Riemannian Geometry IV, Solutions 2 (Week 12)

2.1. (\star) Let $H_{3}(\mathbb{R})$ be the set of 3×3 unit upper-triangular matrices (i.e. the matrices of the form

$$
\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
0 & 1 & x_{3} \\
0 & 0 & 1
\end{array}\right)
$$

where $\left.x_{1}, x_{2}, x_{3} \in \mathbb{R}\right)$.
(a) Show that $H_{3}(\mathbb{R})$ is a group with respect to matrix multiplication. This group is called the Heisenberg group.
(b) Show that the Heisenberg group is a Lie group. What is its dimension?
(c) Prove that the matrices

$$
X_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

form a basis of the tangent space $T_{e} H_{3}(\mathbb{R})$ of the group $H_{3}(\mathbb{R})$ at the neutral element e.
(d) For each $k=1,2,3$, find an explicit formula for the curve $c_{k}: \mathbb{R} \rightarrow H_{3}(\mathbb{R})$ given by $c_{k}(t)=$ $\operatorname{Exp}\left(t X_{k}\right)$.

Solution:

(a) It is an easy computation to check the axioms of a group (i.e H_{3} is closed under multiplication, there exists an obvious neutral element (3×3 identity matrix), there is an inverse element for each $h \in H_{3}$, associativity works as always in matrix groups).
(b) The matrix elements $\left(x_{1}, x_{2}, x_{3}\right)$ give a global chart on H_{3}, so H_{3} is a smooth 3-manifold. The multiplication $g_{1} g_{2}$ can be written as $\left(x_{1}, x_{2}, x_{3}\right)\left(y_{1}, y_{2}, y_{3}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}+x_{1} y_{3}, x_{3}+y_{3}\right)$, and the inverse element g_{1}^{-1} can be written as $\left(x_{1}, x_{2}, x_{3}\right)^{-1}=\left(-x_{1}, x_{1} x_{3}-x_{2},-x_{3}\right)$, which are smooth maps $H_{3} \times H_{3} \rightarrow H_{3}$ and $H_{3} \rightarrow H_{3}$ respectively. Hence, H_{3} is a Lie group.
(c) To see that the matrices X_{i} belong to $T_{e} H_{3}$ consider the paths $c_{i}(t)=I+X_{i} t \in H_{3}$. By definition, $\frac{\partial}{\partial x_{i}}=c_{i}^{\prime}(t)=X_{i}$. So, $\left\{X_{1}, X_{2}, X_{3}\right\}$ is the basis of $T_{e} H_{3}$ since $\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right\}$ is a basis.
(d) Since $X_{i}^{2}=0$ for $i=1,2,3$ we see that $\operatorname{Exp}\left(t X_{i}\right)=I+X_{i} t$.
2.2. (a) Let $A, B \in M_{n}(\mathbb{R}),[A, B]=0$. Take $t \in \mathbb{R}$ and show that $\operatorname{Exp}(t(A+B))=\operatorname{Exp}(t A) \operatorname{Exp}(t B)$ (in particular, you obtain that $\operatorname{Exp}(A+B)=\operatorname{Exp}(A) \operatorname{Exp}(B)$).
(b) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Guess what would be the exponential of an $n \times n$-matrix of the same form (i.e., a Jordan block with zero eigenvalue).
(c) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Solution:

(a) As in the previous exercise, expand both exponents $\operatorname{Exp}(t A)$ and $\operatorname{Exp}(t B)$ as power series and collect the coefficient of t^{n} in the product. The monomials involved will be of type $\frac{(t A)^{k}(t B)^{n-k}}{k!(n-k)!}$, so the monomial containing t^{n} in the product will be

$$
\sum_{k=0}^{n} \frac{(t A)^{k}(t B)^{n-k}}{k!(n-k)!}=\sum_{k=0}^{n} t^{n} \frac{A^{k} B^{n-k}}{k!(n-k)!}=\frac{t^{n}}{n!} \sum_{k=0}^{n} A^{k} B^{n-k} \frac{n!}{k!(n-k)!}=\frac{t^{n}}{n!}(A+B)^{n}
$$

(b) Let $A=\left(\begin{array}{llll}0 & t & 0 & 0 \\ 0 & 0 & t & 0 \\ 0 & 0 & 0 & t \\ 0 & 0 & 0 & 0\end{array}\right)$. We have

$$
A^{2}=\left(\begin{array}{cccc}
0 & 0 & t^{2} & 0 \\
0 & 0 & 0 & t^{2} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A^{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & t^{3} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad A^{k}=0 \quad \text { for all } k \geq 4
$$

So the power series $\operatorname{Exp}(A)$ terminates after 4 terms and we conclude that

$$
\operatorname{Exp}(A)=I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(c) Let $B=t c I$, where I denotes the 4×4 identity matrix, and let A be as in (a). Then we have $\operatorname{Exp}(B)=e^{t c} I$ and A and B commute. This implies that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=\operatorname{Exp}(A+B)=\operatorname{Exp}(B) \operatorname{Exp}(A)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2.3. The special unitary group $S U_{n} \subset M_{n}(\mathbb{C})$ consists of $n \times n$ matrices A with complex entries and unit determinant satisfying the equation $\bar{A}^{t} A=I=A \bar{A}^{t}$.
(a) Show that $S U_{n}$ forms a group under matrix multiplication.
(b) Show that $S U_{2}$ consists of all matrices of the form

$$
\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right), \quad z, w \in \mathbb{C}, \quad|z|^{2}+|w|^{2}=1
$$

(c) Show that $S U_{2}$ is a smooth (real) manifold. Find its dimension.
(d) Show that $S U_{2}$ is a Lie group.
(e) Find the Lie algebra $\mathfrak{s u}_{2}$ of $S U_{2}$ as a subspace of $M_{2}(\mathbb{C})$. Find any basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of $\mathfrak{s u}_{2}$. Compute explicitly the left-invariant vector fields X_{1}, X_{2}, X_{3} on $S U_{2}$ such that $X_{i}(I)=v_{i}$.

Solution:

(a) Let $A, B \in S U_{n}$. Then

$$
(\overline{A B})^{t}(A B)=\bar{B}^{t} \bar{A}^{t} A B=\bar{B}^{t}\left(\bar{A}^{t} A\right) B=\bar{B}^{t} B=I,
$$

so $A B \in S U_{n}$. Also, $\operatorname{det} \bar{A}^{t} \operatorname{det} A=\operatorname{det} I=1$ and $\operatorname{det} \bar{A}^{t}=\overline{\operatorname{det} A}$, which implies $|\operatorname{det} A|=1 \neq 0$. Thus, A^{-1} exists. Now observe that $\left(\bar{A}^{t}\right)^{-1} A^{-1}=\left(A \bar{A}^{t}\right)^{-1}=I$, so $A^{-1} \in S U_{n}$.
(b) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), a, b, c, d \in \mathbb{C}$. Then, computing $\bar{A}^{t} A$, we see that $A \in S U_{2}$ if and only if the following equations hold:

$$
|a|^{2}+|b|^{2}=1, \quad|c|^{2}+|d|^{2}=1, \quad a \bar{c}+b \bar{d}=0, \quad a d-b c=1
$$

Multiplying the last two equations by c and \bar{d} respectively and adding them to each other, we see that $a\left(|c|^{2}+|d|^{2}\right)=\bar{d}$, which implies $a=\bar{d}$. This, in its turn, immediately implies that $c=-\bar{b}$.
Thus, we proved that every $A \in S U_{2}$ has required form. Conversely, it is clear that every matrix of such form has unit determinant and satisfies $\bar{A}^{t} A=I$.
(c) We can embed $S U_{2}$ in \mathbb{R}^{4} with coordinates $\left(x_{1}, \ldots, x_{4}\right)$ by writing $z=x_{1}+i x_{2}$ and $w=x_{3}+i x_{4}$. Thus, $S U_{2}=f^{-1}(0)$ for $f: \mathbb{R}^{4} \rightarrow \mathbb{R}, f(\boldsymbol{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}-1$. Since 0 is a regular value, $S U_{2}$ is a 3 -dim smooth manifold (actually, the description above shows that $S U_{2}$ is the 3 -dim sphere S^{3}).
(d) The multiplication and inverse are polynomials in the entries so they are clearly smooth.
(e) Let $A(t)=\left(\begin{array}{cc}x_{1}(s)+i x_{2}(s) & x_{3}(s)+i x_{4}(s) \\ -x_{3}(s)+i x_{4}(s) & x_{1}(s)-i x_{2}(s)\end{array}\right)$ be a curve in $S U_{2}, A(0)=I$. Differentiating the equation $x_{1}^{2}(s)+x_{2}^{2}(s)+x_{3}^{2}(s)+x_{4}^{2}(s)=1$ at $s=0$, we obtain $x_{1}^{\prime}(0)=0$. In other words,

$$
\mathfrak{s u}_{2}=T_{I} S U_{2}=\left\{\left(\begin{array}{cc}
x i & w \\
-\bar{w} & -x i
\end{array}\right)\left|x \in \mathbb{R}, w \in \mathbb{C}, x^{2}+|w|^{2}=1\right\} .\right.
$$

We can take as a basis of $\mathfrak{s u}_{2}$, for example, matrices

$$
v_{1}=\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right), \quad v_{2}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad v_{3}=\left(\begin{array}{cc}
-i & 0 \\
0 & i
\end{array}\right)
$$

(this particular choice of signs can be explained by the fact that the matrices $\sigma_{1}=i v_{1}, \sigma_{2}=i v_{2}, \sigma_{3}=i v_{3}$ are Pauli matrices you could meet in Quantum Mechanics).
To construct left-invariant fields X_{i} recall from Example 6.3 that for matrix groups $X_{i}(g)=g X_{i}(I)$. Thus, for $g=\left(\begin{array}{cc}z & w \\ -\bar{w} & \bar{z}\end{array}\right)$, we have

$$
X_{1}(g)=\left(\begin{array}{cc}
-i w & -i z \\
-i \bar{z} & i \bar{w}
\end{array}\right), \quad X_{2}(g)=\left(\begin{array}{cc}
w & z \\
\bar{z} & \bar{w}
\end{array}\right), \quad X_{3}(g)=\left(\begin{array}{cc}
-i z & i w \\
i \bar{w} & i \bar{z}
\end{array}\right)
$$

