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Riemannian Geometry IV, Term 1 (Section 4)

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field X =
∑
ai(p)

∂
∂xi
∈ X(Rn) and a vector v ∈ TpRn define the

covariant derivative of X in direction v in Rn by ∇v(X) = lim
t→0

X(p+tv)−X(p)
t =

∑
v(ai)

∂
∂xi

∣∣
p
∈ TpRn.

Proposition 4.2. The covariant derivative ∇vX in Rn satisfies all the properties (a)–(e) listed below in
Definition 4.3 and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map ∇ : X(M) × X(M) → X(M), (X,Y ) 7→ ∇XY is
affine connection if for all X,Y, Z ∈ X(M) and f, g ∈ C∞(M) holds

(a) ∇X(Y + Z) = ∇X(Y ) +∇X(Z)

(b) ∇X(fY ) = X(f)Y (p) + f(p)∇XY

(c) ∇fX+gY Z = f∇XZ + g∇Y Z

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Rieman-
nian manifold. There exists a unique affine connection ∇ on M with the additional properties for all
X,Y, Z ∈ X(M):

(d) Z(〈X,Y 〉) = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 (Riemannian property);

(e) ∇XY −∇YX = [X,Y ] (∇ is torsion-free).

This connection is called Levi-Civita connection of (M, g).

Remark 4.5. Properties of Levi-Civita connection in Rn and in M ⊂ Rn with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be the Levi-Civita connection on (M, g), and let ϕ : U → V be a coordinate
chart with coordinates ϕ = (x1, . . . , xn). Since ∇ ∂

∂xi

∂
∂xj

(p) ∈ TpM , there exists a uniquely determined

collection of functions Γk
ij ∈ C∞(U) s.t. ∇ ∂

∂xi

∂
∂xj

(p) =
∑n

k=1 Γk
ij(p)

∂
∂xk

(p). These functions are called

Christoffel symbols of ∇ with respect to the chart ϕ.

Remark. Christoffel symbols determine ∇ since ∇ n∑
i=1

ai
∂

∂xi

n∑
j=1

bj
∂

∂xj
=
∑
i,j
ai

∂bj
∂xi

∂
∂xj

+
∑
i,j,k

aibjΓ
k
ij

∂
∂xk

.

Proposition 4.7.

Γk
ij =

1

2

∑
m

gkm(gim,j + gjm,i − gij,m),

where gab,c = ∂
∂xc

gab and (gij) = (gij)
−1, i.e. {gij} are the elements of the matrix inverse to (gij).

In particular, Γk
ij = Γk

ji.

Example 4.8. In Rn, Γk
ij ≡ 0 for all i, j, k. Computation of Γk

ij in S2 ⊂ R3 with induced metric.
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4.3 Parallel transport

Definition 4.9. Let c : (a, b) → M be a smooth curve. A smooth map X : (a, b) → TM with X(t) ∈
Tc(t)M is called a vector field along c. These fields form a vector space Xc(M).

Example 4.10. c′(t) ∈ Xc(M).

Proposition 4.11. Let (M, g) be a Riemannian manifold, let ∇ be the Levi-Civita connection, c : (a, b)→
M be a smooth curve. There exists a unique map D

dt : Xc(M)→ Xc(M) satisfying

(a) D
dt(αX + Y ) = αD

dtX + D
dtY for any α ∈ R.

(b) D
dt(fX) = f ′(t)X + f D

dtX for every f ∈ C∞(M).

(c) If X̃ ∈ X(M) is a local extension of X
(i.e. there exists t0 ∈ (a, b) and ε > 0 such that X(t) = X̃

∣∣
c(t)

for all t ∈ (t0 − ε, t0 + ε))

then (DdtX)(t0) = ∇c′(t0)X̃.

This map D
dt : Xc(M)→ Xc(M) is called the covariant derivative along the curve c.

Example 4.12. Covariant derivative in Rn.

Definition 4.13. Let X ∈ Xc(M). If D
dtX = 0 then X is said to be parallel along c.

Example 4.14. A vector field X in Rn is parallel along a curve if and only if X is constant.

Theorem 4.15. Let c : [a, b] → M be a smooth curve, v ∈ Tc(a)M . There exists a unique vector field
X ∈ Xc(M) parallel along c with X(a) = v.

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of
(M, g)).

Definition 4.17. Let c : [a, b] → M be a smooth curve. A linear map Pc : Tc(a)M → Tc(b)M defined by
Pc(v) = X(b), where X ∈ Xc(M) is parallel along c with X(a) = v, is called a parallel transport along c.

Remark. The parallel transport Pc depends on the curve c (not only on its endpoints).

Proposition 4.18. The parallel transport Pc : Tc(a)M → Tc(b)M is a linear isometry between Tc(a)M and
Tc(b)M , i.e. gc(a)(v, w) = gc(b)(Pcv, Pcw).
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