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Riemannian Geometry IV, Term 1 (Section 5)

5 Geodesics

5.1 Geodesics as solutions of ODE’s

Definition 5.1. Given (M, g), a curve c : [a, b] → M is a geodesic if D
dtc

′(t) = 0 for all t ∈ [a, b] (i.e.,
c′(t) ∈ Xc(M) is parallel along c).

Lemma 5.2. If c is a geodesic then c is parametrized proportionally to the arc length.

Theorem 5.3. Given a Riemannian manifold (M, g), p ∈M , v ∈ TpM , there exists ε > 0 and a unique
geodesic c : (−ε, ε)→M such that c(0) = p, c′(0) = v.

Examples 5.4–5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model H2.

5.2 Geodesics as distance-minimizing curves. First variation formula of the length

Definition 5.6. Let c : [a, b] → M be a smooth curve. A smooth map F : (−ε, ε) × [a, b] → M is a
(smooth) variation of c if F (0, t) = c(t). Variation is proper if F (s, a) = c(a) and F (s, b) = c(b) for all
s ∈ (−ε, ε).

Variation can be considered as a family of the curves Fs(t) = F (s, t).

Definition 5.7. A variational vector field X ∈ Xc(M) of a variation F is defined by X(t) = ∂F
∂s (0, t).

Definition 5.8. The length l : (−ε, ε) → [0,∞) and energy E : (−ε, ε) → [0,∞) of a variation F are
defined by

l(s) =

b∫
a

‖∂F
∂t

(s, t)‖ dt, E(s) =
1

2

b∫
a

‖∂F
∂t

(s, t)‖2 dt

Remark. l(s) is the length of the curve Fs(t).

Theorem 5.9. A smooth curve c is a geodesic if and only if c is parametrized proportionally to the arc
length and l′(0) = 0 for every proper variation of c.

Corollary 5.10. Let c : [a, b] → M be the shortest curve from c(a) to c(b), and c is parametrized
proportionally to the arc length. Then c is geodesic.

Remark. The converse is false (e.g., on the sphere).

Lemma 5.11 (Symmetry Lemma). Let W ⊂ R2 be an open set and F : W → M , (s, t) 7→ F (s, t), be a
smooth map. Let D

dt be the covariant derivative along Fs(t) and D
ds be the covariant derivative along Ft(s).

Then D
dt
∂F
∂s = D

ds
∂F
∂t .

1



Theorem 5.12 (First variation formula of length). Let F : (−ε, ε)× [a, b]→M be a variation of a smooth
curve c(t), c′(t) 6= 0. Let X(t) be its variational vector field and l : (−ε, ε)→ [0,∞) its length. Then

l′(0) =

b∫
a

1

‖c′(t)‖
d

dt
〈X(t), c′(t)〉 dt−

b∫
a

1

‖c′(t)‖
〈X(t),

D

dt
c′(t)〉dt

Corollary 5.13. (a) If c(t) is parametrized proportionally to the arc length, ‖c′(t)‖ ≡ c, then

l′(0) = 1
c 〈X(b), c′(b)〉 − 1

c 〈X(a), c′(a)〉 − 1
c

b∫
a
〈X(t), Ddtc

′(t)〉dt;

(b) if c(t) is geodesic, then l′(0) = 1
c 〈X(b), c′(b)〉 − 1

c 〈X(a), c′(a)〉;

(c) if F is proper and c is parametrized proportionally to the arc length, then l′(0) = −1
c

b∫
a
〈X(t), Ddtc

′(t)〉 dt;

(d) if F is proper and c is geodesic, then l′(0) = 0.

Lemma 5.14. Any vector field X along c(t) with X(a) = X(b) = 0 is a variational vector field for some
proper variation F .

5.3 Exponential map and Gauss Lemma

Let p ∈ M , v ∈ TpM . Denote by cv(t) the unique maximal geodesic (i.e., the domain is maximal) with
cv(0) = p, c′v(0) = v.

Definition 5.15. If cv(1) exists, define expp : TpM →M by expp(v) = cv(1), the exponential map at p.

Example 5.16. Exponential map on the sphere S2: length of cv from p to cv(1) equals ‖v‖.

Notation. Br(0p) = {v ∈ TpM | ‖v‖ < r} ⊂ TpM is a ball of radius r centered at 0p.

Proposition 5.17. (without proof)
For any p ∈ (M, g) there exists r > 0 such that expp : Br(0p)→ expp(Br(0p)) is a diffeomorphism.

Example. On S2 the set expp(Bπ/2(0p)) is a hemisphere, so that every geodesic starting from p is
orthogonal to the boundary of this set.

Theorem 5.18 (Gauss Lemma). Let (M, g) be a Riemannian manifold, p ∈ M , and let ε > 0 be such
that expp : Bε(0p) → expp(Bε(0p)) is a diffeomorphism. Define Aδ = {expp(w) | ‖w‖ = δ} for every
0 < δ < ε. Then every radial geodesic c : t 7→ expp(tv), t ≥ 0, is orthogonal to Aδ.

Remark 5.19. The curve cv(t) = expp(tv) is indeed geodesic; every geodesic γ through p can be written
as γ(t) = expp(tw) for appropriate w ∈ TpM .

Definition. Denote Bε(p) = expp(Bε(0p)) ⊂M , a geodesic ball.

Lemma 5.20. Let (M, g) be a Riemannian manifold and p ∈ M . Let ε > 0 be small enough such that
expp : Bε(0p) → Bε(p) ⊂ M is a diffeomorphism. Let γ : [0, 1] → Bε(p) \ {p} be any curve. Then there
exists a curve v : [0, 1]→ TpM , ‖v(s)‖ = 1 for all s ∈ [0, 1], and a positive function r : [0, 1]→ R+, such
that γ(s) = expp(r(s)v(s)).

2



Lemma 5.21. Let r : [0, 1] → R+, v : [0, 1] → SpM = {w ∈ TpM | ‖w‖ = 1}. Define γ : [0, 1] →
Bε(p) \ {p} by γ(s) = expp(r(s)v(s)). Then the length l(γ) ≥ |r(1) − r(0)|, and the equality holds if and
only if γ is a reparametrization of a radial geodesic (i.e. v(s) ≡ ‖v(0)‖ and r(s) is a strictly increasing
or decreasing function).

Corollary 5.22. Given a point p ∈M , there exists ε > 0 such that for any q ∈ Bε(p) there exists a curve
c(t) connecting p and q and satisfying l(c) = d(p, q). (This curve is a radial geodesic).

Remark. According to Corollary 5.22, there is ε > 0 such that Bε(p) coincides with ε-ball at p, i.e. with
{q ∈M | d(p, q) < ε}.

Proposition 5.23. (without proof)
Let p ∈M . Then there is an open neighborhood U of p and ε > 0 such that ∀ q ∈ U expq : Bε(0q)→ Bε(q)
is a diffeomorphism.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic c : [a, b] → M is minimal if l(c) = d(c(a), c(b)). A geodesic c : R → M is
minimal if its restriction c|[a,b] is minimal for each segment [a, b] ⊂ R.

Example. No minimal geodesics in S2, all geodesics in E2 are minimal.

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic c : [a, b]→M
can be extended to a geodesic c̃ : R→M (i.e. can be extended infinitely in both directions). Equivalently,
expp is defined on the whole TpM for all p ∈M .

Theorem 5.26 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold with distance function d.
Then the following are equivalent:

(a) (M, g) is complete (i.e. every Cauchy sequence converges);

(b) every closed and bounded subset is compact;

(c) (M, g) is geodesically complete.

Moreover, every of the conditions above implies

(d) for every p, q ∈M there exists a minimal geodesic connecting p and q.

Remark. A geodesic in (d) may not be unique. Further, (d) does not imply (c).

Remark. Theorem 5.26 uses the following notions defined in a metric space:

• {xi}, xi ∈M , is a Cauchy sequence if ∀ε > 0 ∃N ∀m,n > N d(xm, xn) < ε;

• a set A ⊂M is bounded if A ⊂ Br(p) for some r > 0, p ∈M ;

• a set A ⊂M is closed if {xn ∈ A, xn → x} ⇒ x ∈ A;

• a set A ⊂M is compact if each open cover has a finite subcover;

Exercise. A compact metric space is complete.
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