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Riemannian Geometry IV, Solutions 6 (Week 16)

6.1. (%) Choose any r > 0 and consider a cylinder C' C R3 with induced metric,
C={(x,y,2) eR’|a? +y* = 1%}

C can be parametrized by
(recosp,rsing, z), @ €[0,2n),z€ R

(a) Show that a curve c(t) = (rcos(t/r),rsin(t/r),0) is a geodesic. Write ¢(t) in the form (p(t), z(t)).
(b) Let a € R. Show that ¢, (t) = (¢(t), 2(t)) = ((tcosa)/r, tsin ) is a geodesic.

(c) Construct two distinct geodesic variations Fi(s,t) and Fs(s,t) of ¢(t), such that Fj(s,0) = ¢(0),
and Fy(s,0) # ¢(0) for any s # 0. Compute the variational vector fields of F; and F.

(d) Construct the basis of the space J. of Jacobi fields along c(t).
(e) Show that for any ¢y € R the points ¢(0) and ¢(tp) are not conjugate along c(t).

Solution:

(a) One way to do this is to use symmetry of C. More precisely, the reflection in the plane z = 0 is obviously
an isometry of C, and it preserves c(t). By the uniqueness theorem of a geodesic in a given direction, the
trace of ¢(t) should be a trace of a geodesic. Now observe that ||¢/(¢)|| = 1, so ¢(t) is a geodesic.
Another way is to observe that C is locally isometric to R?, and the isometry takes c(t) to a straight line
on R? (parametrized proportionally to arc length).
Finally, one can compute the induced metric and Christoffel symbols (they are all zeros!), and then verify
that ¢(t) satisfies the ODE for geodesics. These ODE’s are then equivalent to the second derivatives of
the components of ¢(t) vanishing identically, which is clearly satisfied as the geodesic ¢(t) is written as
c(t) = (t/r,0) in coordinates (y, 2).

(b) The second and the third methods from (a) work perfectly fine in this case as well.

) We can take
t t
Fi(s,t) = (rcos ( COSS) , T sin < COSS) ,tsins) = ¢(t)
T T

Clearly, F1(0,t) = c(t), Fi(s,0) = (r,0,0) = ¢(0), and every t — Fi(so,t) is a geodesic by (b). The
variational vector field is X1 (¢) = (0,0,1).
Shifting ¢(¢) in vertical direction, we can take

—
o

Fy(s,t) = (rcos(t/r),rsin(t/r),s)

The corresponding variational vector field is X5(¢) = (0,0, 1).

(d) We need 2n = 4 linearly independent vector fields. We have already found two, and observe that X; and
X, are both orthogonal and clearly linear independent, so they form a basis of the space of orthogonal
Jacobi fields. We can also take X3(t) = ¢/(¢) and Xy = tc/(¢), all of them together form a basis.

(e) Assume that J(0) = J(¢p) = 0 for some J € J.. Since J(0) = 0, J should be a linear combination of X
and X4. However, such a non-zero linear combination never vanishes except for ¢t = 0.

6.2. (%) Let ¢:[0,1] = M be a geodesic, and let J be a Jacobi field along ¢. Denote ¢(0) = p,¢'(0) = v.

Define a curve 7(s),

v:(-ee) = M, ¥(0) = p,7'(0) = J(0)
Define also a vector field V(s) € X (M) such that
D D

and a variation F(s,t) = exp. ) tV(s).



(a) Show that F(s,t) is a geodesic variation of ¢(t).

(b) Show that 2£(0,0) = +/(0) = J(0), and 22£(0,0) = 2V(0) = £.J(0).

(¢) Deduce from (a) and (b) that every Jacobi field along a geodesic c(t) is a variational vector field
of some geodesic variation of c.

Solution:

(a) By the definition of the exponential map, for given s the curve ¢ — exp, ) tV/(s) is a geodesic.

(b) We have
oF P P P ,
E(O,O) o %L:O XP(s) tV(S)‘t:o " Osls=o eXpW(S)(O) ~ 0s 3:07(5) =7'(0) = J(0),
and D OF D, OF D D D
295 00 = Gl o) = Gl V) = VO = 370

(c¢) According to (a), the variation F is geodesic, thus its variational vector field %—I;(O,t) is Jacobi. By (b),
92(0,0) = J(0), and 22E(0,0) = £.J(0), which means that 2£(0,¢) = J(t) due to the uniqueness
theorem.

6.3. Jacobi fields and conjugate points on locally symmetric spaces
A Riemannian manifold (M, g) is called a locally symmetric space if VR = 0 (see Exercise 9.3). Let
(M, g) be an n-dimensional locally symmetric space and ¢ : [0,00) — M be a geodesic with p = ¢(0)
and v = ¢(0) € T,M. Prove the following facts:

(a) Let X,Y,Z be parallel vector fields along c¢. Show that R(X,Y)Z is also parallel.
(b) Let K, € Hom (T,,M,T,M) be the curvature operator defined by

Ky(w) = R(w,v)v.
Show that K, is self-adjoint, i.e.,
(Ko (w1), w2) = (w1, Ky(w2))

for every pair of vectors wiy,ws € T, M.

(c) Choose an orthonormal basis wi, ..., w, € T,M that diagonalizes K, i.e.,
Ky (w;) = Aw;

(such a basis exists since K, is self-adjoint). Let W7,..., W, be the parallel vector fields along
¢ with W;(0) = w; (i.e., {W;} form a parallel orthonormal basis along ¢). Show that for all
t €[0,00)

Koy (Wi(t)) = XWi(t).

(d) Let J(t) =, Ji(t)Wi(t) be a Jacobi field along c. Show that Jacobi equation translates into
JI(8) + Nii(t) =0, fori=1,...,n.

(e) Show that the conjugate points of p along ¢ are given by c(mk/v/A;), where k is any positive
integer and \; is a positive eigenvalue of K.

Solution:



(a) We know that VR = 0. Let 2 denote covariant derivative along c. Then we have, for parallel vector fields
XY, Z along c that

0= VR(X,Y,Zd)(t) = ZRX(1),Y(1)Z(t)—

Cdt
~ R X0, Y(0)2(6) ~ RO, =Y (0)2(0) ~ RX(0),Y (6) 2 2(6) =
=0 =0 =0
D
= ZRX0,Y(0)Z()

This shows that R(X,Y)Z is parallel.
(b) The symmetries of R yield

(K, (w1),wa) = (R(wy, v)v, wa) = (R(wsa,v)v,wy) = (K,(ws),w1) = (wy, K,(ws)).

(c) Since K, is self-adjoint, we can find an orthonormal basis wy, ..., w, € T,M with K,(w;) = \;w;. We know,
by (a), that Ko (Wi(t)) = R(c'(t), Wi(t))Wi(t) is parallel and, since K./ (o)(W;(0)) = K, (w;) = A\jw;, we must
have

Koy (Wi(t) = XiWi(t),
since parallel vector fields V' along ¢ are uniquely determined by their initial values V' (0) € T, M.
(d) Let J be a Jacobi field along ¢. Then J satisfies the Jacobi equation

D2
EJ + R(J, C/)C/ = 0

Since W1, ..., W, form a parallel basis along ¢, we obtain, by taking inner product with W;:

D2

J, W) +(R(J, ), W;) =
d? ,
= 23 DLW W) + 3 (RO, ), W) =
J J

=TI+ TN (W Wa) = J) + A,
J

(e) The unique solution of J/'(t) + A;J;(¢t) = 0, J;(0) = 0 (up to scalar multiples) is given by

sin(tv/A;) if \; >0,
Ji(t) =<t if A\; =0,
sinh(t\/ —)\,’) if \; <O.

So J; has zeros for positive ¢ only if A; > 0, and these are precisely at t = 7k/y/)\;. The corresponding Jacobi
fields with J(0) = 0 and £J(0) = w; produce the conjugate points c(mk/v/X;).



