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Riemannian Geometry IV, Solutions 2 (Week 12)

2.1. (%) Let H3(R) be the set of 3 x 3 unit upper-triangular matrices (i.e. the matrices of the form

1 r1 T2
0 1 xr3 |,
0 0 1

where x, 9, x3 € R).

(a) Show that H3(R) is a group with respect to matrix multiplication. This group is called the
Heisenberg group.

(b) Show that the Heisenberg group is a Lie group. What is its dimension?

(c) Prove that the matrices
010 0 01 0 00
Xi=(0 0 0], Xo=10 0 0], Xs=10 01
0 00 0 00 0 00

form a basis of the tangent space T, H3(R) of the group H3(R) at the neutral element e.

(d) For each k = 1,2,3, find an explicit formula for the curve ¢ : R — H3(R) given by cx(t) =
Exp (tX%).

Solution:

(a) Tt is an easy computation to check the axioms of a group (i.e Hj is closed under multiplication, there
exists an obvious neutral element (3 x 3 identity matrix), there is an inverse element for each h € Hs,
associativity works as always in matrix groups).

(b) The matrix elements (x1,x2,x3) give a global chart on Hs, so Hs is a smooth 3-manifold. The multiplica-
tion g1 g2 can be written as (z1, 22, 3)(y1, Y2, y3) = (£1+y1, T2 +y2+21Y3, £3+Yy3), and the inverse element
gy ! can be written as (x1, 9, 23) "' = (—x1, 2123 — T2, —x3), which are smooth maps Hz x Hz — Hz and
Hs; — Hj respectively. Hence, Hj is a Lie group.

(c) To see that the matrices X; belong to T,Hjz consider the paths ¢;(t) = I + X;t € Hz. By definition,
6%1- = c(t) = X;. So, {X1, X2, X3} is the basis of T, H3 since {6—21 0 ,8—23} is a basis.

7371«2
(d) Since X? =0 for i = 1,2,3 we see that Exp (tX;) = I + X;t.

2.2. (a) Let A,B € M,(R), [A,B] = 0. Take t € R and show that Exp (¢{(A + B)) = Exp (tA) Exp (tB)
(in particular, you obtain that Exp (A + B) = Exp (A) Exp (B)).

(b) Show that

0100 1t t3/2 £3/6
00 10 01 t )2
Be 1o 00 1|| oo 1 ¢
00 0O 00 O 1
Guess what would be the exponential of an n X n-matrix of the same form (i.e., a Jordan block

with zero eigenvalue).



(c) Show that

c 100 1t t2/2 t3/6
0 c 1 0| |01 ¢ )2
Bxpltlo o ¢ 1|7 (oo 1 ¢
000 c 00 0 1

Solution:

(a) As in the previous exercise, expand both exponents Exp (tA) and Exp (¢B) as power series and collect the
A B F

coefficient of ¢" in the product. The monomials involved will be of type Hn—yr > 50 the monomial
containing ¢t" in the product will be
o tAkREB)t S, ARBrR v S L "
AT AT " = — A®B" =—(A+B)"
Z kl(n —k)! kl(n —k)! n!z El(n — k)! n!( + B)
k=0 k=0 k=0
0 ¢t 0 0
0 0 ¢t O
(b) Let A= 00 0 ¢ . We have
0 0 0O
00 t 0 00 0 ¢
9 00 0 ¢ 3 [0 0 0 O k
A700007A70000’A70 for all & > 4.
00 0 O 0 0 0 O

So the power series Exp (A) terminates after 4 terms and we conclude that

1t 32 3/(3)

B 1o, 1 3 |01 ¢ t2/2
EXp(A)—I+A+§A +§A =lo 0 1 ;
00 0 1

(c) Let B = tcl, where I denotes the 4 x 4 identity matrix, and let A be as in (a). Then we have Exp (B) = e“I
and A and B commute. This implies that

c 1 00 1t t2/2 /(3

0c10|]_ B Cwlor o e
Exp | ¢ 00 ¢ 1 =Exp(A+ B) =Exp(B)Exp(A) =e¢ 00 1 ;

0 0 0 ¢ 0 0 O 1

2.3. The special unitary group SU, C M, (C) consists of n x n matrices A with complex entries and unit
determinant satisfying the equation A'A =T = AA?.
(a) Show that SU,, forms a group under matrix multiplication.
(b) Show that SU; consists of all matrices of the form

< < f) . zweC, 2P+ |w=1

—w

(¢) Show that SUs is a smooth (real) manifold. Find its dimension.

(d) Show that SUs is a Lie group.

(e) Find the Lie algebra sus of SUs as a subspace of M»(C). Find any basis {v1,v2,v3} of sus.
Compute explicitly the left-invariant vector fields X, X2, X3 on SU; such that X;(I) = v;.

Solution:

(a) Let A, B € SU,,. Then
(AB)'(AB) = B'A'AB = B'(A'"A)B=B'B =1,

so AB € SU,,. Also, det A'det A = det I = 1 and det A* = det A, which implies |det A| = 1 # 0. Thus,
A~ exists. Now observe that (A%)"1A~t = (AA") "1 =1, s0o A=t € SU,,.



(b) Let A = (¢ Z)

equations hold:

a,b,c,d € C. Then, computing A*A, we see that A € SU, if and only if the following

la?+ o> =1, |e*+|d>=1, ac+bd=0, ad—bc=1.
Multiplying the last two equations by ¢ and d respectively and adding them to each other, we see that
a(le|? 4 |d|*) = d, which implies a = d. This, in its turn, immediately implies that ¢ = —b.
Thus, we proved that every A € SU; has required form. Conversely, it is clear that every matrix of such
form has unit determinant and satisfies A*A = I.

(c) We can embed SU, in R* with coordinates (1, ...,24) by writing z = o1 + ixe and w = x3 + iz4. Thus,
SU, = f740) for f: R* - R, f(z) = 2% + 25 + 23 + 27 — 1. Since 0 is a regular value, SUs, is a 3-dim
smooth manifold (actually, the description above shows that SUs is the 3-dim sphere S3).

(d) The multiplication and inverse are polynomials in the entries so they are clearly smooth.

x1(s) +ixa(s)  x3(s) +ixa(s)

e) Let A(t) = . .
(e) (t) (—mg(s) +iza(s) w1(s) —iwa(s)
22(s) + 23(s) + 23(s) + 23(s) = 1 at s = 0, we obtain 27 (0) = 0. In other words,

> be a curve in SUs, A(0) = I. Differentiating the equation

i) w
—w —xt

5u2:TISU2:{( >|.’EER,U}€C,ZE2+UJ|2:1}.

We can take as a basis of suy, for example, matrices

0 —i 0 -1 —i 0
G B () B O

(this particular choice of signs can be explained by the fact that the matrices o1 = vy, 09 = ive, 05 = iv3
are Pauli matrices you could meet in Quantum Mechanics).

To construct left-invariant fields X; recall from Example 6.3 that for matrix groups X;(g) = ¢X;(I). Thus,
z w

for g = ( _ _),Wehave
Wz

- —1z

x= (20 8). xo= (2 2). xw= ()



