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Riemannian Geometry IV, Term 2 (Section 9)

9 Jacobi fields

9.1 Jacobi fields and geodesic variations

Definition 9.1. Let c¢(t) be a geodesic. A vector field J € X.(M) is a Jacobi field if it satisfies
Jacobi equation: %J + R(J,d)d = 0.

Example 9.2. Vector fields ¢/(t) and tc/(t) are Jacobi fields for any geodesic ¢(t).

Theorem 9.3. Let ¢(t) be a geodesic. Let F(s,t) be a variation, s.t. every curve Fs(t) is geodesic. Then
the variational vector field X (t) = %—Z(O,t) is a Jacobi field.

Example 9.4. Geodesic variation on a sphere and its variational vector field.

Definition 9.5. Let Eq(t),..., E,(t) € X.(M) be vector fields along c(t). We say that {E ..., E,} is a
parallel orthonormal basis along c if for all ¢, 4, j holds %Ei =0 and (E;, Ej) = d;;.

Notation. R;; = (R(E;, ), Ej), Ri; is an n x n symmetric matrix depending on ¢.

Theorem 9.6. Let c(t) be a geodesic and {E;} be a parallel orthonormal basis along c. Take J € X.(M)
and its expansion J =, J;(t)E;(t) (where J;(t) are smooth functions). Then J is a Jacobi field if and
only if Ji' + 370 RijJ; =0 for alli=1,...,n.

Corollary 9.7. For any choice of v,w € T\ M there exists a unique Jacobi field J along ¢ such that
J(to) = v, £J(to) = w.

Remark 9.8. Corollary 9.7 implies that for any geodesic c¢(t) the vector space J.(M) of Jacobi fields
along ¢ has dimension 2n. Moreover, the map T, )M x T, \M — J.(M) defined by (v,w) — J s.t.

J(to) = v, %J (to) = w is an isomorphism of vector spaces.

Lemma 9.9. Let ¢: [0,1] = M be a geodesic and J € J.(M) be a Jacobi field along c. Suppose J(0) = 0.
Then there exists a geodesic variation F of ¢ such that J = %—S(O,t).

9.2 Conjugate points and orthogonal Jacobi fields

Definition 9.10. Let ¢ : [a,b] — M be a geodesic, a < tg < t;1 < b, p = ¢(to), ¢ = ¢(t1). The point ¢ is
conjugate to p along c(t) if there exists a Jacobi field J € J.(M), J # 0 such that J(ty) = J(t1) = 0.

Example 9.11. On the sphere S? (with induced metric), the South pole is conjugate to the North pole
along each geodesic passing through both these points.

Definition 9.12. A point ¢ € M is conjugate to a point p € M if there exists a geodesic ¢(t) passing
through p and ¢ such that ¢ is conjugate to p along c(t).



Definition 9.13. A multiplicity of a conjugate point c¢(t1) (with respect to a point ¢(tg)) is the number
of linear independent Jacobi fields along ¢ such that J(tp) = J(¢1) = 0, in other words, it is equal to
dim J2" (M), where JEO" (M) = {J € J.(M) | J(to) = J(t;) = 0}.

Remark 9.14. Multiplicity does not exceed n — 1.

Lemma 9.15. Let J € J.(M) be a Jacobi field along a geodesic c(t) = exp, tv. Suppose J(0) = 0, denote
%J(O) =w. Then J(t) = (D exp,tv)(tw). Here we identify T, T )M with Ty M.

Lemma 9.16. A point q = c(t1) is conjugate to p = c(0) along a geodesic c(t) = exp, tv if and only if
the point v1 = t1v € T, M is a critical point of the exponential map exp,, (i.e. dim ker(D exp,)(t1v) > 0).
Multiplicity of q is equal to dim ker(D exp,)(t1v).

Lemma 9.17. Let ¢ : [a,b] — M be a geodesic, a < ty < t; < b. Suppose that c(t1) is not conjugate to
c(to). Take v € TeuoyM, u € Tey,)M. Then there exists a unique Jacobi field J along ¢ s.t. J(to) = v,
J(tl) = U.

Lemma 9.18. Let J € J.(M) be a Jacobi field along a geodesic ¢(t). Then the function t — (J(t),c (t))
is linear. More precisely, (J(t),c (t)) = (J(0),c (0)) +¢(£.7(0),(0)).

Corollary 9.19. Let (J(t1),c (t1)) = (J(t2), (t2)). Then the function t — (J(t),c (t)) is constant.

Definition 9.20. A Jacobi field J € J.(M) is orthogonal if (J,¢’) = 0. The space of all orthogonal Jacobi
fields along c is denoted by Ji-.

Corollary 9.21. (a) Let J(0) = 0. Then J is orthogonal if and only if <%J(O), d(0)) =0.
(b) dimJ; =2n —2.
(¢) dimJ" =n —1, where J = {J € J.(M) | (J,d) =0, J(to) = 0}.
Example 9.22. Jacobi fields on R2.
Theorem 9.23. Let ¢ be a geodesic. Then every Jacobi field J € J.(M) is a variational vector field for
some geodesic variation F(s,t) of c.
9.3 Minimal geodesics and conjugate points

Theorem 9.24. Let ¢ : [0,b] — M be a geodesic and let c¢(a) be a point conjugate to c¢(0), 0 < a < b.
Then ¢ is not a minimal geodesic between c¢(0) and c(b).

Lemma 9.25, Corollary 9.26 and Lemma 9.27 serve to prove Theorem 9.24; we skip them here.

9.4 Theorem of Cartan — Hadamard

Definition 9.28. A topological space is simply-connected if for each curve ¢ : [0,1] — M with ¢(0) = ¢(1)
there exists a continuous map F' : [0, 1] x [0,1] — M such that F(1,t) = ¢(t), F(0,t) = p for some p € M,
and F(s,0) = F(s,1) for every s € [0,1].

Examples. R” is simply-connected, S™ is simply-connected for n > 1; S and 7™ (torus) are not simply-
connected.

Theorem 9.29 (Cartan — Hadamard). Let M be a complete connected simply-connected Riemannian

manifold of non-positive sectional curvature. Then M is diffeomorphic to R™, where n is the dimension
of M.



