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7.1. (a) Let c(t) be a geodesic, and let c(t0) be conjugate to c(t1). Let J be any Jacobi field
along c vanishing at t0 and t1. Show that J is orthogonal, i.e. 〈J(t), c′(t)〉 ≡ 0.

(b) Show that the dimension of the space J⊥
c of orthogonal vector fields along c is 2n−2.

Solution:

(a) We have proved in class that the function t 7→ 〈J(t), c′(t)〉 is linear. Since it is equal to
zero at two points t0 and t1, it vanishes everywhere, so J(t) is orthogonal.

(b) Recall that J(t) is orthogonal if and only if both 〈J(0), c′(0)〉 and 〈DdtJ(0), c′(0)〉 vanish.
Each of these equations defines a codimension one subspace in TpM , so the dimension of
J⊥
c = (n− 1) + (n− 1) = 2n− 2.

7.2. (?) Let M be a Riemannian manifold of non-positive sectional curvature, i.e. K(Π) ≤ 0
for any 2-plane Π ⊂ TM .

(a) Let c : [a, b] → M be a geodesic and let J be a Jacobi field along c. Let f(t) =
‖J(t)‖2. Show that f ′′(t) ≥ 0, i.e., f is a convex function.

(b) Derive from (a) that M does not admit conjugate points.

Solution:

(a) We have

f ′(t) =
d

dt

∣∣∣
t=0
〈J(t), J(t)〉 = 2〈D

dt
J(t), J(t)〉

and

f ′′(t) = 2

(
〈D

2

dt2
J(t), J(t)〉+

∥∥∥D
dt
J(t)

∥∥∥2) .

Using Jacobi equation, we conclude

f ′′(t) = 2

(
−〈R(J(t), c′(t))c′(t), J(t)〉+

∥∥∥D
dt
J(t)

∥∥∥2) .

We have 〈R(J(t), c′(t))c′(t), J(t)〉 = 0 if J(t), c′(t) are linear dependent and, otherwise, for
Π = span(J(t), c′(t)) ⊂ Tc(t)M ,

〈R(J(t), c′(t))c′(t), J(t)〉 = K(Π)
(
‖J(t)‖2‖c′(t)‖2 − (〈J(t), c′(t)〉)2

)
≤ 0,

since sectional curvature is non-positive (we also used Cauchy – Schwarz inequality here).
This shows that f ′′(t), as a sum of two non-negative terms, is greater than or equal to
zero.

(b) If there were a conjugate point q = c(t2) to a point p = c(t1) along the geodesic c, then
we would have a non-vanishing Jacobi field J along c with J(t1) = 0 and J(t2) = 0. This
would imply that the convex, non-negative function f(t) = ‖J(t)‖2 would have zeros at
t = t1 and t = t2. This would force f to vanish identically on the interval [t1, t2], which
would imply that J vanishes as well, which leads to a contradiction.



7.3. (?) Let M = {(x, y, z) ∈ R3 | x2 + y2 = z} be a paraboloid of revolution with metric
induced by R3. Let p = (0, 0, 0). Show that p has no conjugate points in M .

Solution:

Let q = (q1, q2, q3) 6= p be any point in M . Denote by Π ⊂ R3 the 2-dimensional plane spanned
by q and the z-axis. It is easy to check that there is a geodesic c(t) ⊂ M ∩ Π with c(0) = p,
c(t1) = q.

Take a parallel of M passing through q. Applying the same argument to all other points on
the parallel, we see that every “vertical” plane through p in R3 contains a geodesic of M , and
only one of them (namely, c) passes through q. As these geodesics exhaust all the directions
from p, we conclude that c is the only geodesic between p and q, and thus it is minimal. By
Theorem 9.24 this implies that for any t0 ∈ (0, t1) the point c(t0) is not conjugate to p.

Rotating the whole picture around the z-axis (this is clearly an isometry of M) we see that p
has no conjugate points in a ball z < q3 (where q = (q1, q2, q3)), so taking q far enough from p
we can prove that p has no conjugate points in a ball of any size centered at p.

7.4. Let (M, g) be a Riemannian manifold. For a tensor T let ∇T denote its covariant deriva-
tive, see Exercise 9.3. T is called a parallel tensor if ∇T = 0.

(a) Assume that T1, T2 : X × X → C∞(M) are parallel tensors. Show that the tensor
T : X× X× X× X→ C∞(M), defined as

T (X1, X2, X3, X4) = T1(X1, X2)T2(X3, X4),

is also parallel.

(b) Use (a) to show that ∇R′ = 0 for the tensor

R′(X, Y, Z,W ) = 〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉.

(c) Use Exercise 4.3 and (b) to show that all manifolds with constant sectional curvature
have parallel Riemann curvature tensor

R(X, Y, Z,W ) := 〈R(X, Y )Z,W 〉.

Solution:

(a) We have

∇T (X1, X2, X3, X4, Y ) =

= Y (T1(X1, X2)T2(X3, X4))−
4∑

i=1

T (X1, . . . ,∇Y Xi, . . . , X4) =

= T1(X1, X2) (Y (T2(X3, X4))− T2(∇Y X3)− T2(∇Y X4))︸ ︷︷ ︸
=∇T2(X3,X4,Y )=0

+

+ T2(X3, X4) (Y (T1(X1, X2))− T1(∇Y X1)− T1(∇Y X2))︸ ︷︷ ︸
=∇T1(X1,X2,Y )=0

= 0.

(b) Let T (X,Y ) = 〈X,Y 〉. Since ∇ is Riemannian, we have

∇T (X,Y, Z) = Z(〈X,Y 〉)− 〈∇ZX,Y 〉 − 〈X,∇ZY 〉 = 0.

Note that R′(X,Y, Z,W ) = T (X,W )T (Y, Z) − T (X,Z)T (Y,W ). Part (a) implies then
that we have ∇R′ = 0.



(c) If (M, g) is a manifold with constant sectional curvature K0 ∈ R , we have by Exercise 4.3

R(X,Y, Z,W ) = 〈R(X,Y )Z,W 〉 = K0(〈X,W 〉〈Y, Z〉−〈X,Z〉〈Y,W 〉) = K0R
′(X,Y, Z,W ).

Then ∇R = K0∇R′ = 0 follows from (b).


