Riemannian Geometry IV, Homework 7 (Week 17)

Due date for starred problems: Friday, March 13.

- **7.1.** (a) Let c(t) be a geodesic, and let $c(t_0)$ be conjugate to $c(t_1)$. Let J be any Jacobi field along c vanishing at t_0 and t_1 . Show that J is orthogonal, i.e. $\langle J(t), c'(t) \rangle \equiv 0$.
 - (b) Show that the dimension of the space J_c^{\perp} of orthogonal vector fields along c is 2n-2.
- **7.2.** (*) Let M be a Riemannian manifold of non-positive sectional curvature, i.e. $K(\Pi) \leq 0$ for any 2-plane $\Pi \subset TM$.
 - (a) Let $c:[a,b]\to M$ be a geodesic and let J be a Jacobi field along c. Let $f(t)=\|J(t)\|^2$. Show that $f''(t)\geq 0$, i.e., f is a convex function.
 - (b) Derive from (a) that M does not admit conjugate points.
- **7.3.** (*) Let $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z\}$ be a paraboloid of revolution with metric induced by \mathbb{R}^3 . Let p = (0, 0, 0). Show that p has no conjugate points in M.
- **7.4.** Let (M, g) be a Riemannian manifold. For a tensor T let ∇T denote its covariant derivative, see Exercise 9.3. T is called a *parallel tensor* if $\nabla T = 0$.
 - (a) Assume that $T_1, T_2 : \mathfrak{X} \times \mathfrak{X} \to C^{\infty}(M)$ are parallel tensors. Show that the tensor $T : \mathfrak{X} \times \mathfrak{X} \times \mathfrak{X} \times \mathfrak{X} \to C^{\infty}(M)$, defined as

$$T(X_1, X_2, X_3, X_4) = T_1(X_1, X_2)T_2(X_3, X_4),$$

is also parallel.

(b) Use (a) to show that $\nabla R' = 0$ for the tensor

$$R'(X, Y, Z, W) = \langle X, W \rangle \langle Y, Z \rangle - \langle X, Z \rangle \langle Y, W \rangle.$$

(c) Use Exercise 4.3 and (b) to show that all manifolds with constant sectional curvature have parallel Riemann curvature tensor

$$R(X, Y, Z, W) := \langle R(X, Y)Z, W \rangle.$$