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Riemannian Geometry IV, Term 2 (Sections 7-8)

7 Curvature

7.1 Riemann curvature tensor

Definition 7.1. Let (M, g) be a Riemannian manifold, let X(A/) be the space of vector fields on M, and let
V be the Levi-Civita connection. Define a map (Riemann curvature tensor) R : X(M) x X(M)x X(M) —
X(M) by R(X,Y)Z = VxVyZ = VyVxZ - Vixy 2.

Remark. R is linear in all variables, so, it is a tensor; moreover, R(fX,gY)hZ = fghR(X,Y)Z for any
f.9.h € C®(M).

Lemma 7.2. R has the following symmetries:
(a) R(X,Y)Z = —-R(Y,X)Z (c) (R(X,Y)Z,W)=—(R(X, Y)W, Z)
(b)) RIX,Y)Z+ R(Y,Z)X + R(Z,X)Y =0 (d) (R(X,Y)Z,W)=—(R(Z,W)X,Y
(first Bianchi Identity)
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Definition 7.3. Define components of Riemann curvature tensor R;ji; = <R(8‘Z, , %)i -9y and R!
0 o) o _ [ 0
by R(aT;iv ﬁj)aTk =2 Rijk%‘
Then Rijy = ., Rljpgm  and Rl =37 Rijrmg™.

Example 7.4. Computation of components R;;s and Ré ik for hyperbolic plane (in the upper half-plane
model).

7.2 Sectional curvature

Definition 7.5. Let (M, g) be a Riemannian manifold, p € M, v,vo € T,M, and let Il C T,M be the
P p

2-plane spanned by vy, vs.

The sectional curvature of IT at p is K(II) = K (v1, v2) {Rlv1,02)vp,01)

T P flvz P = (vr,v2)?

Proposition 7.6. K(II) does not depend on the basis {vi,ve} of IL.

Examples. Sectional curvature of a 2-sphere and hyperbolic plane.

7.3 Ricci curvature
Given v,w € T, M define a linear map R(-,v)w : T,M — T,M by u+— R(u,v)w.

Definition 7.7. Ricci curvature tensor Ric(v, w) is the trace of the map R(-, v)w: Ricy(v,w) = tr(R(-, v)w).
In an orthonormal basis {u;}, Ricy(v,w) = > 1_; (R(uj, v)w, uj).

Definition 7.8. Ricci curvature at p is Ricy(v) = Ricy(v,v) = 3201 (R(uj, v)w, uj)
In an orthonormal basis {v = u1,...,u,} we have Ricy(v) =3 7 o K(v,u;).

Lemma 7.9. Ric(v,u) is a symmetric bilinear form (i.e. Ric(v) is a quadratic form).

Example. If K(v,w) is constant (= K) and ||v|| = 1, then Ric(v) = (n — 1)K.



8 Bonnet — Myers Theorem

Theorem 8.1 (Bonnet — Myers, 1935). Let (M,g) be a connected, complete Riemannian manifold of
dimension n.

Suppose that Ric(v) > "T—_Zl forallve SM ={w e TM | |w|| =1}. Thendiam M (= sup d(p,q)) < mr.
p,gEM
In particular, M is bounded, so, it is compact (as it is complete).

Theorem 8.2 (Second variation formula of length). Let ¢ : [a,b] — M be a geodesic parametrized by arc
length, let F : (—¢,€) X [a,b] — M be a proper variation of ¢, let X (t) = %—5(0, t) be the variational vector
field. Define X+ (t) = X(t) — (X(t),d () (t), the orthogonal component of X (t). Let I(s) be the length
of the variation.

Then I"(0) = [2(||2X=|12 — K (<, X 1) || X1]2)dt.

Remark. In the case if X is collinear to ¢’ (i.e. X+ = 0) we define K(¢/, X*) = 0.

Corollary 8.3. If K(II) < 0 for every p € M and every 2-plane I1 C T,,M then every geodesic is locally
minimal.

Example 8.4. For the n-dimensional sphere S} of radius r the inequality in the Bonnet — Myers Theorem
becomes an equality. Hence, the bound is sharp.

Lemma 8.5. Let F(s,t) be a variation of a geodesic c(t), and let Z(s,t) € TpsM be smooth. Then
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Example 8.6. Let 7™ = R"/Z"™ be an n-dimensional torus with arbitrary metric g (compatible with the
smooth structure). Then there exists p € T™ and v € T,T™ such that Ric,(v) < 0.



