Riemannian Geometry IV, Term 1 (Section 2)

2 Tangent space

Definition 2.1. Let $f: M^{m} \rightarrow N^{n}$ be a map of smooth manifolds with atlases $\left(U_{i}, \varphi_{i}\left(U_{i}\right), \varphi_{i}\right)_{i \in I}$ and $\left(W_{j}, \psi_{j}\left(W_{j}\right), \psi_{j}\right)_{j \in J}$. The map f is smooth if it induces smooth maps between open sets in \mathbb{R}^{m} and \mathbb{R}^{n}, i.e. if $\left.\psi_{j} \circ f \circ \varphi_{i}^{-1}\right|_{\varphi_{i}\left(U_{i} \cap f^{-1}\left(W_{j} \cap f\left(U_{i}\right)\right)\right)}$ is smooth for all $i \in I, j \in J$.

If f is a bijection and both f and f^{-1} are smooth then f is called a diffeomorphism.
Definition 2.2. A derivation on the set $C^{\infty}(M, p)$ of all smooth functions on M defined in a neighborhood of p is a linear map $\delta: C^{\infty}(M, p) \rightarrow \mathbb{R}$, s.t. for all $f, g \in C^{\infty}(M, p)$ holds $\quad \delta(f \cdot g)=f(p) \delta(g)+\delta(f) g(p)$ (the Leibniz rule).

The set of all derivations is denoted by $\mathcal{D}^{\infty}(M, p)$. This is a real vector space (exercise).
Definition 2.3. The space $\mathcal{D}^{\infty}(M, p)$ is called the tangent space of M at p, denoted $T_{p} M$. Derivations are tangent vectors.

Definition 2.4. Let $\gamma:(a, b) \rightarrow M$ be a smooth curve in $M, t_{0} \in(a, b), \gamma\left(t_{0}\right)=p$ and $f \in C^{\infty}(M, p)$. Define the directional derivative $\gamma^{\prime}\left(t_{0}\right)(f) \in \mathbb{R}$ of f at p along γ by

$$
\gamma^{\prime}\left(t_{0}\right)(f)=\lim _{s \rightarrow 0} \frac{f\left(\gamma\left(t_{0}+s\right)\right)-f\left(\gamma\left(t_{0}\right)\right)}{s}=(f \circ \gamma)^{\prime}\left(t_{0}\right)=\left.\frac{d}{d t}\right|_{t=t_{0}}(f \circ \gamma)
$$

Directional derivatives are derivations (exercise).
Remark. Two curves γ_{1} and γ_{2} through p may define the same directional derivative.
Notation. Let M^{n} be a manifold, $\varphi: U \rightarrow V \subseteq \mathbb{R}^{n}$ a chart at $p \in U \subset M$. For $i=1, \ldots, n$ define the curves $\gamma_{i}(t)=\varphi^{-1}\left(\varphi(p)+\boldsymbol{e}_{\boldsymbol{i}} t\right)$ for small $t>0$ (here $\left\{\boldsymbol{e}_{\boldsymbol{i}}\right\}$ is a basis of \mathbb{R}^{n}).

Definition 2.5. Define $\left.\frac{\partial}{\partial x_{i}}\right|_{p}=\gamma_{i}^{\prime}(0)$, i.e.

$$
\left.\frac{\partial}{\partial x_{i}}\right|_{p}(f)=\left(f \circ \gamma_{i}\right)^{\prime}(0)=\left.\frac{d}{d t}\left(f \circ \varphi^{-1}\right)\left(\varphi(p)+t \boldsymbol{e}_{i}\right)\right|_{t=0}=\frac{\partial}{\partial x_{i}}\left(f \circ \varphi^{-1}\right)(\varphi(p)),
$$

where $\frac{\partial}{\partial x_{i}}$ on the right is just a classical partial derivative.
By definition, we have

$$
\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\} \subseteq\{\text { Directional derivatives }\} \subseteq \mathcal{D}^{\infty}(M, p)
$$

Lemma 2.6. Let $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ be a smooth curve, $p=\gamma(0)$. Let $\varphi: U \subseteq M \rightarrow \mathbb{R}^{n}$ be a chart with coordinate functions x_{i}. Then $\gamma^{\prime}(0)$ is a linear combination of $\left\{\left.\frac{\partial}{\partial x_{i}}\right|_{p}\right\}_{1 \leq i \leq n}$.

Corollary 2.7.

$$
\{\text { Directional derivatives }\} \subseteq\left\langle\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\rangle \subseteq \mathcal{D}^{\infty}(M, p) .
$$

Lemma 2.8. Let $\varphi: U \subseteq M \rightarrow \mathbb{R}^{n}$ be a chart, $\varphi(p)=0$. Let $\tilde{\gamma}(t)=\left(\sum_{i=1}^{n} k_{i} \boldsymbol{e}_{i}\right) t: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be a line, where $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis, $k_{i} \in \mathbb{R}$. Define $\gamma(t)=\varphi^{-1} \circ \tilde{\gamma}(t) \in M$. Then $\gamma^{\prime}(0)=\sum_{i=1}^{n} k_{i} \frac{\partial}{\partial x_{i}}$.

Corollary 2.9.

$$
\{\text { Directional derivatives }\}=\left\langle\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\rangle \subseteq \mathcal{D}^{\infty}(M, p) .
$$

Proposition 2.10.

$$
\{\text { Directional derivatives }\}=\left\langle\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\rangle=\mathcal{D}^{\infty}(M, p) .
$$

Remark. If an n-manifold M is embedded into \mathbb{R}^{N}, then every tangent vector at $p \in M$ can be identified with vector $\left(\gamma_{1}^{\prime}(0), \ldots, \gamma_{N}^{\prime}(0)\right) \in \mathbb{R}^{N}$, where $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ is some smooth curve with $\gamma(0)=p$.

Example 2.11. For the group $S L_{n}(\mathbb{R})=\left\{A \in M_{n} \mid \operatorname{det} A=1\right\}$, the tangent space at I is the set of all trace-free matrices: $T_{I}\left(S L_{n}(\mathbb{R})\right)=\left\{X \in M_{n}(\mathbb{R}) \mid \operatorname{tr} X=0\right\}$.

Remark. Since partial derivatives are linearly independent (exercise), the dimension of a tangent space is equal to the dimension of a manifold.

Proposition 2.12. (Change of basis for $T_{p} M$). Let M^{n} be a smooth manifold, $\varphi_{\alpha}: U_{\alpha} \rightarrow V_{\alpha} a$ chart, $\left(x_{1}^{\alpha}, \ldots, x_{n}^{\alpha}\right)$ the coordinates in V_{α}. Let $p \in U_{\alpha} \cap U_{\beta}$. Then $\left.\frac{\partial}{\partial x_{j}^{\alpha}}\right|_{p}=\sum_{i=1}^{n} \frac{\partial x_{i}^{\beta}}{\partial x_{j}^{\alpha}} \frac{\partial}{\partial x_{i}^{\alpha}}$, where $\frac{\partial x_{i}^{\beta}}{\partial x_{j}^{\alpha}}=\frac{\partial\left(\varphi_{\beta}^{i} \circ \varphi_{\alpha}^{-1}\right)}{\partial x_{j}^{\alpha}}(\varphi(p)), \varphi_{\beta}^{i}=\pi_{i} \circ \varphi_{\beta}$.

Definition 2.13. Let M, N be smooth manifolds, let $f: M \rightarrow N$ be a smooth map. Define a linear map $D f(p): T_{p} M \rightarrow T_{f(p)} N$ called the differential of f at p by $D f(p) \gamma^{\prime}(0)=(f \circ \gamma)^{\prime}(0)$ for a smooth curve $\gamma \in M$ with $\gamma(0)=p$.

Remark. $D f(p)$ is well defined.
Remark. $D f(p)$ is linear.
Lemma 2.14. (a) If φ is a chart, then $D \varphi(p): T_{p} M \rightarrow T_{\varphi(p)} \mathbb{R}^{n}$ is the identity map taking $\left.\frac{\partial}{\partial x_{i}}\right|_{p}$ to $\frac{\partial}{\partial x_{i}}$
(b) For $M \xrightarrow{f} N \xrightarrow{g} L$ we have $D(g \circ f)(p)=D g(f(p)) \circ D f(p)$.

Example 2.15. Differential of a map from a disc to a sphere.

Tangent bundle and vector fields

Definition 2.16. Let M be a smooth manifold. A disjoint union $T M=\cup_{p \in M} T_{p} M$ of tangent spaces to each $p \in M$ is called a tangent bundle.

There is a canonical projection $\Pi: T M \rightarrow M, \Pi(v)=p$ for every $v \in T_{p} M$.
Proposition 2.17. The tangent bundle TM has a structure of $2 n$-dimensional smooth manifold, s.t. $\Pi: T M \rightarrow M$ is a smooth map.

Definition 2.18. A vector field X on a smooth manifold M is a smooth map $X: M \rightarrow T M$ such that $\forall p \in M X(p) \in T_{p} M$

The set of all vector fields on M is denoted by $\mathfrak{X}(M)$.
Remark 2.19. (a) $\mathfrak{X}(M)$ has a structure of a vector space.
(b) Vector fields can be multiplied by smooth functions.
(c) Taking a coordinate chart $\left(U, \varphi=\left(x_{1}, \ldots, x_{n}\right)\right)$, any vector field X can be written in U as $X(p)=$ $\sum_{i=1}^{n} f_{i}(p) \frac{\partial}{\partial x_{i}} \in T_{p} M$, where $\left\{f_{i}\right\}$ are some smooth functions on U.

Examples 2.20-2.21. Vector fields on \mathbb{R}^{2} and 2-sphere.
Remark 2.22. Observe that for $X \in \mathfrak{X}(M)$ we have $X(p) \in T_{p} M$, i.e. $X(p)$ is a directional derivative at $p \in M$. Thus, we can use the vector field to differentiate a function $f \in C^{\infty}(M)$ by $(X f)(p)=X(p) f$, so that we get another smooth function $X f \in C^{\infty}(M)$.

Proposition 2.23. Let $X, Y \in \mathfrak{X}(M)$. Then there exists a unique vector field $Z \in \mathfrak{X}(M)$ such that $Z(f)=X(Y(f))-Y(X(f))$ for all $f \in C^{\infty}(M)$.

This vector field $Z=X Y-Y X$ is denoted by $[X, Y]$ and called the Lie bracket of X and Y.
Proposition 2.24. Properties of Lie bracket:
(a) $[X, Y]=-[Y, X]$;
(b) $[a X+b Y, Z]=a[X, Z]+b[Y, Z]$ for $a, b \in \mathbb{R}$;
(c) $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$ (Jacobi identity);
(d) $[f X, g Y]=f g[X, Y]+f(X g) Y-g(Y f) X$ for $f, g \in C^{\infty}(M)$.

Definition 2.25. A Lie algebra is a vector space \mathfrak{g} with a binary operation $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ called the Lie bracket which satisfies first three properties from Proposition 2.24.

Proposition 2.24 implies that $\mathfrak{X}(M)$ is a Lie algebra.
Theorem 2.26 (The Hairy Ball Theorem). There is no non-vanishing continuous vector field on an even-dimensional sphere $S^{2 m}$.

Corollary. Let $f: S^{2 m} \rightarrow S^{2 m}$ be a continuous map, and suppose that for any $p \in S^{2 m}$ we have $f(p) \neq-p$. Then f has a fixed point, i.e. there exists $q \in S^{2 m}$ s.t. $f(q)=q$.

