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Riemannian Geometry IV, Term 1 (Section 5)

5 Geodesics

5.1 Geodesics as solutions of ODE’s

Definition 5.1. Given (M,g), a curve c : [a,b] — M is a geodesic if 2¢/(t) = 0 for all t € [a,b] (i.e.,
d(t) € X.(M) is parallel along c).

Lemma 5.2. If ¢ is a geodesic then c is parametrized proportionally to the arc length.
Theorem 5.3. Given a Riemannian manifold (M,g), p € M, v € T,M, there exists € > 0 and a unique
geodesic ¢ : (—e,e) — M such that ¢(0) = p, ¢(0) = v.

Examples 5.4-5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model H?.

5.2 Geodesics as distance-minimizing curves. First variation formula of the length

Definition 5.6. Let ¢ : [a,b] — M be a smooth curve. A smooth map F : (—¢,¢e) X [a,b] = M is a
(smooth) variation of ¢ if F'(0,t) = c(t). Variation is proper if F(s,a) = c¢(a) and F(s,b) = ¢(b) for all
s € (—e,¢).

Variation can be considered as a family of the curves Fy(t) = F\(s,t).

Definition 5.7. A variational vector field X € X.(M) of a variation F' is defined by X (t) = %—5(0, t).

Definition 5.8. The length [ : (—¢,e) — [0,00) and energy F : (—¢,e) — [0,00) of a variation F' are
defined by
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Remark. [(s) is the length of the curve Fs(t).

Theorem 5.9. A smooth curve ¢ is a geodesic if and only if ¢ is parametrized proportionally to the arc
length and I'(0) = 0 for every proper variation of c.

Corollary 5.10. Let ¢ : [a,b] — M be the shortest curve from c(a) to c(b), and c is parametrized
proportionally to the arc length. Then c is geodesic.

Remark. The converse is false (e.g., on the sphere).

Lemma 5.11 (Symmetry Lemma). Let W C R? be an open set and F : W — M, (s,t) — F(s,t), be a

smooth map. Let % be the covariant derivative along Fs(t) and % be the covariant derivative along Fy(s).
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Theorem 5.12 (First variation formula of length). Let F' : (—e,e) X [a,b] — M be a variation of a smooth
curve c(t), (t) # 0. Let X (t) be its variational vector field and | : (—e,e) — [0, 00) its length. Then
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Corollary 5.13. (a) If ¢(t) is parametrized proportionally to the arc length, || (t)|| = ¢, then
b
1'(0) = (X (b),¢ (b)) — £(X(a), ¢ (a)) — & [{X(8), 7 (1)) dt;

c

(b) if c(t) is geodesic, then I'(0) = (X (b),d (b)) — (X (a),d (a));
b
(¢) if F is proper and c is parametrized proportionally to the arc length, then'(0) = =1 [(X(t), %c’(t» dt;

(d) if F is proper and c is geodesic, then I'(0) = 0.
Lemma 5.14. Any vector field X along c(t) with X (a) = X (b) = 0 is a variational vector field for some
proper variation F'.
5.3 Exponential map and Gauss Lemma

Let p € M, v € T,M. Denote by ¢,(t) the unique maximal geodesic (i.e., the domain is maximal) with
cp(0) = p, ¢, (0) = .

Definition 5.15. If ¢,(1) exists, define exp,, : T,M — M by exp,(v) = ¢,(1), the exponential map at p.

Example 5.16. Exponential map on the sphere S?: length of ¢, from p to ¢,(1) equals ||v]|.
Notation. B,(0,) = {v € T,M | ||v|| < r} C T, M is a ball of radius r centered at 0,,.

Proposition 5.17. (without proof)
For any p € (M, g) there exists 7 > 0 such that exp,, : B;(0,) — exp,(B;(0,)) is a diffeomorphism.

Example. On S? the set exp,(Br/2(0p)) is a hemisphere, so that every geodesic starting from p is
orthogonal to the boundary of this set.

Theorem 5.18 (Gauss Lemma). Let (M, g) be a Riemannian manifold, p € M, and let € > 0 be such
that exp,, : Be(0p) — exp,(B:(0p)) is a diffeomorphism. Define As = {exp,(w) | ||w|| = d} for every
0 < d <e. Then every radial geodesic c : t — exp,(tv), t > 0, is orthogonal to As.

Remark 5.19. The curve c,(t) = exp,(tv) is indeed geodesic; every geodesic v through p can be written
as 7(t) = exp,(tw) for appropriate w € T), M.

Definition. Denote B:(p) = exp,(B:(0,)) C M, a geodesic ball.

Lemma 5.20. Let (M,g) be a Riemannian manifold and p € M. Let € > 0 be small enough such that
exp,, : B:(0p) — Be(p) C M is a diffeomorphism. Let v : [0,1] — B(p) \ {p} be any curve. Then there
exists a curve v : [0,1] = T, M, ||v(s)|| =1 for all s € [0,1], and a positive function r : [0,1] — Ry, such
that v(s) = exp,(r(s)v(s)).



Lemma 5.21. Let r : [0,1] — Ry, v : [0,1] — S,M = {w € T,M | ||w|| = 1}. Define v : [0,1] —
Be(p) \ {p} by v(s) = exp,(r(s)v(s)). Then the length I(v) > |r(1) — r(0)|, and the equality holds if and
only if v is a reparametrization of a radial geodesic (i.e. v(s) = ||[v(0)|| and r(s) is a strictly increasing
or decreasing function).

Corollary 5.22. Given a point p € M, there exists € > 0 such that for any q € B:(p) there exists a curve
c(t) connecting p and q and satisfying l(c) = d(p,q). (This curve is a radial geodesic).

Remark. According to Corollary 5.22, there is € > 0 such that B.(p) coincides with e-ball at p, i.e. with
{ge M |d(p,q) <&}

Proposition 5.23. (without proof)
Letp € M. Then there is an open neighborhood U of p and & > 0 such that ¥ q € U exp, : B:(04) — B:(q)
is a diffeomorphism.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic ¢ : [a,b] — M is minimal if [(c) = d(c(a),c(b)). A geodesic ¢ : R — M is
minimal if its restriction c|, ) is minimal for each segment [a,b] C R.

Example. No minimal geodesics in 52, all geodesics in E? are minimal.

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic ¢ : [a,b] — M
can be extended to a geodesic ¢ : R — M (i.e. can be extended infinitely in both directions). Equivalently,
exp,, is defined on the whole T}, M for all p € M.

Theorem 5.26 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold with distance function d.
Then the following are equivalent:

(a) (M,g) is complete (i.e. every Cauchy sequence converges);
(b) every closed and bounded subset is compact;

(c) (M,g) is geodesically complete.

Moreover, every of the conditions above implies

(d) for every p,q € M there exists a minimal geodesic connecting p and q.
Remark. A geodesic in (d) may not be unique. Further, (d) does not imply (c).
Remark. Theorem 5.26 uses the following notions defined in a metric space:

o {x;}, ; € M, is a Cauchy sequence if Ve > 0INVm,n > N d(xp,x,) < &;

e aset A C M is bounded if A C B,(p) for some r > 0, p € M;
o aset AC M is closed if {z, € A,x,, =z} = z € A
e aset A C M is compact if each open cover has a finite subcover;

Exercise. A compact metric space is complete.



