Durham University Pavel Tumarkin

Riemannian Geometry IV, Term 2 (Section 6)

6 Crash course: Basics about Lie groups

6.1 Left-invariant vector fields and Lie algebra

Definition 6.1. A Lie group G is a smooth manifold with a smooth group structure, i.e. the maps $G \times G \to G$, $(g,h) \mapsto \overline{gh}$ and $G \to G$, $g \mapsto g^{-1}$ are smooth.

Examples. Matrix Lie groups $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$, $O_n(\mathbb{R})$, $SO_n(\mathbb{R})$.

Definition 6.2. Let G a be a Lie group, $g \in G$. Then the maps $L_g : G \to G$ and $R_g : G \to G$ defined by $L_g(h) = gh$ and $R_g(h) = hg$ are called <u>left-</u> and <u>right-translation</u>. L_g and R_g are diffeomorphisms of G.

Remark. (a) $L_{g^{-1}} \circ L_g = id_G$, $L_{g_1}R_{g_2}(h) = R_{g_2}L_{g_1}(h) = g_1hg_2$.

- (b) The differential $DL_g: T_h G \to T_{gh} G$ gives a natural identification of tangent spaces.
- (c) Every diffeomorphism $\varphi: G \to G$ induces an action of the differential $D\varphi$ on $\mathfrak{X}(G)$, $D\varphi: X \mapsto D\varphi X$ in the following way: $D\varphi X(h) = D\varphi(\varphi^{-1}(h))X(\varphi^{-1}(h))$, or, equivalently, $D\varphi X(\varphi(h)) = D\varphi(h)X(h)$. In particular, DL_g acts on $\mathfrak{X}(G)$ by $DL_g: X \mapsto DL_g X$, where

$$DL_qX(h) = DL_q(g^{-1}h)X(g^{-1}h).$$

Example 6.3. Let $G \subset GL_n(\mathbb{R})$ be a matrix group, $v \in T_eG$. Then $DL_q(e)v = gv$.

Definition 6.4. A vector field $X \in \mathfrak{X}(G)$ is called <u>left-invariant</u> if for any $g \in G$ $DL_gX = X$, i.e. $DL_g(h)X(h) = X(gh)$.

Example. Let $G \subset GL_n(\mathbb{R})$ be a matrix group, $X \in \mathfrak{X}(G)$ is left-invariant. Then X(gh) = gX(h), and in particular X(g) = gX(e).

Remark 6.5. (a) Left-invariant vector fields on G form a vector space over \mathbb{R} .

- (b) Left-invariant vector field is determined by its value at $e: X(g) = DL_q(e)X(e)$.
- (c) Hence, the space of left-invariant vector fields on G can be identified with T_eG .

Definition 6.6. The space of left-invariant vector fields on G is called the Lie algebra of G and denoted by \mathfrak{g} .

Lemma 6.7. Let M, N be smooth manifolds, $X \in \mathfrak{X}(M)$, $f \in C^{\infty}(N)$, $p \in M$, and let $\varphi : M \to N$ be a smooth map. Then

$$(d\varphi(p)X(p))f = X(p)(f \circ \varphi)$$

Proposition 6.8. Let X be a Lie group with Lie algebra \mathfrak{g} . Then for any $X, Y \in \mathfrak{g}$ the Lie bracket $[X, Y] \in \mathfrak{g}$. Consequently, \mathfrak{g} is indeed a Lie algebra (see Definition 2.22).

6.2 Lie group exponential map and adjoint representation

Definition 6.9. Define Exp : $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ by Exp $(A) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$.

Properties. (a) The infinite sum converges for any matrix $A \in M_n(\mathbb{R})$, so Exp(A) is well-defined;

- (b) Exp(0) = I;
- (c) if AB = BA then $\text{Exp}(A + B) = \text{Exp}(A) \cdot \text{Exp}(B)$; in particular, Exp(-A)Exp(A) = I, so $\text{Exp}(A) \in GL_n(\mathbb{R})$ for any $A \in M_n(\mathbb{R})$;
- (d) note that $M_n(\mathbb{R}) = T_e GL_n(\mathbb{R})$, and from (c) we know that $\operatorname{Exp}(M_n(\mathbb{R})) \subset GL_n(\mathbb{R})$. One can check that this property holds for any matrix Lie group: if $G \subset GL_n(\mathbb{R})$, then $\operatorname{Exp}(T_e G) \subset G$.

Example 6.10. Computation of the exponent for a diagonalizable matrix.

Proposition 6.11. Let G be a matrix Lie group. Let $v \in T_eG$ and let X be the unique left-invariant vector field on G with X(e) = v. Then the curve $c(t) = \text{Exp}(tv) \in G$ satisfies c(0) = e, c'(0) = v and c'(t) = X(c(t)).

A curve of the form c(t) = Exp(tv) is called a 1-parameter subgroup of G with c'(0) = v.

Remark. For an abstract Lie group the exponential map can be defined as follows. Let G be a Lie group and \mathfrak{g} be its Lie algebra. Let $v \in T_e G$ and let $X \in \mathfrak{g}$ be the unique left-invariant vector field with X(e) = v. Then there exists a unique curve $c_v : \mathbb{R} \to G$ with $c_v(0) = e$, $c'_v(t) = X(c_v(t))$ [without proof]. The curve c_v is called an integral curve of X. We define the exponential map by $\operatorname{Exp}(v) = c_v(1)$.

Definition 6.12. Let G be a Lie group. For $g \in G$ the <u>adjoint representation</u> $\operatorname{Ad}_g : T_e G \to T_e G$ is defined by

Ad
$$_{g}(w) = \frac{d}{dt}\Big|_{t=0} L_{g} R_{g^{-1}}(\operatorname{Exp}(tw)) = \frac{d}{dt}\Big|_{t=0} g\operatorname{Exp}(tw) g^{-1}.$$

For $v \in T_eG$ the adjoint representation $\operatorname{ad}_v: T_eG \to T_eG$ is defined by

$$\operatorname{ad}_{v}(w) = \frac{d}{dt}\Big|_{t=0} \operatorname{Ad}_{\operatorname{Exp}(tv)}(w) = \frac{d}{dt}\Big|_{t=0} \frac{d}{ds}\Big|_{s=0} \operatorname{Exp}(tv) \operatorname{Exp}(sw) \operatorname{Exp}(-tv).$$

Example. Let $G \subset GL_n(\mathbb{R})$, $g \in G$, $v, w \in \mathbb{T}_e G$. Then $\operatorname{Ad}_g w = gwg^{-1}$, and $\operatorname{ad}_v w = [v, w]$.

Theorem 6.13 (without proof). Let G be a Lie group with a Lie algebra \mathfrak{g} . Then for all $X, Y \in \mathfrak{g}$ holds ad $_{X(e)}Y(e) = [X,Y](e) \in T_eG$, i.e. by canonical identification of \mathfrak{g} with T_eG we have ad $_XY = [X,Y]$.

Corollary. ad $: \mathfrak{g} \to \operatorname{End}(\mathfrak{g})$ is a representation of Lie algebra \mathfrak{g} .

Example 6.14. Theorem 6.13 for the case of a matrix Lie group.

6.3 Riemannian metrics on Lie groups

Definition 6.15. For a given inner product $\langle \cdot, \cdot \rangle_e$ on T_eG , define the inner product at $g \in G$ for $v, w \in T_gG$ by $\langle v, w \rangle_g = \langle DL_{g^{-1}}(g)v, DL_{g^{-1}}(g)w \rangle_e$. The family $(\langle \cdot, \cdot \rangle_g)_{g \in G}$ of inner products defines a <u>left-invariant</u> Riemannian metric on G.

Example. For $G \subset GL_n(\mathbb{R})$, one can define $\langle v, w \rangle_e = \operatorname{tr} v^t w$ for $v, w \in T_eG$, and thus a left-invariant metric $\langle x, y \rangle_g = \operatorname{tr} (g^{-1}x)^t g^{-1}y = \operatorname{tr} x^t (g^{-1})^t g^{-1}y$ for $x, y \in T_gG$. In particular, for $G = SO_n(\mathbb{R})$ this metric is constant: $\langle x, y \rangle_g = \operatorname{tr} x^t y$.

Remark 6.16. Let $(G, \langle \cdot, \cdot \rangle)$ be a Lie group with a left-invariant metric. Then

- (a) the diffeomorphisms $L_g: G \to G$ are isometries;
- (b) for any two left-invariant vector fields $X, Y \in \mathfrak{g}$ the function $g \mapsto \langle X(g), Y(g) \rangle_q$ is constant.

Theorem 6.17 (without proof). Let G be a compact Lie group. Then G admits a bi-invariant Riemannian metric $\langle \cdot, \cdot \rangle_g$, i.e. both families of diffeomorphisms L_g and R_g are isometries.

Corollary 6.18. Let $(G, \langle \cdot, \cdot \rangle)$ be a Lie group with bi-invariant metric, let $X, Y, Z \in \mathfrak{g}$. Then $\langle [X, Y], Z \rangle = -\langle [X, Z], Y \rangle$.

Corollary 6.19. Let $(G, \langle \cdot, \cdot \rangle)$ be a Lie group with bi-invariant metric and let ∇ be the Levi-Civita connection. Then for $X, Y \in \mathfrak{g}$ holds $\nabla_X Y = \frac{1}{2}[X, Y]$.

- **Corollary 6.20.** (a) 1-parameter subgroups of G are exactly the geodesics of the bi-invariant metric on G passing through e;
 - (b) the Lie group exponential map Exp coincides with the Riemannian exponential map exp_e at the neutral element.

6.4 Homogeneous spaces

Definition 6.21. A connected Riemannian manifold (M, g) is called homogeneous if the group Isom (M, g) of isometries of M acts transitively on M, i.e. for any $p, q \in M$ there exists $\varphi \in \text{Isom}(M, g)$ s.t. $\varphi(p) = q$.

Examples. \mathbb{E}^n , S^n , Lie groups.

Given a Lie group G and a <u>closed</u> subgroup $H \subset G$, consider the set $M = G/H = \{gH \mid g \in G\}$. Then M is a smooth manifold (non-trivial theorem, uses that H is closed).

Theorem 6.22 (without proof). Left-invariant metrics on G/H are in one-to-one correspondence with $\operatorname{Ad}(H)$ -invariant inner products on T_eG .

Example 6.23. Let $G = SO_3(\mathbb{R}), H = SO_2(\mathbb{R}) \subset G$. Then $M = SO_3/SO_2 \approx S^2$. In general, $O_n(\mathbb{R})/O_{n-1}(\mathbb{R}) \approx S^{n-1}$.