Riemannian Geometry IV, Homework 1 (Week 11)

Due date for starred problems: Friday, January 31.

1.1. (*) Consider the upper half-plane $M = \{(x,y) \in \mathbb{R}^2 \mid y > 0\}$ with the metric

$$(g_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{y} \end{pmatrix}$$

- (a) Show that all the Christoffel symbols are zero except $\Gamma_{22}^2 = -\frac{1}{2u}$.
- (b) Show that the vertical segment x = 0, $\varepsilon \le y \le 1$ with $0 < \varepsilon < 1$ is a geodesic curve when parametrized proportionally to arc length.
- (c) Show that the length of the segment $x=0,\,\varepsilon\leq y\leq 1$ with $0<\varepsilon<1$ tends to 2 as ε tends to zero.
- (d) Show that (M, g) is not geodesically complete.
- **1.2.** Let G, H be Lie groups. A map $\varphi : G \to H$ is called a homomorphism (of Lie groups) if it is smooth and it is a homomorphism of abstract groups.

Denote by $\mathfrak{g},\mathfrak{h}$ Lie algebras of G and H, and let $\varphi:G\to H$ be a homomorphism.

- (a) Show that the differential $D\varphi(e): T_eG \to T_eH$ induces a linear map $D\varphi: \mathfrak{g} \to \mathfrak{h}$, where $D\varphi(X)$ for $X \in \mathfrak{g}$ is the unique left-invariant vector field on H such that $D\varphi(X)(e) = D\varphi(X(e))$.
- (b) Show that for any $g \in G$

$$L_{\varphi(q)} \circ \varphi = \varphi \circ L_g$$

(c) Show that for any $X \in \mathfrak{g}$ and $g \in G$

$$D\varphi(X)(\varphi(g)) = D\varphi(X(g))$$

- (d) Show that $D\varphi: \mathfrak{g} \to \mathfrak{h}$ is a homomorphism of Lie algebras, i.e. a linear map satisfying $D\varphi([X,Y]) = [D\varphi(X), D\varphi(Y)]$ for any $X,Y \in \mathfrak{g}$.
- **1.3.** Let $S^2 = \{x \in \mathbb{R}^3 \mid x_1^2 + x_2^2 + x_3^2 = 1\}$ be the unit sphere in \mathbb{R}^3 .

Show that there exists no group operation on S^2 such that S^2 with this group operation and some smooth structure becomes a Lie group.