Riemannian Geometry IV, Term 1 (Section 4)

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field $X=\sum a_{i}(p) \frac{\partial}{\partial x_{i}} \in \mathfrak{X}\left(\mathbb{R}^{n}\right)$ and a vector $v \in T_{p} \mathbb{R}^{n}$ define the covariant derivative of X in direction v in \mathbb{R}^{n} by $\nabla_{v}(X)=\lim _{t \rightarrow 0} \frac{X(p+t v)-X(p)}{t}=\left.\sum v\left(a_{i}\right) \frac{\partial}{\partial x_{i}}\right|_{p} \in T_{p} \mathbb{R}^{n}$.
Proposition 4.2. The covariant derivative $\nabla_{v} X$ in \mathbb{R}^{n} satisfies all the properties (a)-(e) listed below in Definition 4.3 and Theorem 4.4.
Definition 4.3. Let M be a smooth manifold. A map $\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M),(X, Y) \mapsto \nabla_{X} Y$ is affine connection if for all $X, Y, Z \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$ holds
(a) $\nabla_{X}(Y+Z)=\nabla_{X}(Y)+\nabla_{X}(Z)$
(b) $\nabla_{X}(f Y)=X(f) Y(p)+f(p) \nabla_{X} Y$
(c) $\nabla_{f X+g Y} Z=f \nabla_{X} Z+g \nabla_{Y} Z$

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian manifold. There exists a unique affine connection ∇ on M with the additional properties for all $X, Y, Z \in \mathfrak{X}(M)$:
(d) $Z(\langle X, Y\rangle)=\left\langle\nabla_{Z} X, Y\right\rangle+\left\langle X, \nabla_{Z} Y\right\rangle \quad$ (Riemannian property);
(e) $\nabla_{X} Y-\nabla_{Y} X=[X, Y] \quad(\nabla$ is torsion-free).

This connection is called Levi-Civita connection of (M, g).
Remark 4.5. Properties of Levi-Civita connection in \mathbb{R}^{n} and in $M \subset \mathbb{R}^{n}$ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be the Levi-Civita connection on (M, g), and let $\varphi: U \rightarrow V$ be a coordinate chart with coordinates $\varphi=\left(x_{1}, \ldots, x_{n}\right)$. Since $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}(p) \in T_{p} M$, there exists a uniquely determined collection of functions $\Gamma_{i j}^{k} \in C^{\infty}(U)$ s.t. $\nabla_{\frac{\partial}{\partial x_{i}}} \frac{\partial}{\partial x_{j}}(p)=\sum_{k=1}^{n} \Gamma_{i j}^{k}(p) \frac{\partial}{\partial x_{k}}(p)$. These functions are called Christoffel symbols of ∇ with respect to the chart φ.

Remark. Christoffel symbols determine ∇ since $\quad \nabla_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}} \sum_{j=1}^{n} b_{j} \frac{\partial}{\partial x_{j}}=\sum_{i, j} a_{i} \frac{\partial b_{j}}{\partial x_{i}} \frac{\partial}{\partial x_{j}}+\sum_{i, j, k} a_{i} b_{j} \Gamma_{i j}^{k} \frac{\partial}{\partial x_{k}}$.
Proposition 4.7.

$$
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{m} g^{k m}\left(g_{i m, j}+g_{j m, i}-g_{i j, m}\right),
$$

where $g_{a b, c}=\frac{\partial}{\partial x_{c}} g_{a b}$ and $\left(g^{i j}\right)=\left(g_{i j}\right)^{-1}$, i.e. $\left\{g^{i j}\right\}$ are the elements of the matrix inverse to $\left(g_{i j}\right)$.
In particular, $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$.
Example 4.8. In $\mathbb{R}^{n}, \Gamma_{i j}^{k} \equiv 0$ for all i, j, k. Computation of $\Gamma_{i j}^{k}$ in $S^{2} \subset \mathbb{R}^{3}$ with induced metric.

4.3 Parallel transport

Definition 4.9. Let $c:(a, b) \rightarrow M$ be a smooth curve. A smooth map $X:(a, b) \rightarrow T M$ with $X(t) \in$ $T_{c(t)} M$ is called a vector field along c. These fields form a vector space $\mathfrak{X}_{c}(M)$.

Example 4.10. $c^{\prime}(t) \in \mathfrak{X}_{c}(M)$.
Proposition 4.11. Let (M, g) be a Riemannian manifold, let ∇ be the Levi-Civita connection, $c:(a, b) \rightarrow$ M be a smooth curve. There exists a unique map $\frac{D}{d t}: \mathfrak{X}_{c}(M) \rightarrow \mathfrak{X}_{c}(M)$ satisfying
(a) $\frac{D}{d t}(\alpha X+Y)=\alpha \frac{D}{d t} X+\frac{D}{d t} Y$ for any $\alpha \in \mathbb{R}$.
(b) $\frac{D}{d t}(f X)=f^{\prime}(t) X+f \frac{D}{d t} X$ for every $f \in C^{\infty}(M)$.
(c) If $\tilde{X} \in \mathfrak{X}(M)$ is a local extension of X
(i.e. there exists $t_{0} \in(a, b)$ and $\varepsilon>0$ such that $X(t)=\left.\widetilde{X}\right|_{c(t)}$ for all $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$)
then $\left(\frac{D}{d t} X\right)\left(t_{0}\right)=\nabla_{c^{\prime}\left(t_{0}\right)} \widetilde{X}$.
This map $\frac{D}{d t}: \mathfrak{X}_{c}(M) \rightarrow \mathfrak{X}_{c}(M)$ is called the covariant derivative along the curve c.
Example 4.12. Covariant derivative in \mathbb{R}^{n}.
Definition 4.13. Let $X \in \mathfrak{X}_{c}(M)$. If $\frac{D}{d t} X=0$ then X is said to be parallel along c.
Example 4.14. A vector field X in \mathbb{R}^{n} is parallel along a curve if and only if X is constant.
Theorem 4.15. Let $c:[a, b] \rightarrow M$ be a smooth curve, $v \in T_{c(a)} M$. There exists a unique vector field $X \in \mathfrak{X}_{c}(M)$ parallel along c with $X(a)=v$.

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of (M, g)).

Definition 4.17. Let $c:[a, b] \rightarrow M$ be a smooth curve. A linear map $P_{c}: T_{c(a)} M \rightarrow T_{c(b)} M$ defined by $P_{c}(v)=X(b)$, where $X \in \mathfrak{X}_{c}(M)$ is parallel along c with $X(a)=v$, is called a parallel transport along c.

Remark. The parallel transport P_{c} depends on the curve c (not only on its endpoints).
Proposition 4.18. The parallel transport $P_{c}: T_{c(a)} M \rightarrow T_{c(b)} M$ is a linear isometry between $T_{c(a)} M$ and $T_{c(b)} M$, i.e. $g_{c(a)}(v, w)=g_{c(b)}\left(P_{c} v, P_{c} w\right)$.

