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Riemannian Geometry IV, Term 2 (Section 6)

6 Crash course: Basics about Lie groups

6.1 Left-invariant vector fields and Lie algebra

Definition 6.1. A Lie group G is a smooth manifold with a smooth group structure, i.e. the maps
G×G→ G, (g, h) 7→ gh and G→ G, g 7→ g−1 are smooth.

Examples. Matrix Lie groups GLn(R), SLn(R), On(R), SOn(R).

Definition 6.2. Let G a be a Lie group, g ∈ G. Then the maps Lg : G→ G and Rg : G→ G defined by
Lg(h) = gh and Rg(h) = hg are called left- and right-translation. Lg and Rg are diffeomorphisms of G.

Remark. (a) Lg−1 ◦ Lg = idG, Lg1Rg2(h) = Rg2Lg1(h) = g1hg2.

(b) The differential DLg : ThG→ TghG gives a natural identification of tangent spaces.

(c) Every diffeomorphism ϕ :G→G induces an action of the differential Dϕ on X(G), Dϕ : X 7→ DϕX in
the following way: DϕX(h) = Dϕ(ϕ−1(h))X(ϕ−1(h)), or, equivalently, DϕX(ϕ(h)) = Dϕ(h)X(h).
In particular, DLg acts on X(G) by DLg : X 7→ DLgX, where

DLgX(h) = DLg(g−1h)X(g−1h).

Example 6.3. Let G ⊂ GLn(R) be a matrix group, v ∈ TeG. Then DLg(e)v = gv.

Definition 6.4. A vector field X ∈ X(G) is called left-invariant if for any g ∈ G DLgX = X, i.e.
DLg(h)X(h) = X(gh).

Example. Let G ⊂ GLn(R) be a matrix group, X ∈ X(G) is left-invariant. Then X(gh) = gX(h), and
in particular X(g) = gX(e).

Remark 6.5. (a) Left-invariant vector fields on G form a vector space over R.

(b) Left-invariant vector field is determined by its value at e: X(g) = DLg(e)X(e).

(c) Hence, the space of left-invariant vector fields on G can be identified with TeG.

Definition 6.6. The space of left-invariant vector fields on G is called the Lie algebra of G and denoted
by g.

Lemma 6.7. Let M,N be smooth manifolds, X ∈ X(M), f ∈ C∞(N), p ∈ M , and let ϕ : M → N be a
smooth map. Then

(dϕ(p)X(p))f = X(p)(f ◦ ϕ)

Proposition 6.8. Let X be a Lie group with Lie algebra g. Then for any X,Y ∈ g the Lie bracket
[X,Y ] ∈ g. Consequently, g is indeed a Lie algebra (see Definition 2.22).
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6.2 Lie group exponential map and adjoint representation

Definition 6.9. Define Exp : Mn(R)→Mn(R) by Exp (A) =
∑∞

k=0
1
k!A

k.

Properties. (a) The infinite sum converges for any matrix A ∈Mn(R), so Exp (A) is well-defined;

(b) Exp (0) = I;

(c) if AB = BA then Exp (A + B) = Exp (A) · Exp (B); in particular, Exp (−A)Exp (A) = I, so
Exp (A) ∈ GLn(R) for any A ∈Mn(R);

(d) note that Mn(R) = TeGLn(R), and from (c) we know that Exp (Mn(R)) ⊂ GLn(R). One can check
that this property holds for any matrix Lie group: if G ⊂ GLn(R), then Exp (TeG) ⊂ G.

Example 6.10. Computation of the exponent for a diagonalizable matrix.

Proposition 6.11. Let G be a matrix Lie group. Let v ∈ TeG and let X be the unique left-invariant
vector field on G with X(e) = v. Then the curve c(t) = Exp (tv) ∈ G satisfies c(0) = e, c′(0) = v and
c′(t) = X(c(t)).

A curve of the form c(t) = Exp (tv) is called a 1-parameter subgroup of G with c′(0) = v.

Remark. For an abstract Lie group the exponential map can be defined as follows. Let G be a Lie
group and g be its Lie algebra. Let v ∈ TeG and let X ∈ g be the unique left-invariant vector field with
X(e) = v. Then there exists a unique curve cv : R→ G with cv(0) = e, c′v(t) = X(cv(t)) [without proof].
The curve cv is called an integral curve of X. We define the exponential map by Exp (v) = cv(1).

Definition 6.12. Let G be a Lie group. For g ∈ G the adjoint representation Ad g : TeG → TeG is
defined by

Ad g(w) =
d

dt

∣∣∣
t=0

LgRg−1(Exp (tw)) =
d

dt

∣∣∣
t=0

gExp (tw)g−1.

For v ∈ TeG the adjoint representation ad v : TeG→ TeG is defined by

ad v(w) =
d

dt

∣∣∣
t=0

Ad Exp (tv)(w) =
d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

Exp (tv)Exp (sw)Exp (−tv).

Example. Let G ⊂ GLn(R), g ∈ G, v, w ∈ TeG. Then Ad gw = gwg−1, and ad vw = [v, w].

Theorem 6.13 (without proof). Let G be a Lie group with a Lie algebra g. Then for all X,Y ∈ g holds
ad X(e)Y (e) = [X,Y ](e) ∈ TeG, i.e. by canonical identification of g with TeG we have ad XY = [X,Y ].

Corollary. ad : g→ End(g) is a representation of Lie algebra g.

Example 6.14. Theorem 6.13 for the case of a matrix Lie group.

6.3 Riemannian metrics on Lie groups

Definition 6.15. For a given inner product 〈·, ·〉e on TeG, define the inner product at g ∈ G for v, w ∈ TgG
by 〈v, w〉g = 〈DLg−1(g)v,DLg−1(g)w〉e. The family (〈·, ·〉g)g∈G of inner products defines a left-invariant
Riemannian metric on G.

Example. For G ⊂ GLn(R), one can define 〈v, w〉e = tr vtw for v, w ∈ TeG, and thus a left-invariant
metric 〈x, y〉g = tr (g−1x)tg−1y = tr xt(g−1)tg−1y for x, y ∈ TgG. In particular, for G = SOn(R) this
metric is constant: 〈x, y〉g = tr xty.
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Remark 6.16. Let (G, 〈·, ·〉) be a Lie group with a left-invariant metric. Then

(a) the diffeomorphisms Lg : G→ G are isometries;

(b) for any two left-invariant vector fields X,Y ∈ g the function g 7→ 〈X(g), Y (g)〉g is constant.

Theorem 6.17 (without proof). Let G be a compact Lie group. Then G admits a bi-invariant Riemannian
metric 〈·, ·〉g, i.e. both families of diffeomorphisms Lg and Rg are isometries.

Corollary 6.18. Let (G, 〈·, ·〉) be a Lie group with bi-invariant metric, let X,Y, Z ∈ g. Then
〈[X,Y ], Z〉 = −〈[X,Z], Y 〉.

Corollary 6.19. Let (G, 〈·, ·〉) be a Lie group with bi-invariant metric and let ∇ be the Levi-Civita
connection. Then for X,Y ∈ g holds ∇XY = 1

2 [X,Y ].

Corollary 6.20. (a) 1-parameter subgroups of G are exactly the geodesics of the bi-invariant metric on
G passing through e;

(b) the Lie group exponential map Exp coincides with the Riemannian exponential map expe at the
neutral element.

6.4 Homogeneous spaces

Definition 6.21. A connected Riemannian manifold (M, g) is called homogeneous if the group Isom (M, g)
of isometries of M acts transitively on M , i.e. for any p, q ∈M there exists ϕ ∈ Isom (M, g) s.t. ϕ(p) = q.

Examples. En, Sn, Lie groups.

Given a Lie group G and a closed subgroup H ⊂ G, consider the set M = G/H = {gH | g ∈ G}.
Then M is a smooth manifold (non-trivial theorem, uses that H is closed).

Theorem 6.22 (without proof). Left-invariant metrics on G/H are in one-to-one correspondence with
Ad (H)-invariant inner products on TeG.

Example 6.23. Let G = SO3(R), H = SO2(R) ⊂ G. Then M = SO3/SO2 ≈ S2. In general,
On(R)/On−1(R)≈Sn−1.
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