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Riemannian Geometry IV, Term 2 (Section 10, non-examinable)

10 Curvature and geometry

10.1 Index form

Definition 10.1. Recall (see the proof of Second Variational Formula) that given a geodesic c : [0, a]→M

there exists a symmetric bilinear form on Xc(M) given by Ia(V,W ) =
a∫
0

(〈DdtV,
D
dtW 〉+ 〈R(V, c′)c′,W 〉)dt.

The quadratic form Ia(V, V ) is called an index form.

Definition 10.2. The index of Ia is the maximal dimension of a subspace of Xc(M) on which Ia is
negative definite (i.e., negative inertia index).

Theorem 10.3 (Morse Index Theorem). The index of Ia is finite and equals the number of points c(t),
0 < t < a, conjugate to c(0) counted with multiplicities.

Corollary 10.4. The set of conjugate points along a geodesic is discrete.

Lemma 10.5 (Index Lemma). Let c : [0, a] → M be a geodesic containing no conjugate points to c(0).
Let J ∈ Jc be an orthogonal Jacobi field. Let V be a piecewise smooth vector field on c, 〈V, c′〉 = 0.
Suppose also J(0) = V (0) = 0, J(t0) = V (t0) for some t0 ∈ (0, a].

Then It0(J, J) ≤ It0(V, V ), where equality holds only if V = J on [0, a].

10.2 Rauch Comparison Theorem

Theorem 10.6 (Rauch Comparison Theorem). Let c : [0, a] → Mn and c̃ : [0, a] → M̃m be two unit

speed geodesics, and let J : [0, a]→ TM and J̃ : [0, a]→ TM̃ be two orthogonal Jacobi fields along c and
c̃ with J(0) = J̃(0) = 0, ‖DdtJ(0)‖ = ‖Ddt J̃(0)‖. Assume that J̃ does not vanish on (0, a), and that for

any t ∈ [0, a] the inequality KM (Π) ≤ K
M̃

(Π̃) holds for all 2-planes Π ⊂ Tc(t)M and Π̃ ⊂ Tc̃(t)M̃ . Then

‖J(t)‖ ≥ ‖J̃(t)‖ for all t ∈ [0, a].

Remark. In particular, Theorem 10.6 implies that if the geodesic c̃ has no conjugate points between c̃(0)
and c̃(a), then c has no conjugate points between c(0) and c(a) either.

Notation. In what follows, by K we will denote the sectional curvature on M as a real-valued function
on the set of all 2-planes in TM . The notation K ≤ K0 means that the function K is uniformly bounded
from above, etc.

Corollary 10.7. (a) Let M satisfy 0 < Kmin ≤ K ≤ Kmax, c : [0, a]→M is a geodesic. Then for any
two conjugate points along c the distance d between them satisfies

π√
Kmax

≤ d ≤ π√
Kmin

(b) Let M be complete, simply-connected, and satisfy K ≤ 0. Then for any geodesic triangle in M the
sum of angles does not exceed π (where the inequality is strict if K < 0.
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Idea of proof of Corollary 10.7(a). Apply Theorem 10.6 to compare M to spheres of radius 1/
√
Kmax and

1/
√
Kmin and use the remark above.

Corollary 10.8 (Reformulation of Theorem 10.6). In the assumptions of Theorem 10.6, one has

‖(D expc(0) tc
′(0)) t

D

dt
J(0)‖ ≥ ‖(D expc̃(0) tc̃

′(0)) t
D

dt
J̃(0)‖

Corollary 10.9. Let M be complete, simply-connected, and satisfy K ≤ 0. Let p ∈ M , w ∈ TpM ,
u ∈ TpM = Tw(TpM). Then

‖(D exppw) u‖ ≥ ‖u‖

Proof. Apply Corollary 10.8 to M̃ = TpM with constant metric 〈·, ·〉p (and thus zero curvature), w =

tc′(0), u = tDdtJ(0). As the exponential map on a vector space M̃ = TpM = Rn is an identity map, its
differential is also an identity map, so the result follows.

Remark. Roughly speaking, Corollary 10.9 says that the differential of the exponential map in negative
curvature increases magnitudes of tangent vectors. In particular, this implies that the exponential map
itself increases lengths of curves, i.e. for any curve γ in TpM one has l(γ) ≤ l(expp(γ).

Idea of proof of Corollary 10.7(b). Let ABC be a triangle in M , C = p. Take a (Euclidean) triangle OPQ
in TpM , where O = 0, exppQ = A, expp P = B. Define a curve γ between P and Q by expp γ = AB.
Then |PQ| ≤ l(γ) ≤ l(AB) = l(expp γ) by Corollary 10.9.

Let A′B′C ′ be a Euclidean triangle with |AB| = |A′B′|, |BC| = |B′C ′|, |AC| = |A′C ′|. Applying
now the (Euclidean) cosine law to OPQ, we see that ∠C ≤ ∠C ′. Similar inequalities hold for other two
angles, so ∠A+ ∠B + ∠C ≤ ∠A′ + ∠B′ + ∠C ′ = π.

The following theorem generalizes Corollary 10.9 to non-negative curvature.

Theorem 10.10. Let M and M̃ be two complete Riemannian manifolds, where M̃ has constant sectional
curvature K̃, and the curvature K on M satisfies K ≤ K̃. Let p ∈M , p̃ ∈ M̃ .

Let U be a ball in TpM centered at 0p s.t. expp is a diffeomorphism on U . Without loss of generality

we can assume that expp̃ is also a diffeomorphism on the ball Ũ of the same radius in Tp̃M̃ , so we may

identify Ũ and U .
Let pqr be a geodesic triangle in expp(U) ⊂ M with sides being minimal geodesics. Let the geodesic

c : [a, b] → M be the side rq with c(a) = r and c(b) = q, and denote by v(s) the curve in U such that
expp v(s) = c(s). Define c̃(s) = expp̃ v(s), and let r̃ = expp̃ v(a), q̃ = expp̃ v(b). Then d

M̃
(r̃, q̃) ≤ dM (r, q).

Proof. Define F (s, t) = expp tv(s) and F̃ (s, t) = expp̃ tv(s). For a given s0, we can consider F (s, t) and

F̃ (s, t) as geodesic variations of F (s0, t) and F̃ (s0, t) respectively. Thus, their variational vector fields

Js0 = ∂F
∂s (s0, t) and J̃s0 = ∂F̃

∂s (s0, t) are Jacobi fields along F (s0, t) and F̃ (s0, t) respectively.

Observe that Js0 and J̃s0 satisfy the assumptions of Rauch Comparison Theorem, and thus ‖Js0(t)‖ ≥
‖J̃s0(t)‖. In particular, ‖Js0(1)‖ ≥ ‖J̃s0(1)‖.

Observe now that Js0(1) =
∂ expp v

∂s (s0) = c′(s0), and similarly J̃s0(1) = c̃′(s0), so the inequality above
leads to ‖c′(s)‖ ≥ ‖c̃′(s)‖ for any s ∈ [a, b], which implies

d
M̃

(r̃, q̃) ≤ l(c̃) ≤ l(c) = dM (r, q)
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10.3 Injectivity radius

Definition 10.11. Let M be a complete Riemannian manifold. The injectivity radius of a point p ∈M
is ip = sup{r ≥ 0 | expp is diffeo in Br(0p)} = inf

q∈Cm(p)
d(p, q), where Cm(p) is the cut locus of p.

The injectivity radius of M is i(M) = inf
p
ip = inf

p∈M
d(p, Cm(p)).

Remark. The notion of injectivity radius for non-complete M does not make too much sense: it is always
equal to zero.

Example 10.12. i(S2) = π; i(R2) = i(H2) =∞; i(T2) = 1/2.

Proposition 10.13. Let M be complete with sectional curvature K satisfying 0 < Kmin ≤ K ≤ Kmax.
Then at least one of the following holds:

(a) i(M) ≥ π/
√
Kmax, or

(b) there exists a shortest closed geodesic c ⊂M s.t. i(M) = 1
2 l(c).

Lemma 10.14 (Klingenberg, 1961). Let M be a compact simply-connected Riemannian manifold of
dimension n ≥ 3, and let 1/4 < K ≤ 1. Then i(M) ≥ π.

Remark. If n is even and M is orientable then it suffices for M to satisfy 0 < K ≤ 1.

10.4 Sphere Theorem

Theorem 10.15 (Berger, Klingenberg, 1961). Let M be a compact simply-connected Riemannian n-
dimensional manifold with 1

4 < K ≤ 1. Then M is homeomorphic to Sn.

Remark. (a) In fact, a stronger result is valid: M is diffeomorphic to Sn (Brendle, Schoen, 2009).

(b) The Sphere Theorem does not hold in the assumptions 1
4 ≤ K(Π) ≤ 1 (see Example 10.18).

(c) The theorem obviously holds in the assumptions δ
4 < K(Π) ≤ δ for any δ > 0.

(d) In dimension n = 2 stronger result holds: if K ≥ 0 for all p ∈ M and K > 0 in at least one point,
then M is homeomorphic to S2.

The proof of the Sphere Theorem is based on the following two lemmas.

Lemma 10.16. Let M be a compact Riemannian manifold, let p, q ∈M be such that diam M = d(p, q).
Then for any w ∈ TpM there exists a minimal geodesic c : [0, d(p, q)]→M , c(0) = p, c(d(p, q)) = q, such
that 〈w, c′(0)〉 ≥ 0.

Lemma 10.17. Let M be a compact simply-connected Riemannian manifold with sectional curvature
satisfying 1

4 < δ ≤ K ≤ 1, let p, q ∈M be such that diam M = d(p, q). Choose any ρ ∈ (π/2
√
δ, π). Then

M = Bρ(p) ∪Bρ(q).

In other words, Lemma 10.17 says that M is covered by two ρ-balls centered at any two “opposite”
points of M .

Sketch of a proof of Lemma 10.17. By Lemma 10.14, the injectivity radius i(M) ≥ π (please note: this
is the place the assumption δ > 1/4 shows up), so since < π both Bρ(p) and Bρ(q) are diffeomorphic to
Euclidean balls. We need to show that these balls cover M , i.e. any x ∈ M lies in at least one of these
two balls. We will prove this by contradiction.
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Take a minimal geodesic between p and q, let q′′ be its intersection with a sphere ∂Bρ(q). Observe
that, since K ≥ δ, Ricci curvature on M is bounded below by (n − 1)δ, and thus, by Bonnet – Myers
Theorem, diam M ≤ π/

√
δ ≤ 2ρ. In particular, this implies that q′′ ∈ Bρ(p).

Now suppose that the lemma fails, i.e. there exists x ∈ M such that d(x, p) ≥ ρ and d(x, q) ≥ ρ (we
may assume d(x, p) ≥ d(x, q) without loss of generality). Take a minimal geodesic from x to q, denote its
intersection with ∂Bρ(q) by q′. If we assume that q′ ∈ Bρ(p), then d(x, q′) > d(x,Bρ(p)) as q′ is not the
closest point of Bρ(p) to x (since Bρ(p) is open). In view of our assumption d(x, p) ≥ d(x, q), this implies

d(x, q′) > d(x,Bρ(p)) ≥ d(x,Bρ(q)) = d(x, q′),

where the last equality uses Gauss Lemma. The contradiction shows that q′ /∈ Bρ(p).
Therefore, in the assumption that the lemma fails, we have found points q′, q′′ on the sphere ∂Bρ(q),

such that d(q′′, p) < ρ and d(q′, p) ≥ ρ. By (path-)connectedness of the sphere and continuity of the
function “distance to a given point”, there exists x0 ∈ ∂Bρ(q) such that d(x0, p) = ρ, i.e. x0 ∈ ∂Bρ(q) ∩
∂Bρ(p). We now forget about q′, q′′ and x, and show that the existence of x0 leads to a contradiction.

Let c be a minimal geodesic between p and x0. By Lemma 10.16, there exists a minimal geodesic γ
from p to q such that 〈γ′(0), c′(0)〉 ≥ 0. Denote by y the intersection of γ with ∂Bρ(p). Since K ≥ δ, we
can compare M to an n-sphere of curvature δ, obtaining d(x0, y) ≤ π/2

√
δ < ρ (here we use the fact the

angle between c and γ is at mist π/2, and an analog of Theorem 10.10 for K > K̃ – it also holds!).
Take a minimal shortest geodesic γ0 connecting x0 to a point of γ, denote by y0 its intersection with

γ. Clearly, d(x0, y0) ≤ d(x0, y), which implies d(x0, y0) < ρ due to the inequality above. Observe that the
angle at y0 between the two geodesics γ and γ0 is equal to π/2, otherwise we could find a shorter path
between x0 and γ. Also, since y0 ∈ γ and the length of γ is less than 2ρ, y0 must lie in at least one of the
balls Bρ(p) and Bρ(q). Without loss of generality, assume that y0 ∈ Bρ(p).

We can now consider a right-angled triangle with vertices p, x0, y0 formed by geodesics c, γ, γ0. We
also know that its sides px0 and x0y0 are strictly shorter than ρ. Comparing this triangle with one on the
sphere of curvature δ (and applying an analog of Theorem 10.10 again), we see that d(x0, p) < ρ, which
contradicts the definition of x0.

Proof of the Sphere Theorem. The proof is now straightforward and is based on the following fact from
topology: if a compact manifold is covered by two topological discs, then it is homeomorphic to a sphere.
In view of Lemma 10.17, this completes the proof.

Example 10.18. Consider complex projective space CP2 = {(z0 : z1 : z2) | zi ∈ C, (z0, z1, z2) 6= 0}. This
is a 2-dimensional complex manifold, which can be considered as a 4-dimensional real manifold. It can
be assigned with Fubini – Study metric, which in the chart z0 6= 0 (or, equivalently, z0 = 1) in complex
coordinates is given by the following Hermitian matrix:

G̃ = (g̃ij) =
1

(1 + |z1|2 + |z2|2)2

(
1 + |z2|2 −z̄1z2
−z1z̄2 1 + |z21

)
(i.e. for tangent vectors v and w one has 〈v, w〉 = v̄tG̃w).

Remark (Realification). Every complex vector n-space V can be considered as real 2n-space VR: if
V has basis {v1, . . . , vn}, then the collection of vectors {v1, . . . , vn, iv1, . . . , ivn} is a basis of VR (this
procedure is called realification). Every linear operator on V also acts on VR. More precisely, if A is
a matrix of linear operator on V in the basis {v1, . . . , vn}, then the matrix AR of the corresponding
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linear operator on VR in the basis {v1, . . . , vn, iv1, . . . , ivn} is a block matrix AR =

(
ReA −ImA
ImA ReA

)
.

For example, a rotation by an angle ϕ on a plane can be written as a multiplication by eiϕ in C or

as a matrix

(
Re eiϕ −Im eiϕ

Im eiϕ Re eiϕ

)
=

(
cosϕ − sinϕ
sinϕ cosϕ

)
in R2.

Applying the described above procedure of realification to the matrix G̃, we obtain Fubini – Study
metric in real coordinates (in the basis { ∂

∂x1
, ∂
∂x2

, ∂
∂y1

, ∂
∂y2
}, where z1 = x1 + iy1 and z2 = x2 + iy2):

G = (gij) =
1

(1 + x21 + y21 + x22 + y22)2


1 + x22 + y22 −x1x2 − y1y2 0 x1y2 − x2y1
−x1x2 − y1y2 1 + x21 + y21 −x1y2 + x2y1 0

0 −x1y2 + x2y1 1 + x22 + y22 −x1x2 − y1y2
x1y2 − x2y1 0 −x1x2 − y1y2 1 + x21 + y21

 .

Restricting G to the 2-plane spanned by ∂
∂x1

and ∂
∂y1

(complex line) we obtain four times the standard

metric on the unit sphere, so K( ∂
∂x1

, ∂
∂y1

) = 4. Restricting G to a totally real plane one can compute that

the sectional curvature K( ∂
∂x1

, ∂
∂x2

) = 1. Sectional curvature in any other direction is in between 4 and 1.

In fact, CP2 is not homeomorphic to a sphere, so this example shows that the Sphere Theorem does
not hold in the assumptions Kmax/Kmin = 4.

10.5 Spaces of constant curvature

Theorem 10.19. Let M be a complete simply-connected Riemannian manifold of constant sectional
curvature K. Then

1) if K > 0 then M is isometric to Sn (assuming K = 1);
2) if K = 0 then M is isometric to En;
3) if K < 0 then M is isometric to Hn (assuming K = −1).

10.6 Comparison triangles

Definition 10.20. A triangle in a Riemannian manifold is a collection of 3 points with minimal geodesics
connecting them. A generalized triangle is a collection of 3 points with any geodesics connecting them
and satisfying triangle inequality.

Definition 10.21. A comparison triangle p′q′r′ for a generalized triangle pqr ∈M is a triangle in a space
of constant curvature with sides of the same lengths.

Theorem 10.22 (Alexandrov, Toponogov, 1959). Let K(Π) ≥ 0 for all Π ∈ TpM for all p ∈ M . Let
p0, p1, p2 ∈ M . Let p3 lie between p1 and p2 (i.e. d(p1, p3) + d(p2, p3) = d(p1, p2)). Let p′0, p

′
1, p

′
2 be a

comparison triangle in E2. Define p′3 by d(pi, p3)M = d(p′i, p
′
3)E2 for i = 1, 2. Then d(p0, p3)M ≥ d(p′0, p

′
3)E2

(Alexandrov – Toponogov inequality). Conversely, if Alexandrov – Toponogov inequality holds for all
p0, p1, p2, p3 then K ≥ 0.

Remark. (a) Dual statement for K ≤ 0 with inverse AT-inequality.

(b) Equivalent conditions:

• smaller K implies smaller angles;

• smaller K implies bigger circumference of a circle of radius r;

• smaller K implies bigger volume of a ball or radius r.
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