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Riemannian Geometry IV, Term 2 (Section 6)

6 Crash course: Basics about Lie groups

6.1 Left-invariant vector fields and Lie algebra

Definition 6.1. A Lie group G is a smooth manifold with a smooth group structure, i.e. the maps
G xG— G, (g9,h)— ghand G — G, g+ g~! are smooth.

Examples. Matrix Lie groups GL,(R), SL,(R), O,(R), SO, (R).

Definition 6.2. Let G a be a Lie group, g € G. Then the maps L, : G — G and R, : G — G defined by
Ly(h) = gh and R4(h) = hg are called left- and right-translation. L, and R, are diffeomorphisms of G.

Remark. (a) L,10Ly,=1idg, Lg Ry (h)= RyLy (h)=gihgs.
(b) The differential DL, : TG — Ty, G gives a natural identification of tangent spaces.

(c¢) Every diffeomorphism ¢: G — G induces an action of the differential Dy on X(G), Dy : X — DX in
the following way: DpX (k) = Dp(p~1(h))X (¢~ 1(h)), or, equivalently, Do X (¢(h)) = Dp(h)X (h).
In particular, DL4 acts on X(G) by DLy : X — DL,X, where

DLyX(h) = DLg(g~"h)X (g 'h).
Example 6.3. Let G C GL,(R) be a matrix group, v € T.G. Then DL,(e)v = gv.

Definition 6.4. A vector field X € X(G) is called left-invariant if for any ¢ € G DLy,X = X, i.e.
DLy(h)X(h) = X (gh).

Example. Let G C GL,(R) be a matrix group, X € X(G) is left-invariant. Then X (gh) = gX(h), and
in particular X (g) = gX(e).

Remark 6.5. (a) Left-invariant vector fields on G form a vector space over R.
(b) Left-invariant vector field is determined by its value at e: X (g) = DLy(e) X (e).
(c) Hence, the space of left-invariant vector fields on G can be identified with T.G.

Definition 6.6. The space of left-invariant vector fields on G is called the Lie algebra of G and denoted
by g.
Lemma 6.7. Let M, N be smooth manifolds, X € X(M), f € C*°(N), p€ M, and let p : M — N be a

smooth map. Then

(dp(p) X (p))f = X(p)(f o ¢)

Proposition 6.8. Let X be a Lie group with Lie algebra g. Then for any X,Y € g the Lie bracket
[X,Y] € g. Consequently, g is indeed a Lie algebra (see Definition 2.22).



6.2 Lie group exponential map and adjoint representation

Definition 6.9. Define Exp : M,(R) — M, (R) by Exp (4) = > 3%, H A"

Properties. (a) The infinite sum converges for any matrix A € M, (R), so Exp (A) is well-defined;
(b) Exp(0) = I;

(c) if AB = BA then Exp (A + B) = Exp(A) - Exp (B); in particular, Exp (—A)Exp (A) = I, so
Exp (A) € GL,(R) for any A € M, (R);

(d) note that M, (R) = T.GL,(R), and from (c) we know that Exp (M, (R)) C GL,(R). One can check
that this property holds for any matrix Lie group: if G C GL,(R), then Exp (T.G) C G.

Example 6.10. Computation of the exponent for a diagonalizable matrix.

Proposition 6.11. Let G be a matriz Lie group. Let v € T.G and let X be the unique left-invariant
vector field on G with X(e) = v. Then the curve c¢(t) = Exp (tv) € G satisfies ¢(0) = e, ¢/(0) = v and

d(t) = X(c(t)).

A curve of the form ¢(t) = Exp (tv) is called a 1-parameter subgroup of G with ¢/(0) = v.

Remark. For an abstract Lie group the exponential map can be defined as follows. Let G be a Lie
group and g be its Lie algebra. Let v € T,G and let X € g be the unique left-invariant vector field with
X (e) = v. Then there exists a unique curve ¢, : R = G with ¢,(0) = e, ¢, (t) = X (cy(t)) [without proof].
The curve ¢, is called an integral curve of X. We define the exponential map by Exp (v) = ¢,(1).

Definition 6.12. Let G be a Lie group. For g € G the adjoint representation Ad, : T.G — T.G is
defined by
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Ad y(w) = gltZOLgqu(EXp (tw)) = | gExp (tw)g™.
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For v € T, G the adjoint representation ad, : T.G — T.G is defined by

o ds Exp (tv)Exp (sw)Exp (—tv).
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Example. Let G C GL,(R), g € G, v,w € T,G. Then Ad yw = gwg™?, and ad yw = [v, w].

Theorem 6.13 (without proof). Let G be a Lie group with a Lie algebra g. Then for all X,Y € g holds
ad x()Y (e) = [X,Y](e) € TeG, i.e. by canonical identification of g with TG we have ad xY = [X,Y].

Corollary. ad : g — End(g) is a representation of Lie algebra g.

Example 6.14. Theorem 6.13 for the case of a matrix Lie group.

6.3 Riemannian metrics on Lie groups

Definition 6.15. For a given inner product (-, ). on TG, define the inner product at g € G for v, w € T,G
by (v,w)g = (DLg-1(g)v, DLy-1(g)w)e. The family ((-,-)¢)gec of inner products defines a left-invariant
Riemannian metric on G.

Example. For G C GL,(R), one can define (v, w), = tr v'w for v,w € TG, and thus a left-invariant
metric (z,y), = tr (g7 z)lg7ly = tr 2t(g7!)tg~ly for x,y € T,G. In particular, for G = SO,(R) this
metric is constant: (z,y), = tr z'y.



Remark 6.16. Let (G, (-, -)) be a Lie group with a left-invariant metric. Then
(a) the diffeomorphisms L, : G — G are isometries;
(b) for any two left-invariant vector fields X,Y € g the function g — (X(g),Y (g)), is constant.

Theorem 6.17 (without proof). Let G be a compact Lie group. Then G admits a bi-invariant Riemannian
metric (-,-)q, i.e. both families of diffeomorphisms Ly and Ry are isometries.

Corollary 6.18. Let (G, (-,-)) be a Lie group with bi-invariant metric, let X,Y,Z € g. Then
((X,Y],2) = (X, Z],Y).

Corollary 6.19. Let (G,{-,-)) be a Lie group with bi-invariant metric and let ¥V be the Levi-Civita
connection. Then for X,Y € g holds VxY = 1[X,Y].

Corollary 6.20. (a) 1-parameter subgroups of G are exactly the geodesics of the bi-invariant metric on
G passing through e;

(b) the Lie group exponential map Exp coincides with the Riemannian exponential map exp, at the
neutral element.
6.4 Homogeneous spaces

Definition 6.21. A connected Riemannian manifold (M, g) is called homogeneous if the group Isom (M, g)
of isometries of M acts transitively on M, i.e. for any p,q € M there exists ¢ € Isom (M, g) s.t. (p) = q.

Examples. E”, S, Lie groups.

Given a Lie group G and a closed subgroup H C G, consider the set M = G/H = {gH | g € G}.
Then M is a smooth manifold (non-trivial theorem, uses that H is closed).

Theorem 6.22 (without proof). Left-invariant metrics on G/H are in one-to-one correspondence with
Ad (H)-invariant inner products on T.G.

Example 6.23. Let G = SO3(R), H = SO3(R) C G. Then M = SO3/SOy ~ S?. In general,
On(R)/Op_1(R)~=S"~1,



