Riemannian Geometry IV, Term 1 (Section 2)

2 Tangent space

Definition 2.1. Let $f: M^m \to N^n$ be a map of smooth manifolds with atlases $(U_i, \varphi_i(U_i), \varphi_i)_{i \in I}$ and $(W_j, \psi_j(W_j), \psi_j)_{j \in J}$. The map f is $\underline{\text{smooth}}$ if it induces smooth maps between open sets in \mathbb{R}^m and \mathbb{R}^n , i.e. if $\psi_j \circ f \circ \varphi_i^{-1}|_{\varphi_i(U_i \cap f^{-1}(W_j \cap f(U_i)))}$ is smooth for all $i \in I$, $j \in J$.

If f is a bijection and both f and f^{-1} are smooth then f is called a diffeomorphism.

Definition 2.2. A <u>derivation</u> on the set $C^{\infty}(M,p)$ of all smooth functions on M defined in a neighborhood of p is a linear map $\delta: C^{\infty}(M,p) \to \mathbb{R}$, s.t. for all $f,g \in C^{\infty}(M,p)$ holds $\delta(f \cdot g) = f(p)\delta(g) + \delta(f)g(p)$ (the <u>Leibniz rule</u>).

The set of all derivations is denoted by $\mathcal{D}^{\infty}(M,p)$. This is a real vector space (exercise).

Definition 2.3. The space $\mathcal{D}^{\infty}(M,p)$ is called the <u>tangent space</u> of M at p, denoted T_pM . Derivations are tangent vectors.

Definition 2.4. Let $\gamma:(a,b)\to M$ be a smooth curve in $M,\,t_0\in(a,b),\,\gamma(t_0)=p$ and $f\in C^\infty(M,p)$. Define the <u>directional derivative</u> $\gamma'(t_0)(f)\in\mathbb{R}$ of f at p along γ by

$$\gamma'(t_0)(f) = \lim_{s \to 0} \frac{f(\gamma(t_0 + s)) - f(\gamma(t_0))}{s} = (f \circ \gamma)'(t_0) = \frac{d}{dt} \Big|_{t = t_0} (f \circ \gamma)$$

Directional derivatives are derivations (exercise).

Remark. Two curves γ_1 and γ_2 through p may define the same directional derivative.

Notation. Let M^n be a manifold, $\varphi: U \to V \subseteq \mathbb{R}^n$ a chart at $p \in U \subset M$. For i = 1, ..., n define the curves $\gamma_i(t) = \varphi^{-1}(\varphi(p) + e_i t)$ for small t > 0 (here $\{e_i\}$ is a basis of \mathbb{R}^n).

Definition 2.5. Define $\frac{\partial}{\partial x_i}\Big|_p = \gamma_i'(0)$, i.e.

$$\frac{\partial}{\partial x_i}\bigg|_p (f) = (f \circ \gamma_i)'(0) = \frac{d}{dt} (f \circ \varphi^{-1})(\varphi(p) + te_i)\bigg|_{t=0} = \frac{\partial}{\partial x_i} (f \circ \varphi^{-1})(\varphi(p)),$$

where $\frac{\partial}{\partial x_i}$ on the right is just a classical partial derivative.

By definition, we have

$$\left\{\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right\} \subseteq \{\text{Directional derivatives}\} \subseteq \mathcal{D}^{\infty}(M, p)$$

Lemma 2.6. Let $\gamma: (-\varepsilon, \varepsilon) \to M$ be a smooth curve, $p = \gamma(0)$. Let $\varphi: U \subseteq M \to \mathbb{R}^n$ be a chart with coordinate functions x_i . Then $\gamma'(0)$ is a linear combination of $\left\{\frac{\partial}{\partial x_i}\Big|_p\right\}_{1 \le i \le n}$.

Corollary 2.7.

$$\{Directional\ derivatives\}\subseteq \langle \frac{\partial}{\partial x_1},\ldots,\frac{\partial}{\partial x_n}\rangle\subseteq \mathcal{D}^\infty(M,p).$$

Lemma 2.8. Let $\varphi: U \subseteq M \to \mathbb{R}^n$ be a chart, $\varphi(p) = 0$. Let $\tilde{\gamma}(t) = (\sum_{i=1}^n k_i e_i) t : \mathbb{R} \to \mathbb{R}^n$ be a line, where $\{e_1, \dots, e_n\}$ is a basis, $k_i \in \mathbb{R}$. Define $\gamma(t) = \varphi^{-1} \circ \tilde{\gamma}(t) \in M$. Then $\gamma'(0) = \sum_{i=1}^n k_i \frac{\partial}{\partial x_i}$.

Corollary 2.9.

$$\{Directional\ derivatives\} = \langle \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \rangle \subseteq \mathcal{D}^{\infty}(M, p).$$

Proposition 2.10.

$$\{Directional\ derivatives\} = \langle \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \rangle = \mathcal{D}^{\infty}(M, p).$$

Remark. If an *n*-manifold M is embedded into \mathbb{R}^N , then every tangent vector at $p \in M$ can be identified with vector $(\gamma_1'(0), \ldots, \gamma_N'(0)) \in \mathbb{R}^N$, where $\gamma : (-\varepsilon, \varepsilon) \to M$ is some smooth curve with $\gamma(0) = p$.

Example 2.11. For the group $SL_n(\mathbb{R}) = \{A \in M_n \mid \det A = 1\}$, the tangent space at I is the set of all trace-free matrices: $T_I(SL_n(\mathbb{R})) = \{X \in M_n(\mathbb{R}) \mid \operatorname{tr} X = 0\}$.

Remark. Since partial derivatives are linearly independent (exercise), the dimension of a tangent space is equal to the dimension of a manifold.

Proposition 2.12. (Change of basis for T_pM). Let M^n be a smooth manifold, $\varphi_\alpha: U_\alpha \to V_\alpha$ a chart, $(x_1^\alpha, \ldots, x_n^\alpha)$ the coordinates in V_α . Let $p \in U_\alpha \cap U_\beta$. Then $\frac{\partial}{\partial x_j^\alpha}\Big|_p = \sum_{i=1}^n \frac{\partial x_i^\beta}{\partial x_i^\alpha} \frac{\partial}{\partial x_i^\alpha}$, where $\frac{\partial x_i^\beta}{\partial x_i^\alpha} = \frac{\partial (\varphi_\beta^i \circ \varphi_\alpha^{-1})}{\partial x_i^\alpha} (\varphi(p))$, $\varphi_\beta^i = \pi_i \circ \varphi_\beta$.

Definition 2.13. Let M, N be smooth manifolds, let $f: M \to N$ be a smooth map. Define a linear map $Df(p): T_pM \to T_{f(p)}N$ called the <u>differential</u> of f at p by $Df(p)\gamma'(0) = (f \circ \gamma)'(0)$ for a smooth curve $\gamma \in M$ with $\gamma(0) = p$.

Remark. Df(p) is well defined.

Remark. Df(p) is linear.

Lemma 2.14. (a) If φ is a chart, then $D\varphi(p): T_pM \to T_{\varphi(p)}\mathbb{R}^n$ is the identity map taking $\frac{\partial}{\partial x_i}\Big|_p$ to $\frac{\partial}{\partial x_i}$

(b) For $M \xrightarrow{f} N \xrightarrow{g} L$ we have $D(g \circ f)(p) = Dg(f(p)) \circ Df(p)$.

Example 2.15. Differential of a map from a disc to a sphere.

Tangent bundle and vector fields

Definition 2.16. Let M be a smooth manifold. A disjoint union $TM = \bigcup_{p \in M} T_p M$ of tangent spaces to each $p \in M$ is called a tangent bundle.

There is a canonical projection $\Pi: TM \to M, \Pi(v) = p$ for every $v \in T_pM$.

Proposition 2.17. The tangent bundle TM has a structure of 2n-dimensional smooth manifold, s.t. $\Pi: TM \to M$ is a smooth map.

Definition 2.18. A vector field X on a smooth manifold M is a smooth map $X: M \to TM$ such that $\forall p \in M \ X(p) \in T_pM$

The set of all vector fields on M is denoted by $\mathfrak{X}(M)$.

Remark 2.19. (a) $\mathfrak{X}(M)$ has a structure of a vector space.

- (b) Vector fields can be multiplied by smooth functions.
- (c) Taking a coordinate chart $(U, \varphi = (x_1, \dots, x_n))$, any vector field X can be written in U as $X(p) = \sum_{i=1}^n f_i(p) \frac{\partial}{\partial x_i} \in T_p M$, where $\{f_i\}$ are some smooth functions on U.

Examples 2.20–2.21. Vector fields on \mathbb{R}^2 and 2-sphere.

Remark 2.22. Observe that for $X \in \mathfrak{X}(M)$ we have $X(p) \in T_pM$, i.e. X(p) is a directional derivative at $p \in M$. Thus, we can use the vector field to differentiate a function $f \in C^{\infty}(M)$ by (Xf)(p) = X(p)f, so that we get another smooth function $Xf \in C^{\infty}(M)$.

Proposition 2.23. Let $X, Y \in \mathfrak{X}(M)$. Then there exists a unique vector field $Z \in \mathfrak{X}(M)$ such that Z(f) = X(Y(f)) - Y(X(f)) for all $f \in C^{\infty}(M)$.

This vector field Z = XY - YX is denoted by [X, Y] and called the Lie bracket of X and Y.

Proposition 2.24. Properties of Lie bracket:

- (a) [X, Y] = -[Y, X];
- (b) [aX + bY, Z] = a[X, Z] + b[Y, Z] for $a, b \in \mathbb{R}$;
- $(c) \ [[X,Y],Z]+[[Y,Z],X]+[[Z,X],Y]=0 \ (\underline{\textit{Jacobi identity}});$
- $(d) \ [fX,gY] = fg[X,Y] + f(Xg)Y g(Yf)X \ for \ f,g \in C^{\infty}(M).$

Definition 2.25. A Lie algebra is a vector space \mathfrak{g} with a binary operation $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ called the Lie bracket which satisfies first three properties from Proposition 2.24.

Proposition 2.24 implies that $\mathfrak{X}(M)$ is a Lie algebra.

Theorem 2.26 (The Hairy Ball Theorem). There is no non-vanishing continuous vector field on an even-dimensional sphere S^{2m} .

Corollary. Let $f: S^{2m} \to S^{2m}$ be a continuous map, and suppose that for any $p \in S^{2m}$ we have $f(p) \neq -p$. Then f has a fixed point, i.e. there exists $q \in S^{2m}$ s.t. f(q) = q.