Michaelmas 2019

Durham University Pavel Tumarkin

Riemannian Geometry IV, Term 1 (Section 4)

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field $X = \sum a_i(p) \frac{\partial}{\partial x_i} \in \mathfrak{X}(\mathbb{R}^n)$ and a vector $v \in T_p \mathbb{R}^n$ define the covariant derivative of X in direction v in \mathbb{R}^n by $\nabla_v(X) = \lim_{t \to 0} \frac{X(p+tv) - X(p)}{t} = \sum v(a_i) \frac{\partial}{\partial x_i} \Big|_p \in T_p \mathbb{R}^n$.

Proposition 4.2. The covariant derivative $\nabla_v X$ in \mathbb{R}^n satisfies all the properties (a)–(e) listed below in Definition 4.3 and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M), (X, Y) \mapsto \nabla_X Y$ is affine connection if for all $X, Y, Z \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$ holds

- (a) $\nabla_X(Y+Z) = \nabla_X(Y) + \nabla_X(Z)$
- (b) $\nabla_X(fY) = X(f)Y(p) + f(p)\nabla_X Y$
- (c) $\nabla_{fX+qY}Z = f\nabla_X Z + g\nabla_Y Z$

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian manifold. There exists a unique affine connection ∇ on M with the additional properties for all $X, Y, Z \in \mathfrak{X}(M)$:

 $\begin{array}{ll} (d) \ Z(\langle X, Y \rangle) = \langle \nabla_Z X, Y \rangle + \langle X, \nabla_Z Y \rangle & (Riemannian \ property); \\ (e) \ \nabla_X Y - \nabla_Y X = [X, Y] & (\nabla \ is \ torsion-free). \end{array}$

This connection is called <u>Levi-Civita connection</u> of (M, g).

Remark 4.5. Properties of Levi-Civita connection in \mathbb{R}^n and in $M \subset \mathbb{R}^n$ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be the Levi-Civita connection on (M, g), and let $\varphi : U \to V$ be a coordinate chart with coordinates $\varphi = (x_1, \ldots, x_n)$. Since $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) \in T_p M$, there exists a uniquely determined collection of functions $\Gamma_{ij}^k \in C^{\infty}(U)$ s.t. $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) = \sum_{k=1}^n \Gamma_{ij}^k(p) \frac{\partial}{\partial x_k}(p)$. These functions are called Christoffel symbols of ∇ with respect to the chart φ .

Remark. Christoffel symbols determine ∇ since

$$\nabla_{\sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i}} \sum_{j=1}^{n} b_j \frac{\partial}{\partial x_j} = \sum_{i,j} a_i \frac{\partial b_j}{\partial x_i} \frac{\partial}{\partial x_j} + \sum_{i,j,k} a_i b_j \Gamma_{ij}^k \frac{\partial}{\partial x_k}.$$

Proposition 4.7.

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{m} g^{km} (g_{im,j} + g_{jm,i} - g_{ij,m}),$$

where $g_{ab,c} = \frac{\partial}{\partial x_c} g_{ab}$ and $(g^{ij}) = (g_{ij})^{-1}$, i.e. $\{g^{ij}\}$ are the elements of the matrix inverse to (g_{ij}) . In particular, $\Gamma_{ij}^k = \Gamma_{ji}^k$.

Example 4.8. In \mathbb{R}^n , $\Gamma_{ij}^k \equiv 0$ for all i, j, k. Computation of Γ_{ij}^k in $S^2 \subset \mathbb{R}^3$ with induced metric.

4.3 Parallel transport

Definition 4.9. Let $c : (a, b) \to M$ be a smooth curve. A smooth map $X : (a, b) \to TM$ with $X(t) \in T_{c(t)}M$ is called a vector field along c. These fields form a vector space $\mathfrak{X}_c(M)$.

Example 4.10. $c'(t) \in \mathfrak{X}_c(M)$.

Proposition 4.11. Let (M, g) be a Riemannian manifold, let ∇ be the Levi-Civita connection, $c : (a, b) \rightarrow M$ be a smooth curve. There exists a unique map $\frac{D}{dt} : \mathfrak{X}_c(M) \rightarrow \mathfrak{X}_c(M)$ satisfying

- (a) $\frac{D}{dt}(\alpha X + Y) = \alpha \frac{D}{dt}X + \frac{D}{dt}Y$ for any $\alpha \in \mathbb{R}$.
- (b) $\frac{D}{dt}(fX) = f'(t)X + f\frac{D}{dt}X$ for every $f \in C^{\infty}(M)$.
- (c) If $\widetilde{X} \in \mathfrak{X}(M)$ is a local extension of X(*i.e.* there exists $t_0 \in (a,b)$ and $\varepsilon > 0$ such that $X(t) = \widetilde{X}|_{c(t)}$ for all $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$) then $(\frac{D}{dt}X)(t_0) = \nabla_{c'(t_0)}\widetilde{X}$.

This map $\frac{D}{dt}: \mathfrak{X}_c(M) \to \mathfrak{X}_c(M)$ is called the covariant derivative along the curve c.

Example 4.12. Covariant derivative in \mathbb{R}^n .

Definition 4.13. Let $X \in \mathfrak{X}_c(M)$. If $\frac{D}{dt}X = 0$ then X is said to be parallel along c.

Example 4.14. A vector field X in \mathbb{R}^n is parallel along a curve if and only if X is constant.

Theorem 4.15. Let $c : [a,b] \to M$ be a smooth curve, $v \in T_{c(a)}M$. There exists a unique vector field $X \in \mathfrak{X}_c(M)$ parallel along c with X(a) = v.

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of (M, g)).

Definition 4.17. Let $c : [a,b] \to M$ be a smooth curve. A linear map $P_c : T_{c(a)}M \to T_{c(b)}M$ defined by $P_c(v) = X(b)$, where $X \in \mathfrak{X}_c(M)$ is parallel along c with X(a) = v, is called a parallel transport along c.

Remark. The parallel transport P_c depends on the curve c (not only on its endpoints).

Proposition 4.18. The parallel transport $P_c : T_{c(a)}M \to T_{c(b)}M$ is a linear isometry between $T_{c(a)}M$ and $T_{c(b)}M$, i.e. $g_{c(a)}(v,w) = g_{c(b)}(P_cv, P_cw)$.