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Riemannian Geometry IV, Homework 4 (Week 14)

Due date for starred problems: Friday, February 14.

4.1. Scalar curvature
The scalar curvature s(p) at point p ∈M is defined by

s(p) =

n∑
j=1

Ricp(uj),

where {uj} is an orthonormal basis of Tp(M).

(a) Let V be a vector space, 〈· , ·〉 is an inner product on V , and Q is a quadratic form on V . Show
that there exists a linear map T ∈ End(V ) such that Q(x) = 〈Tx , x〉 for every x ∈ V .

(b) Show that the scalar curvature is well-defined, i.e. it does not depend on the choice of an
orthonormal basis of Tp(M).

4.2. (?) Einstein manifolds
A Riemannian manifold (M, g) is called an Einstein manifold if there exists c ∈ R such that

Ricp(v, w) = c〈v, w〉

for every p ∈M , v, w ∈ TpM .

(a) Show that (M, g) is an Einstein manifold if and only if there exists c ∈ R such that

Ricp(v) = c

for every p ∈M and unit tangent vector v ∈ TpM .

(b) Show that if (M, g) is of constant sectional curvature then (M, g) is an Einstein manifold.

4.3. Let (M, g) be a Riemannian manifold. The goal of this exercise is to show that M is of constant
sectional curvature K0 if and only if

〈R(v1, v2)v3, v4〉 = −K0(〈v1, v3〉〈v2, v4〉 − 〈v1, v4〉〈v2, v3〉)

for any p ∈M and v1, v2, v3, v4 ∈ TpM . Denote the expression −K0 (〈v1, v3〉 〈v2, v4〉 − 〈v2, v3〉 〈v1, v4〉)
by (v1, v2, v3, v4).

(a) Show that if
〈R(v1, v2)v3, v4〉 = (v1, v2, v3, v4)

for any four tangent vectors v1, v2, v3, v4 ∈ TpM , then M is of constant sectional curvature K0.

Now assume that M is of constant sectional curvature K0. Our aim is to show that

〈R(v1, v2)v3, v4〉 = (v1, v2, v3, v4)

for any four tangent vectors v1, v2, v3, v4 ∈ TpM .

(b) Show that the expression (v1, v2, v3, v4) is a tensor, i.e. it is multilinear.



(c) Show that (v1, v2, v3, v4) has the same symmetries as Riemann curvature tensor has. Namely,

· (v1, v2, v3, v4) = −(v2, v1, v3, v4)

· (v1, v2, v3, v4) = −(v1, v2, v4, v3)

· (v1, v2, v3, v4) = (v3, v4, v1, v2)

· (v1, v2, v3, v4) + (v2, v3, v1, v4) + (v3, v1, v2, v4) = 0

(d) Show that if {v1, v2, v3, v4} ⊂ {v, w}, i.e. no more than two distinct vectors are involved, then

〈R(v1, v2)v3, v4〉 = (v1, v2, v3, v4).

(e) Show that if no more than three distinct vectors are involved, then

〈R(v1, v2)v3, v4〉 = (v1, v2, v3, v4).

(f) Show that for any four vectors {v1, v2, v3, v4}

〈R(v1, v2)v3, v4〉 − (v1, v2, v3, v4) = 〈R(v3, v1)v2, v4〉 − (v3, v1, v2, v4),

i.e. the difference above is invariant with respect to cyclic permutation of first three arguments.

(g) Use Bianchi identity to prove the initial statement.

4.4. Constant sectional curvature of hyperbolic 3-space
Let H3 = {(x1, x2, x3) ∈ R3 | x3 > 0} be the upper half-space model of the 3-dimensional hyperbolic
space, i.e. its metric is defined by gij = 0 for i 6= j, gii = 1/x23.

(a) Show that sectional curvatures K( ∂
∂x1

, ∂
∂x2

), K( ∂
∂x1

, ∂
∂x3

) and K( ∂
∂x2

, ∂
∂x3

) in H3 are equal to −1.

(b) Use (a) and the linearity of the Riemann curvature tensor to show that for any p ∈ H3 and
v1, v2, v3, v4 ∈ TpH3

〈R(v1, v2)v3, v4〉 = −(〈v1, v3〉〈v2, v4〉 − 〈v1, v4〉〈v2, v3〉)

holds.

(c) Use (b) to show that 3-dimensional hyperbolic space H3 has constant sectional curvature −1.

(d) Show that n-dimensional hyperbolic space Hn = {x ∈ Rn | xn > 0} with metric gij = 0 for i 6= j,
gii = 1/x2n has constant sectional curvature −1.


