefore, we have two left-invariant
vector fields Dp([X,Y]) and [D¢(X), De(Y')] coinciding at e, which implies they are equal.

1.3. Let S? = {z € R? | 2} + 2% + 2% = 1} be the unit sphere in R>.

Show that there exists no group operation on S? such that S? with this group operation and some
smooth structure becomes a Lie group.

Solution:
Assume that S? has a group operation resulting in a Lie group G. Take any nonzero v € T.G, and define a

left-invariant vector field X (g) = DLg4(e)v on G. Then X is a smooth nowhere vanishing field since for every
g € G we have DL,-1(g9)X(g) = v # 0. The existence of such a field contradicts the Hairy Ball Theorem.



