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5.1.

5.2.

Riemannian Geometry IV, Solutions 5 (Week 15)

(%) The Bonnet — Myers theorem claims that if (M, g) is complete and connected, and there is £ > 0
such that Ric,(v) > ¢ for every p € M and for every unit tangent vector v, then the diameter of M is
finite.

Show by example that the assumption € > 0 is essential (i.e. cannot be substituted by the assumption
Ricy(v) > 0).

Solution: One may consider an elliptic paraboloid of revolution z = z? 4 y2. Its curvature is positive, but
the paraboloid is not compact (e.g., it is unbounded). Note that although the curvature is positive (since the

manifold is 2-dimensional sectional and Ricci curvatures coincide) it is not separated from zero, so there is no
contradiction with Bonnet-Myers theorem.

Second Variational Formula of Energy
Let F : (—e,e) X [a,b] = M be a proper variation of a geodesic ¢ : [a,b] — M, and let X be its
variational vector field. Let E : (—¢,¢) — R denote the associated energy, i.e.,
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Show that

Solution:

Since E(s) = 1 | b<a—F(s t), 2€(s,t)) dt, using the Riemannian property of covariant derivative we obtain
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Differentiating the integrand with respect to s, using the Symmetry Lemma, and setting then s = 0 yields
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Applying Riemannian property of covariant derivative, Symmetry Lemma, and using that %—5(0, t) = X(t), we
conclude that
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Now we use Lemma 8.5 to interchange the order of covariant derivatives, and again Riemannian property to
obtain
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since c(t) is geodesic and 2¢/(t) = 0.

Now we are left to show that
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Indeed,
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since the variation F(s,t) is proper.

Let S? = {z € R | 212 + 222 + 232 = 1} be a unit sphere, and ¢ : [-7/2,7/2] — S? be a geodesic
defined by c¢(t) = (cost,0,sint). Define a vector field X : [-7/2,7/2] — T'S? along ¢ by

X(t) = (0, cost,0).

Let % denote the covariant derivative along c.
2
(a) Calculate %X(t) and %X(t).
(b) Show that X satisfies the Jacobi equation.

Solution:

The problem can be solved by a direct computation: compute Christoffel symbols, and then compute first and
second covariant derivatives of X (¢), then verify the Jacobi equation for X (t).

(a) If we parametrize the sphere by (z,y, 2) = (sin ¥ cos p, sin ¥ sin ¢, cos ), one has I'}; = —sind cosd, I'}, =
I'3; = cot ¥ with others Ffj equal to zero, where ¢ = 1 and ¥ = x2 (see Exercise 3.4).
In these coordinates, the curve c(t) = (cost,0,sint) is c(t) = (0,5 —t), ¢/(t) = (0, -1) = —6%. Further,
observe that

%L(t) = (—sin ¥ sin g, sin ¥ cos @,0)‘¢:07ﬂ:%_t = (0, cost,0) = X(¢)
Hence,
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(b) Compute R(X,c)c = VxVeucd = VoVxd = Vixed As X = % and ¢ = —%, we have [X, ] = 0.
Also,
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Thus, R(X,d)d = X(t) = %, and (since %X(t) =-X(t)= —%) Jacobi equation holds.

Jacobi fields on manifolds of constant curvature.

Let M be a Riemannian manifold of constant sectional curvature K, and ¢ : [0,1] — M be a
geodesic parametrized by arc length. Let J : [0,1] — T'M be an orthogonal Jacobi field along ¢
(i.e. (J(t),d(t)) =0 for every t € [0,1]).

(a) Show that R(J,d)d = KJ.



(b) Let Zy,Z5 : [0,1] — TM be parallel vector fields along ¢ with Z;(0) = J(0), Z»(0) = 2Z(0).

dt
Show that .
cos(tvVE) Z1(t) + %ﬁ Zo (1) if K >0,
J(t) =< Zi(t) + tZo(t) if K=0,
cosh(tv—K)Zy(t) + Sinh(tﬁvlgm Zy(t) if K <O0.

Hint: Show that these fields satisfy Jacobi equation, there value and covariant derivative at ¢t = 0
is the same as for J(t).

Solution:

(a) We conclude from Exercise 4.3 that
R(v1,v2)vs = K({v2,v3)v1 — (v1,v3)v2).

This implies
R(J, ) = K({d, )T — (J,)).

Since ||c’||> =1 and J_Lc/, we obtain
R(J,d)d = K J.

(b) We only consider the case K > 0, all other cases are similar. The vector field
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satisfies J(0) = Z1(0) and
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which implies ZZ(0) = Z5(0). Obviously, we have
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and therefore we obtain
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i.e., J satisfies the Jacobi equation.



