Riemannian Geometry IV, Term 2 (Section 6)

6 Crash course: Basics about Lie groups

6.1 Left-invariant vector fields and Lie algebra

Definition 6.1. A Lie group G is a smooth manifold with a smooth group structure, i.e. the maps $G \times G \rightarrow G,(g, h) \mapsto g h$ and $G \rightarrow G, g \mapsto g^{-1}$ are smooth.

Examples. Matrix Lie groups $G L_{n}(\mathbb{R}), S L_{n}(\mathbb{R}), O_{n}(\mathbb{R}), S O_{n}(\mathbb{R})$.
Definition 6.2. Let G a be a Lie group, $g \in G$. Then the maps $L_{g}: G \rightarrow G$ and $R_{g}: G \rightarrow G$ defined by $L_{g}(h)=g h$ and $R_{g}(h)=h g$ are called left- and right-translation. L_{g} and R_{g} are diffeomorphisms of G.

Remark. (a) $L_{g^{-1}} \circ L_{g}=i d_{G}, \quad L_{g_{1}} R_{g_{2}}(h)=R_{g_{2}} L_{g_{1}}(h)=g_{1} h g_{2}$.
(b) The differential $D L_{g}: T_{h} G \rightarrow T_{g h} G$ gives a natural identification of tangent spaces.
(c) Every diffeomorphism $\varphi: G \rightarrow G$ induces an action of the differential $D \varphi$ on $\mathfrak{X}(G), D \varphi: X \mapsto D \varphi X$ in the following way: $D \varphi X(h)=D \varphi\left(\varphi^{-1}(h)\right) X\left(\varphi^{-1}(h)\right)$, or, equivalently, $D \varphi X(\varphi(h))=D \varphi(h) X(h)$. In particular, $D L_{g}$ acts on $\mathfrak{X}(G)$ by $D L_{g}: X \mapsto D L_{g} X$, where

$$
D L_{g} X(h)=D L_{g}\left(g^{-1} h\right) X\left(g^{-1} h\right) .
$$

Example 6.3. Let $G \subset G L_{n}(\mathbb{R})$ be a matrix group, $v \in T_{e} G$. Then $D L_{g}(e) v=g v$.
Definition 6.4. A vector field $X \in \mathfrak{X}(G)$ is called left-invariant if for any $g \in G \quad D L_{g} X=X$, i.e. $D L_{g}(h) X(h)=X(g h)$.

Example. Let $G \subset G L_{n}(\mathbb{R})$ be a matrix group, $X \in \mathfrak{X}(G)$ is left-invariant. Then $X(g h)=g X(h)$, and in particular $X(g)=g X(e)$.

Remark 6.5. (a) Left-invariant vector fields on G form a vector space over \mathbb{R}.
(b) Left-invariant vector field is determined by its value at $e: X(g)=D L_{g}(e) X(e)$.
(c) Hence, the space of left-invariant vector fields on G can be identified with $T_{e} G$.

Definition 6.6. The space of left-invariant vector fields on G is called the Lie algebra of G and denoted by \mathfrak{g}.

Lemma 6.7. Let M, N be smooth manifolds, $X \in \mathfrak{X}(M), f \in C^{\infty}(N), p \in M$, and let $\varphi: M \rightarrow N$ be a smooth map. Then

$$
(d \varphi(p) X(p)) f=X(p)(f \circ \varphi)
$$

Proposition 6.8. Let X be a Lie group with Lie algebra \mathfrak{g}. Then for any $X, Y \in \mathfrak{g}$ the Lie bracket $[X, Y] \in \mathfrak{g}$. Consequently, \mathfrak{g} is indeed a Lie algebra (see Definition 2.22).

6.2 Lie group exponential map and adjoint representation

Definition 6.9. Define $\operatorname{Exp}: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R})$ by $\operatorname{Exp}(A)=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}$.
Properties. (a) The infinite sum converges for any matrix $A \in M_{n}(\mathbb{R})$, so $\operatorname{Exp}(A)$ is well-defined;
(b) $\operatorname{Exp}(0)=I$;
(c) if $A B=B A$ then $\operatorname{Exp}(A+B)=\operatorname{Exp}(A) \cdot \operatorname{Exp}(B)$; in particular, $\operatorname{Exp}(-A) \operatorname{Exp}(A)=I$, so $\operatorname{Exp}(A) \in G L_{n}(\mathbb{R})$ for any $A \in M_{n}(\mathbb{R})$;
(d) note that $M_{n}(\mathbb{R})=T_{e} G L_{n}(\mathbb{R})$, and from (c) we know that $\operatorname{Exp}\left(M_{n}(\mathbb{R})\right) \subset G L_{n}(\mathbb{R})$. One can check that this property holds for any matrix Lie group: if $G \subset G L_{n}(\mathbb{R})$, then $\operatorname{Exp}\left(T_{e} G\right) \subset G$.

Example 6.10. Computation of the exponent for a diagonalizable matrix.
Proposition 6.11. Let G be a matrix Lie group. Let $v \in T_{e} G$ and let X be the unique left-invariant vector field on G with $X(e)=v$. Then the curve $c(t)=\operatorname{Exp}(t v) \in G$ satisfies $c(0)=e, c^{\prime}(0)=v$ and $c^{\prime}(t)=X(c(t))$.

A curve of the form $c(t)=\operatorname{Exp}(t v)$ is called a 1-parameter subgroup of G with $c^{\prime}(0)=v$.
Remark. For an abstract Lie group the exponential map can be defined as follows. Let G be a Lie group and \mathfrak{g} be its Lie algebra. Let $v \in T_{e} G$ and let $X \in \mathfrak{g}$ be the unique left-invariant vector field with $X(e)=v$. Then there exists a unique curve $c_{v}: \mathbb{R} \rightarrow G$ with $c_{v}(0)=e, c_{v}^{\prime}(t)=X\left(c_{v}(t)\right)$ [without proof]. The curve c_{v} is called an integral curve of X. We define the exponential map by $\operatorname{Exp}(v)=c_{v}(1)$.

Definition 6.12. Let G be a Lie group. For $g \in G$ the adjoint representation $\operatorname{Ad}_{g}: T_{e} G \rightarrow T_{e} G$ is defined by

$$
\operatorname{Ad}_{g}(w)=\left.\frac{d}{d t}\right|_{t=0} L_{g} R_{g^{-1}}(\operatorname{Exp}(t w))=\left.\frac{d}{d t}\right|_{t=0} g \operatorname{Exp}(t w) g^{-1}
$$

For $v \in T_{e} G$ the adjoint representation ad $_{v}: T_{e} G \rightarrow T_{e} G$ is defined by

$$
\operatorname{ad}_{v}(w)=\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}_{\operatorname{Exp}(t v)}(w)=\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d s}\right|_{s=0} \operatorname{Exp}(t v) \operatorname{Exp}(s w) \operatorname{Exp}(-t v) .
$$

Example. Let $G \subset G L_{n}(\mathbb{R}), g \in G, v, w \in \mathbb{T}_{e} G$. Then $\operatorname{Ad}_{g} w=g w g^{-1}$, and $\operatorname{ad}_{v} w=[v, w]$.
Theorem 6.13 (without proof). Let G be a Lie group with a Lie algebra \mathfrak{g}. Then for all $X, Y \in \mathfrak{g}$ holds $\operatorname{ad}_{X(e)} Y(e)=[X, Y](e) \in T_{e} G$, i.e. by canonical identification of \mathfrak{g} with $T_{e} G$ we have ad $X_{X} Y=[X, Y]$.

Corollary. ad : $\mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ is a representation of Lie algebra \mathfrak{g}.
Example 6.14. Theorem 6.13 for the case of a matrix Lie group.

6.3 Riemannian metrics on Lie groups

Definition 6.15. For a given inner product $\langle\cdot, \cdot\rangle_{e}$ on $T_{e} G$, define the inner product at $g \in G$ for $v, w \in T_{g} G$ by $\langle v, w\rangle_{g}=\left\langle D L_{g^{-1}}(g) v, D L_{g^{-1}}(g) w\right\rangle_{e}$. The family $\left(\langle\cdot, \cdot\rangle_{g}\right)_{g \in G}$ of inner products defines a left-invariant Riemannian metric on G.

Example. For $G \subset G L_{n}(\mathbb{R})$, one can define $\langle v, w\rangle_{e}=\operatorname{tr} v^{t} w$ for $v, w \in T_{e} G$, and thus a left-invariant metric $\langle x, y\rangle_{g}=\operatorname{tr}\left(g^{-1} x\right)^{t} g^{-1} y=\operatorname{tr} x^{t}\left(g^{-1}\right)^{t} g^{-1} y$ for $x, y \in T_{g} G$. In particular, for $G=S O_{n}(\mathbb{R})$ this metric is constant: $\langle x, y\rangle_{g}=\operatorname{tr} x^{t} y$.

Remark 6.16. Let $(G,\langle\cdot, \cdot\rangle)$ be a Lie group with a left-invariant metric. Then
(a) the diffeomorphisms $L_{g}: G \rightarrow G$ are isometries;
(b) for any two left-invariant vector fields $X, Y \in \mathfrak{g}$ the function $g \mapsto\langle X(g), Y(g)\rangle_{g}$ is constant.

Theorem 6.17 (without proof). Let G be a compact Lie group. Then G admits a bi-invariant Riemannian metric $\langle\cdot, \cdot\rangle_{g}$, i.e. both families of diffeomorphisms L_{g} and R_{g} are isometries.
Corollary 6.18. Let $(G,\langle\cdot, \cdot\rangle)$ be a Lie group with bi-invariant metric, let $X, Y, Z \in \mathfrak{g}$. Then $\langle[X, Y], Z\rangle=-\langle[X, Z], Y\rangle$.

Corollary 6.19. Let $(G,\langle\cdot, \cdot\rangle)$ be a Lie group with bi-invariant metric and let ∇ be the Levi-Civita connection. Then for $X, Y \in \mathfrak{g}$ holds $\nabla_{X} Y=\frac{1}{2}[X, Y]$.

Corollary 6.20. (a) 1-parameter subgroups of G are exactly the geodesics of the bi-invariant metric on G passing through e;
(b) the Lie group exponential map Exp coincides with the Riemannian exponential map $\exp _{e}$ at the neutral element.

6.4 Homogeneous spaces

Definition 6.21. A connected Riemannian manifold (M, g) is called homogeneous if the group $\operatorname{Isom}(M, g)$ of isometries of M acts transitively on M, i.e. for any $p, q \in M$ there exists $\varphi \in \operatorname{Is} o m(M, g)$ s.t. $\varphi(p)=q$.

Examples. \mathbb{E}^{n}, S^{n}, Lie groups.
Given a Lie group G and a closed subgroup $H \subset G$, consider the set $M=G / H=\{g H \mid g \in G\}$. Then M is a smooth manifold (non-trivial theorem, uses that H is closed).

Theorem 6.22 (without proof). Left-invariant metrics on G / H are in one-to-one correspondence with $\operatorname{Ad}(H)$-invariant inner products on $T_{e} G$.

Example 6.23. Let $G=S O_{3}(\mathbb{R}), H=S O_{2}(\mathbb{R}) \subset G$. Then $M=S O_{3} / S O_{2} \approx S^{2}$. In general, $O_{n}(\mathbb{R}) / O_{n-1}(\mathbb{R}) \approx S^{n-1}$.

