Riemannian Geometry IV, Homework 3 (Week 13)

Due date for starred problems: Friday, February 14.
3.1. (\star) Let $(G,\langle\cdot, \cdot\rangle)$ be a Lie group with a bi-invariant Riemannian metric (i.e., both L_{g} and R_{g} are isometries for every $g \in G)$. Let \mathfrak{g} denote the Lie algebra of G, and let $X, Y, Z \in \mathfrak{g}$.
(a) Show that $\langle X, Y\rangle$ is a constant function on G.
(b) Use the relation

$$
\left\langle Z, \nabla_{X} Y\right\rangle=\frac{1}{2}(X\langle Z, Y\rangle+Y\langle Z, X\rangle-Z\langle Y, X\rangle+\langle X,[Z, Y]\rangle+\langle Y,[Z, X]\rangle-\langle Z,[Y, X]\rangle)
$$

and the fact that the metric is left-invariant to prove that $\left\langle Z, \nabla_{Y} Y\right\rangle=\langle Y,[Z, Y]\rangle$.
(c) By Corollary 6.18, the bi-invariance of the metric implies that

$$
\langle[U, X], V\rangle=-\langle U,[V, X]\rangle
$$

for $X, U, V \in \mathfrak{g}$. Use this fact to conclude that $\nabla_{Y} Y=0$ for all $Y \in \mathfrak{g}$.
(d) Show that $\nabla_{X} Y=\frac{1}{2}[X, Y]$.
3.2. Let (M, g) be a Riemannian manifold and R its curvature tensor. Let $f, g, h \in C^{\infty}(M)$, and X, Y, Z, W be vector fields on M. Show that
(a) $R(f X, Y) Z=f R(X, Y) Z$;
(b) $R(X, f Y) Z=f R(X, Y) Z$;
(c) $\langle R(X, Y) f Z, W\rangle=\langle f R(X, Y) Z, W\rangle$;
(d) $R(f X, g Y) h Z=f g h R(X, Y) Z$.

3.3. First Bianchi Identity

Let (M, g) be a Riemannian manifold and R its curvature tensor. Prove the First Bianchi Identity:

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0
$$

for X, Y, Z vector fields on M by reducing the equation to Jacobi identity

$$
[X,[Y, Z]]+[Z,[X, Y]]+[Y,[Z, X]]=0
$$

3.4. (\star) Parametrize the sphere S_{r}^{2} of radius r in \mathbb{R}^{3} by

$$
(x, y, z)=(r \cos \varphi \sin \vartheta, r \sin \varphi \sin \vartheta, r \cos \vartheta)
$$

and consider the metric on S_{r}^{2} induced by the Euclidean metric in \mathbb{R}^{3}.
(a) Compute $R\left(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \varphi}\right)$.
(b) Compute the sectional curvature of $S_{r}^{2}, K=\frac{R\left(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \varphi}\right)}{\left\langle\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \varphi}\right\rangle\left\langle\frac{\partial}{\partial \vartheta}, \frac{\partial}{\partial \vartheta}\right\rangle-\left\langle\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \vartheta}\right\rangle^{2}}$.

