Riemannian Geometry IV, Homework 3 (Week 13)

Due date for starred problems: Friday, February 14.

- **3.1.** (\star) Let $(G, \langle \cdot, \cdot \rangle)$ be a Lie group with a *bi-invariant* Riemannian metric (i.e., both L_g and R_g are isometries for every $g \in G$). Let \mathfrak{g} denote the Lie algebra of G, and let $X, Y, Z \in \mathfrak{g}$.
 - (a) Show that $\langle X, Y \rangle$ is a constant function on G.
 - (b) Use the relation

$$\langle Z, \nabla_X Y \rangle = \frac{1}{2} \left(X \langle Z, Y \rangle + Y \langle Z, X \rangle - Z \langle Y, X \rangle + \langle X, [Z, Y] \rangle + \langle Y, [Z, X] \rangle - \langle Z, [Y, X] \rangle \right)$$

and the fact that the metric is left-invariant to prove that $\langle Z, \nabla_Y Y \rangle = \langle Y, [Z, Y] \rangle$.

(c) By Corollary 6.18, the bi-invariance of the metric implies that

$$\langle [U, X], V \rangle = -\langle U, [V, X] \rangle$$

for $X, U, V \in \mathfrak{g}$. Use this fact to conclude that $\nabla_Y Y = 0$ for all $Y \in \mathfrak{g}$.

- (d) Show that $\nabla_X Y = \frac{1}{2}[X, Y]$.
- **3.2.** Let (M, g) be a Riemannian manifold and R its curvature tensor. Let $f, g, h \in C^{\infty}(M)$, and X, Y, Z, W be vector fields on M. Show that
 - (a) R(fX,Y)Z = fR(X,Y)Z;
 - (b) R(X, fY)Z = fR(X, Y)Z;
 - (c) $\langle R(X,Y)fZ,W\rangle = \langle fR(X,Y)Z,W\rangle;$
 - (d) R(fX, gY)hZ = fghR(X, Y)Z.
- 3.3. First Bianchi Identity

Let (M,g) be a Riemannian manifold and R its curvature tensor. Prove the First Bianchi Identity:

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0$$

for X, Y, Z vector fields on M by reducing the equation to Jacobi identity

$$[X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0$$

3.4. (*) Parametrize the sphere S_r^2 of radius r in \mathbb{R}^3 by

$$(x, y, z) = (r \cos \varphi \sin \theta, r \sin \varphi \sin \theta, r \cos \theta),$$

and consider the metric on S_r^2 induced by the Euclidean metric in \mathbb{R}^3 .

- (a) Compute $R(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \varphi})$.
- (b) Compute the sectional curvature of S_r^2 , $K = \frac{R(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \varphi})}{\langle \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \varphi} \rangle \langle (\frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \vartheta}) \langle (\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}) \rangle^2}$.