Riemannian Geometry IV, Homework 2 (Week 12)

Due date for starred problems: Friday, January 31.
2.1. (\star) Let $H_{3}(\mathbb{R})$ be the set of 3×3 unit upper-triangular matrices (i.e. the matrices of the form

$$
\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
0 & 1 & x_{3} \\
0 & 0 & 1
\end{array}\right)
$$

where $\left.x_{1}, x_{2}, x_{3} \in \mathbb{R}\right)$.
(a) Show that $H_{3}(\mathbb{R})$ is a group with respect to matrix multiplication. This group is called the Heisenberg group.
(b) Show that the Heisenberg group is a Lie group. What is its dimension?
(c) Prove that the matrices

$$
X_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

form a basis of the tangent space $T_{e} H_{3}(\mathbb{R})$ of the group $H_{3}(\mathbb{R})$ at the neutral element e.
(d) For each $k=1,2,3$, find an explicit formula for the curve $c_{k}: \mathbb{R} \rightarrow H_{3}(\mathbb{R})$ given by $c_{k}(t)=$ $\operatorname{Exp}\left(t X_{k}\right)$.
2.2. (a) Let $A, B \in M_{n}(\mathbb{R}),[A, B]=0$. Take $t \in \mathbb{R}$ and show that $\operatorname{Exp}(t(A+B))=\operatorname{Exp}(t A) \operatorname{Exp}(t B)$ (in particular, you obtain that $\operatorname{Exp}(A+B)=\operatorname{Exp}(A) \operatorname{Exp}(B)$).
(b) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Guess what would be the exponential of an $n \times n$-matrix of the same form (i.e., a Jordan block with zero eigenvalue).
(c) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} / 6 \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

2.3. The special unitary group $S U_{n} \subset M_{n}(\mathbb{C})$ consists of $n \times n$ matrices A with complex entries and unit determinant satisfying the equation $\bar{A}^{t} A=I=A \bar{A}^{t}$.
(a) Show that $S U_{n}$ forms a group under matrix multiplication.
(b) Show that $S U_{2}$ consists of all matrices of the form

$$
\left(\begin{array}{cc}
z & w \\
-\bar{w} & \bar{z}
\end{array}\right), \quad z, w \in \mathbb{C}, \quad|z|^{2}+|w|^{2}=1
$$

(c) Show that $S U_{2}$ is a smooth (real) manifold. Find its dimension.
(d) Show that $S U_{2}$ is a Lie group.
(e) Find the Lie algebra $\mathfrak{s u}_{2}$ of $S U_{2}$ as a subspace of $M_{2}(\mathbb{C})$. Find any basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of $\mathfrak{s u}_{2}$. Compute explicitly the left-invariant vector fields X_{1}, X_{2}, X_{3} on $S U_{2}$ such that $X_{i}(I)=v_{i}$.

