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Riemannian Geometry IV, Solutions 1 (Week 11)

1.1. (?) Consider the upper half-plane M = {(x, y) ∈ R2 | y > 0} with the metric

(gij) =

(
1 0
0 1

y

)
(a) Show that all the Christoffel symbols are zero except Γ2

22 = − 1
2y .

(b) Show that the vertical segment x = 0, ε ≤ y ≤ 1 with 0 < ε < 1 is a geodesic curve when
parametrized proportionally to arc length.

(c) Show that the length of the segment x = 0, ε ≤ y ≤ 1 with 0 < ε < 1 tends to 2 as ε tends to
zero.

(d) Show that (M, g) is not geodesically complete.

Solution:

(a) We use the formula

Γkij =
1

2

n∑
m=1

gkm(gim,j + gjm,i − gij,m)

The only non-zero gij,k is g22,2 = −1/y2. Thus, the only non-zero Christoffel symbol is

Γ2
22 =

1

2
g22(g22,2) = − 1

2y

(b) Solution 1. Parametrize the segment by c(t) = (0, α(t)), where α(0) = ε, α(1) = 1, and α(t) is increasing.
Then c′(t) = α′(t) ∂∂y , and we obtain

‖c′(t)‖ = |α′(t)|‖ ∂
∂y
‖ =

α′(t)
√
y

=
α′(t)√
α(t)

Since we want c(t) to be parametrized proportionally to arc length, we have

‖c′(t)‖ =
α′(t)√
α(t)

= k

for some k ∈ R, so

(∗) α′(t) = k
√
α(t).

To show that c(t) is geodesic, we need to show that D
dtc

′(t) = 0, where D
dt denotes covariant derivative

along c(t). Computing, we obtain

D

dt
c′(t) =

D

dt

(
α′(t)

∂

∂y

)
= α′′(t)

∂

∂y
+ α′(t)

D

dt

∂

∂y
=

= α′′(t)
∂

∂y
+ α′(t)∇α′(t) ∂

∂y

∂

∂y
= α′′(t)

∂

∂y
+ α′2(t)

(
− 1

2y

∂

∂y

)
=

(
α′′(t)− α′2(t)

2α(t)

)
∂

∂y

Applying (∗), we obtain α′′(t) = k2/2, and α′2(t)/2α(t) = k2/2 as well, so D
dtc

′(t) = 0.



Solution 2. (based on symmetry and uniqueness).

Consider the map R : M → M , R(x, y) = (−x, y) (reflection with respect to the y-axis). As the
metric gij depends on y only (which is preserved by R), R is an isometry. (Indeed, the differential

of this map is the diagonal matrix DR =

(
−1 0
0 1

)
, so DR( ∂

∂x ) = − ∂
∂x and DR( ∂∂y ) = ∂

∂y . Hence,

〈DR(v), DR(w)〉 = 〈v, w〉 for any v, w ∈ T(x,y)M .) (here we use that the metric is diagonal). Thus, R
is an isometry of M , so R takes each geodesic to a geodesic.

Now, let γ(t) be the geodesic such that γ(0) = (0, 1), γ′(0) = (0,−1). Suppose that γ does not belong
entirely to the vertical line, i.e. for some t0 the point γ(t0) has non-zero x-coordinate (say, positive).
Then the geodesic R(γ(t)) obtained from γ by the reflection R does not coincide with γ(t) (it has
strictly negative x-coordinate at t0) and satisfies the same initial conditions as γ(t). This contradicts
the uniqueness of a geodesic starting from a given point in a given direction.

(c)
1∫

0

α′(t)√
α(t)

dt =

1∫
0

2
(√

α(t)
)′
dt = 2

√
α(1)− 2

√
α(0) = 2− 2

√
ε

which tends to 2 as ε tends to zero.

(d) It follows from (c) that the sequence 1/n is a Cauchy sequence, but does not converge in M . Thus,
(M, g) is not complete, and by the Hopf – Rinow theorem it is not geodesically complete.

1.2. Let G,H be Lie groups. A map ϕ : G→ H is called a homomorphism (of Lie groups) if it is smooth
and it is a homomorphism of abstract groups.

Denote by g, h Lie algebras of G and H, and let ϕ : G→ H be a homomorphism.

(a) Show that the differential Dϕ(e) : TeG→ TeH induces a linear map Dϕ : g→ h, where Dϕ(X)
for X ∈ g is the unique left-invariant vector field on H such that Dϕ(X)(e) = Dϕ(X(e)).

(b) Show that for any g ∈ G
Lϕ(g) ◦ ϕ = ϕ ◦ Lg

(c) Show that for any X ∈ g and g ∈ G

Dϕ(X)(ϕ(g)) = Dϕ(X(g))

(d) Show that Dϕ : g → h is a homomorphism of Lie algebras, i.e. a linear map satisfying
Dϕ([X,Y ]) = [Dϕ(X), Dϕ(Y )] for any X,Y ∈ g.

Solution:

(a) The map Dϕ : g→ h defined by Dϕ(X)(e) = Dϕ(X(e)) is clearly linear.

(b) Since ϕ is a homomorphism, we have for h ∈ G

(Lϕ(g) ◦ ϕ)(h) = ϕ(g)ϕ(h) = ϕ(gh) = ϕ(Lg(h)) = ϕ ◦ Lg(h)

(c) Since Dϕ(X) ∈ h, we have

Dϕ(X)(ϕ(g)) = DLϕ(g)(e)Dϕ(X)(e) = DLϕ(g)(e)Dϕ(X(e)) = D(Lϕ(g) ◦ ϕ)(e)X(e) =

= D(ϕ ◦ Lg)X(e) = Dϕ(DLgX(e)) = Dϕ(X(g))

(d) Reproducing the proof of Prop. 6.8 (substituting Lg by ϕ and making use of (c) and Lemma 6.7), we
have for every f ∈ C∞(H) and g ∈ G

(Dϕ ◦ [X,Y ](g))(f) = [X,Y ](g)(f ◦ ϕ) = X(g)Y (f ◦ ϕ)− Y (g)X(f ◦ ϕ) =

= X(g)((Dϕ ◦ Y )(f))− Y (g)((Dϕ ◦X)(f)) =

= X(g)(Dϕ(Y )(f) ◦ ϕ)− Y (g)(Dϕ(X)(f) ◦ ϕ) =

= Dϕ(X(g))(Dϕ(Y )(f))−Dϕ(Y (g))(Dϕ(X)(f)) =

= Dϕ(X)(ϕ(g))(Dϕ(Y )(f))−Dϕ(Y )(ϕ(g))(Dϕ(X)(f)) =

= [Dϕ(X), Dϕ(Y )](ϕ(g))(f)



In particular, taking g = e, we have (Dϕ ◦ [X,Y ])(e) = [Dϕ(X), Dϕ(Y )](e). According to (c), we have
Dϕ([X,Y ])◦ϕ = Dϕ◦[X,Y ], so (Dϕ◦[X,Y ])(e) = Dϕ([X,Y ])(e). Therefore, we have two left-invariant
vector fields Dϕ([X,Y ]) and [Dϕ(X), Dϕ(Y )] coinciding at e, which implies they are equal.

1.3. Let S2 = {x ∈ R3 | x21 + x22 + x23 = 1} be the unit sphere in R3.

Show that there exists no group operation on S2 such that S2 with this group operation and some
smooth structure becomes a Lie group.

Solution:

Assume that S2 has a group operation resulting in a Lie group G. Take any nonzero v ∈ TeG, and define a

left-invariant vector field X(g) = DLg(e)v on G. Then X is a smooth nowhere vanishing field since for every

g ∈ G we have DLg−1(g)X(g) = v 6= 0. The existence of such a field contradicts the Hairy Ball Theorem.


