Michaelmas 2019

Durham University Pavel Tumarkin

Riemannian Geometry IV, Term 1 (Section 1)

1 Smooth manifolds

"Smooth" means "infinitely differentiable", C^{∞} .

Definition 1.1. Let M be a set. An <u>*n*-dimensional smooth atlas</u> on M is a collection of triples $(U_{\alpha}, V_{\alpha}, \varphi_{\alpha})$, where $\alpha \in I$ for some indexing set I, s.t.

- (a) $U_{\alpha} \subseteq M; V_{\alpha} \subseteq \mathbb{R}^n$ is open $\forall \alpha \in I;$
- (b) $\bigcup_{\alpha \in I} U_{\alpha} = M;$
- (c) Each $\varphi_{\alpha}: U_{\alpha} \to V_{\alpha}$ is a bijection;
- (d) For every $\alpha, \beta \in I$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ the composition $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}|_{\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \rightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is a smooth map for all ordered pairs (α, β) , where $\alpha, \beta \in I$.

The number n is called the dimension of M, the maps φ_{α} are called <u>coordinate charts</u>, the compositions $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ are called transition maps or changes of coordinates.

Example 1.2. Two atlases on a circle $S^1 \subset \mathbb{R}^2$.

Definition 1.3. Let M have a smooth atlas. A set $A \subseteq M$ is open if for every $\alpha \in I$ the set $\varphi_{\alpha}(A \cap U_{\alpha})$ is open in \mathbb{R}^n . If $A \subset M$ is open and $x \in A$, A is called an open neighborhood of x.

Definition 1.4. *M* is called <u>Hausdorff</u> if for each $x, y \in M$, $x \neq y$, there exist open sets $A_x \ni x$ and $A_y \ni y$ such that $A_x \cap A_y = \emptyset$.

Example 1.5. An example of a non-Hausdorff space: a line with a double point.

Definition 1.6. M is called a <u>smooth n-dimensional manifold</u> if M has a countable n-dimensional smooth atlas and M is Hausdorff.

Example 1.7. Atlas for a square in \mathbb{R}^2 .

Example. Example of smooth manifold: real projective space.

Definition 1.8. Let $U \subseteq \mathbb{R}^n$ be open, m < n, and let $f : U \to \mathbb{R}^m$ be a smooth map (i.e., all the partial derivatives are smooth). Let $Df(x) = (\frac{\partial f_i}{\partial x_j})$ be the matrix of partial derivatives at $x \in U$ (differential or Jacobi matrix). Then

(a) $x \in U$ is a regular point of f if $\operatorname{rk} Df(x) = m$ (i.e., Df(x) has a maximal rank);

(b) $y \in \mathbb{R}^m$ is a regular value of f if the full preimage $f^{-1}(y)$ consists of regular points only.

Theorem 1.9 (Corollary of Implicit Function Theorem). Let $U \subset \mathbb{R}^n$ be open, $f : U \to \mathbb{R}^m$ smooth, m < n. If $y \in f(U)$ is a regular value of f then $f^{-1}(y) \subset U \subset \mathbb{R}^n$ is an (n-m)-dimensional smooth manifold.

Examples 1.10–1.11. An ellipsoid as a smooth manifold; matrix groups are smooth manifolds.