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Riemannian Geometry IV, Term 2 (Section 9)

9 Jacobi fields

9.1 Jacobi fields and geodesic variations

Definition 9.1. Let c(t) be a geodesic. A vector field J ∈ Xc(M) is a Jacobi field if it satisfies

Jacobi equation: D2

dt2
J +R(J, c′)c′ = 0.

Example 9.2. Vector fields c′(t) and tc′(t) are Jacobi fields for any geodesic c(t).

Theorem 9.3. Let c(t) be a geodesic. Let F (s, t) be a variation, s.t. every curve Fs(t) is geodesic. Then
the variational vector field X(t) = ∂F

∂s (0, t) is a Jacobi field.

Example 9.4. Geodesic variation on a sphere and its variational vector field.

Definition 9.5. Let E1(t), . . . , En(t) ∈ Xc(M) be vector fields along c(t). We say that {E, . . . , En} is a
parallel orthonormal basis along c if for all t, i, j holds D

dtEi = 0 and 〈Ei, Ej〉 = δij .

Notation. Rij = 〈R(Ei, c
′)c′, Ej〉, Rij is an n× n symmetric matrix depending on t.

Theorem 9.6. Let c(t) be a geodesic and {Ei} be a parallel orthonormal basis along c. Take J ∈ Xc(M)
and its expansion J =

∑
j Jj(t)Ej(t) (where Jj(t) are smooth functions). Then J is a Jacobi field if and

only if J ′′
i +

∑n
j=1RijJj = 0 for all i = 1, . . . , n.

Corollary 9.7. For any choice of v, w ∈ Tc(t0)M there exists a unique Jacobi field J along c such that

J(t0) = v, D
dtJ(t0) = w.

Remark 9.8. Corollary 9.7 implies that for any geodesic c(t) the vector space Jc(M) of Jacobi fields
along c has dimension 2n. Moreover, the map Tc(t0)M × Tc(t0)M → Jc(M) defined by (v, w) 7→ J s.t.

J(t0) = v, D
dtJ(t0) = w is an isomorphism of vector spaces.

Lemma 9.9. Let c : [0, 1]→M be a geodesic and J ∈ Jc(M) be a Jacobi field along c. Suppose J(0) = 0.
Then there exists a geodesic variation F of c such that J = ∂F

∂s (0, t).

9.2 Conjugate points and orthogonal Jacobi fields

Definition 9.10. Let c : [a, b] → M be a geodesic, a ≤ t0 < t1 ≤ b, p = c(t0), q = c(t1). The point q is
conjugate to p along c(t) if there exists a Jacobi field J ∈ Jc(M), J 6≡ 0 such that J(t0) = J(t1) = 0.

Example 9.11. On the sphere S2 (with induced metric), the South pole is conjugate to the North pole
along each geodesic passing through both these points.

Definition 9.12. A point q ∈ M is conjugate to a point p ∈ M if there exists a geodesic c(t) passing
through p and q such that q is conjugate to p along c(t).
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Definition 9.13. A multiplicity of a conjugate point c(t1) (with respect to a point c(t0)) is the number
of linear independent Jacobi fields along c such that J(t0) = J(t1) = 0, in other words, it is equal to
dim J t0,t1

c (M), where J t0,t1
c (M) = {J ∈ Jc(M) | J(t0) = J(t1) = 0}.

Remark 9.14. Multiplicity does not exceed n− 1.

Lemma 9.15. Let J ∈ Jc(M) be a Jacobi field along a geodesic c(t) = expp tv. Suppose J(0) = 0, denote
D
dtJ(0) = w. Then J(t) = (D expp tv)(tw). Here we identify TvTc(0)M with Tc(0)M .

Lemma 9.16. A point q = c(t1) is conjugate to p = c(0) along a geodesic c(t) = expp tv if and only if
the point v1 = t1v ∈ TpM is a critical point of the exponential map expp (i.e. dim ker(D expp)(t1v) > 0).
Multiplicity of q is equal to dim ker(D expp)(t1v).

Lemma 9.17. Let c : [a, b] → M be a geodesic, a ≤ t0 < t1 ≤ b. Suppose that c(t1) is not conjugate to
c(t0). Take v ∈ Tc(t0)M , u ∈ Tc(t1)M . Then there exists a unique Jacobi field J along c s.t. J(t0) = v,
J(t1) = u.

Lemma 9.18. Let J ∈ Jc(M) be a Jacobi field along a geodesic c(t). Then the function t 7→ 〈J(t), c′(t)〉
is linear. More precisely, 〈J(t), c′(t)〉 = 〈J(0), c′(0)〉+ t〈DdtJ(0), c′(0)〉.

Corollary 9.19. Let 〈J(t1), c
′(t1)〉 = 〈J(t2), c

′(t2)〉. Then the function t 7→ 〈J(t), c′(t)〉 is constant.

Definition 9.20. A Jacobi field J ∈ Jc(M) is orthogonal if 〈J, c′〉 ≡ 0. The space of all orthogonal Jacobi

fields along c is denoted by J⊥
c .

Corollary 9.21. (a) Let J(0) = 0. Then J is orthogonal if and only if 〈DdtJ(0), c′(0)〉 = 0.

(b) dimJ⊥
c = 2n− 2.

(c) dimJ⊥,t0
c = n− 1, where J⊥,t0

c = {J ∈ Jc(M) | 〈J, c′〉 ≡ 0, J(t0) = 0}.

Example 9.22. Jacobi fields on R2.

Theorem 9.23. Let c be a geodesic. Then every Jacobi field J ∈ Jc(M) is a variational vector field for
some geodesic variation F (s, t) of c.

9.3 Minimal geodesics and conjugate points

Theorem 9.24. Let c : [0, b] → M be a geodesic and let c(a) be a point conjugate to c(0), 0 < a < b.
Then c is not a minimal geodesic between c(0) and c(b).

Lemma 9.25, Corollary 9.26 and Lemma 9.27 serve to prove Theorem 9.24; we skip them here.

9.4 Theorem of Cartan – Hadamard

Definition 9.28. A topological space is simply-connected if for each curve c : [0, 1]→M with c(0) = c(1)
there exists a continuous map F : [0, 1]× [0, 1]→M such that F (1, t) = c(t), F (0, t) = p for some p ∈M ,
and F (s, 0) = F (s, 1) for every s ∈ [0, 1].

Examples. Rn is simply-connected, Sn is simply-connected for n > 1; S1 and Tn (torus) are not simply-
connected.

Theorem 9.29 (Cartan – Hadamard). Let M be a complete connected simply-connected Riemannian
manifold of non-positive sectional curvature. Then M is diffeomorphic to Rn, where n is the dimension
of M .
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