Riemannian Geometry IV, Solutions 6 (Week 16)

6.1. (\star) Choose any $r>0$ and consider a cylinder $C \subset \mathbb{R}^{3}$ with induced metric,

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=r^{2}\right\}
$$

C can be parametrized by

$$
(r \cos \varphi, r \sin \varphi, z), \quad \varphi \in[0,2 \pi), z \in \mathbb{R}
$$

(a) Show that a curve $c(t)=(r \cos (t / r), r \sin (t / r), 0)$ is a geodesic. Write $c(t)$ in the form $(\varphi(t), z(t))$.
(b) Let $\alpha \in \mathbb{R}$. Show that $c_{\alpha}(t)=(\varphi(t), z(t))=((t \cos \alpha) / r, t \sin \alpha)$ is a geodesic.
(c) Construct two distinct geodesic variations $F_{1}(s, t)$ and $F_{2}(s, t)$ of $c(t)$, such that $F_{1}(s, 0) \equiv c(0)$, and $F_{2}(s, 0) \neq c(0)$ for any $s \neq 0$. Compute the variational vector fields of F_{1} and F_{2}.
(d) Construct the basis of the space J_{c} of Jacobi fields along $c(t)$.
(e) Show that for any $t_{0} \in \mathbb{R}$ the points $c(0)$ and $c\left(t_{0}\right)$ are not conjugate along $c(t)$.

Solution:
(a) One way to do this is to use symmetry of C. More precisely, the reflection in the plane $z=0$ is obviously an isometry of C, and it preserves $c(t)$. By the uniqueness theorem of a geodesic in a given direction, the trace of $c(t)$ should be a trace of a geodesic. Now observe that $\left\|c^{\prime}(t)\right\|=1$, so $c(t)$ is a geodesic.
Another way is to observe that C is locally isometric to \mathbb{R}^{2}, and the isometry takes $c(t)$ to a straight line on \mathbb{R}^{2} (parametrized proportionally to arc length).
Finally, one can compute the induced metric and Christoffel symbols (they are all zeros!), and then verify that $c(t)$ satisfies the ODE for geodesics. These ODE's are then equivalent to the second derivatives of the components of $c(t)$ vanishing identically, which is clearly satisfied as the geodesic $c(t)$ is written as $c(t)=(t / r, 0)$ in coordinates (φ, z).
(b) The second and the third methods from (a) work perfectly fine in this case as well.
(c) We can take

$$
F_{1}(s, t)=\left(r \cos \left(\frac{t \cos s}{r}\right), r \sin \left(\frac{t \cos s}{r}\right), t \sin s\right)=c_{s}(t)
$$

Clearly, $F_{1}(0, t)=c(t), F_{1}(s, 0) \equiv(r, 0,0)=c(0)$, and every $t \mapsto F_{1}\left(s_{0}, t\right)$ is a geodesic by (b). The variational vector field is $X_{1}(t)=(0,0, t)$.
Shifting $c(t)$ in vertical direction, we can take

$$
F_{2}(s, t)=(r \cos (t / r), r \sin (t / r), s)
$$

The corresponding variational vector field is $X_{2}(t)=(0,0,1)$.
(d) We need $2 n=4$ linearly independent vector fields. We have already found two, and observe that X_{1} and X_{2} are both orthogonal and clearly linear independent, so they form a basis of the space of orthogonal Jacobi fields. We can also take $X_{3}(t)=c^{\prime}(t)$ and $X_{4}=t c^{\prime}(t)$, all of them together form a basis.
(e) Assume that $J(0)=J\left(t_{0}\right)=0$ for some $J \in J_{c}$. Since $J(0)=0, J$ should be a linear combination of X_{1} and X_{4}. However, such a non-zero linear combination never vanishes except for $t=0$.
6.2. (\star) Let $c:[0,1] \rightarrow M$ be a geodesic, and let J be a Jacobi field along c. Denote $c(0)=p, c^{\prime}(0)=v$.

Define a curve $\gamma(s)$,

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M, \quad \gamma(0)=p, \gamma^{\prime}(0)=J(0)
$$

Define also a vector field $V(s) \in \mathfrak{X}_{\gamma}(M)$ such that

$$
V(0)=v, \quad \frac{D}{d s} V(0)=\frac{D}{d t} J(0)
$$

and a variation $F(s, t)=\exp _{\gamma(s)} t V(s)$.
(a) Show that $F(s, t)$ is a geodesic variation of $c(t)$.
(b) Show that $\frac{\partial F}{\partial s}(0,0)=\gamma^{\prime}(0)=J(0)$, and $\frac{D}{d t} \frac{\partial F}{\partial s}(0,0)=\frac{D}{d s} V(0)=\frac{D}{d t} J(0)$.
(c) Deduce from (a) and (b) that every Jacobi field along a geodesic $c(t)$ is a variational vector field of some geodesic variation of c.

Solution:

(a) By the definition of the exponential map, for given s the curve $t \mapsto \exp _{\gamma(s)} t V(s)$ is a geodesic.
(b) We have

$$
\frac{\partial F}{\partial s}(0,0)=\left.\left.\frac{\partial}{\partial s}\right|_{s=0} \exp _{\gamma(s)} t V(s)\right|_{t=0}=\left.\frac{\partial}{\partial s}\right|_{s=0} \exp _{\gamma(s)}(0)=\left.\frac{\partial}{\partial s}\right|_{s=0} \gamma(s)=\gamma^{\prime}(0)=J(0)
$$

and

$$
\frac{D}{d t} \frac{\partial F}{\partial s}(0,0)=\left.\left.\frac{D}{d s}\right|_{s=0} \frac{\partial F}{\partial t}\right|_{t=0}(s, t)=\left.\frac{D}{d s}\right|_{s=0} V(s)=\frac{D}{d s} V(0)=\frac{D}{d t} J(0)
$$

(c) According to (a), the variation F is geodesic, thus its variational vector field $\frac{\partial F}{\partial s}(0, t)$ is Jacobi. By (b), $\frac{\partial F}{\partial s}(0,0)=J(0)$, and $\frac{D}{d t} \frac{\partial F}{\partial s}(0,0)=\frac{D}{d t} J(0)$, which means that $\frac{\partial F}{\partial s}(0, t)=J(t)$ due to the uniqueness theorem.

6.3. Jacobi fields and conjugate points on locally symmetric spaces

A Riemannian manifold (M, g) is called a locally symmetric space if $\nabla R=0$ (see Exercise 9.3). Let (M, g) be an n-dimensional locally symmetric space and $c:[0, \infty) \rightarrow M$ be a geodesic with $p=c(0)$ and $v=c^{\prime}(0) \in T_{p} M$. Prove the following facts:
(a) Let X, Y, Z be parallel vector fields along c. Show that $R(X, Y) Z$ is also parallel.
(b) Let $K_{v} \in \operatorname{Hom}\left(T_{p} M, T_{p} M\right)$ be the curvature operator defined by

$$
K_{v}(w)=R(w, v) v
$$

Show that K_{v} is self-adjoint, i.e.,

$$
\left\langle K_{v}\left(w_{1}\right), w_{2}\right\rangle=\left\langle w_{1}, K_{v}\left(w_{2}\right)\right\rangle
$$

for every pair of vectors $w_{1}, w_{2} \in T_{p} M$.
(c) Choose an orthonormal basis $w_{1}, \ldots, w_{n} \in T_{p} M$ that diagonalizes K_{v}, i.e.,

$$
K_{v}\left(w_{i}\right)=\lambda_{i} w_{i}
$$

(such a basis exists since K_{v} is self-adjoint). Let W_{1}, \ldots, W_{n} be the parallel vector fields along c with $W_{i}(0)=w_{i}$ (i.e., $\left\{W_{i}\right\}$ form a parallel orthonormal basis along c). Show that for all $t \in[0, \infty)$

$$
K_{c^{\prime}(t)}\left(W_{i}(t)\right)=\lambda_{i} W_{i}(t)
$$

(d) Let $J(t)=\sum_{i} J_{i}(t) W_{i}(t)$ be a Jacobi field along c. Show that Jacobi equation translates into

$$
J_{i}^{\prime \prime}(t)+\lambda_{i} J_{i}(t)=0, \quad \text { for } i=1, \ldots, n
$$

(e) Show that the conjugate points of p along c are given by $c\left(\pi k / \sqrt{\lambda_{i}}\right)$, where k is any positive integer and λ_{i} is a positive eigenvalue of K_{v}.

Solution:
(a) We know that $\nabla R=0$. Let $\frac{D}{d t}$ denote covariant derivative along c. Then we have, for parallel vector fields X, Y, Z along c that

$$
\begin{aligned}
& 0=\nabla R\left(X, Y, Z, c^{\prime}\right)(t)=\frac{D}{d t} R(X(t), Y(t)) Z(t)- \\
& -R(\underbrace{\frac{D}{d t} X(t)}_{=0}, Y(t)) Z(t)-R(X(t), \underbrace{\frac{D}{d t} Y(t)}_{=0}) Z(t)-R(X(t), Y(t)) \underbrace{\frac{D}{d t} Z(t)}_{=0}= \\
& =\frac{D}{d t} R(X(t), Y(t)) Z(t) .
\end{aligned}
$$

This shows that $R(X, Y) Z$ is parallel.
(b) The symmetries of R yield

$$
\left\langle K_{v}\left(w_{1}\right), w_{2}\right\rangle=\left\langle R\left(w_{1}, v\right) v, w_{2}\right\rangle=\left\langle R\left(w_{2}, v\right) v, w_{1}\right\rangle=\left\langle K_{v}\left(w_{2}\right), w_{1}\right\rangle=\left\langle w_{1}, K_{v}\left(w_{2}\right)\right\rangle .
$$

(c) Since K_{v} is self-adjoint, we can find an orthonormal basis $w_{1}, \ldots, w_{n} \in T_{p} M$ with $K_{v}\left(w_{i}\right)=\lambda_{i} w_{i}$. We know, by (a), that $K_{c^{\prime}(t)}\left(W_{i}(t)\right)=R\left(c^{\prime}(t), W_{i}(t)\right) W_{i}(t)$ is parallel and, since $K_{c^{\prime}(0)}\left(W_{i}(0)\right)=K_{v}\left(w_{i}\right)=\lambda_{i} w_{i}$, we must have

$$
K_{c^{\prime}(t)}\left(W_{i}(t)\right)=\lambda_{i} W_{i}(t)
$$

since parallel vector fields V along c are uniquely determined by their initial values $V(0) \in T_{p} M$.
(d) Let J be a Jacobi field along c. Then J satisfies the Jacobi equation

$$
\frac{D^{2}}{d t^{2}} J+R\left(J, c^{\prime}\right) c^{\prime}=0
$$

Since W_{1}, \ldots, W_{n} form a parallel basis along c, we obtain, by taking inner product with W_{i} :

$$
\begin{aligned}
0=\left\langle\frac{D^{2}}{d t^{2}} J, W_{i}\right\rangle+\left\langle R\left(J, c^{\prime}\right) c^{\prime},\right. & \left.W_{i}\right\rangle= \\
& =\frac{d^{2}}{d t^{2}} \sum_{j} J_{j}\left\langle W_{j}, W_{i}\right\rangle+\sum_{j} J_{j}\left\langle R\left(W_{j}, c^{\prime}\right) c^{\prime}, W_{i}\right\rangle= \\
& =J_{i}^{\prime \prime}+\sum_{j} J_{j} \lambda_{j}\left\langle W_{j}, W_{i}\right\rangle=J_{i}^{\prime \prime}+\lambda_{i} J_{i}
\end{aligned}
$$

(e) The unique solution of $J_{i}^{\prime \prime}(t)+\lambda_{i} J_{i}(t)=0, J_{i}(0)=0$ (up to scalar multiples) is given by

$$
J_{i}(t)= \begin{cases}\sin \left(t \sqrt{\lambda_{i}}\right) & \text { if } \lambda_{i}>0 \\ t & \text { if } \lambda_{i}=0 \\ \sinh \left(t \sqrt{-\lambda_{i}}\right) & \text { if } \lambda_{i}<0\end{cases}
$$

So J_{i} has zeros for positive t only if $\lambda_{i}>0$, and these are precisely at $t=\pi k / \sqrt{\lambda_{i}}$. The corresponding Jacobi fields with $J(0)=0$ and $\frac{D}{d t} J(0)=w_{i}$ produce the conjugate points $c\left(\pi k / \sqrt{\lambda_{i}}\right)$.

