Topics in Combinatorics IV, Homework 12 (Week 12)

Due date for starred problems: Friday, January 27, 6pm.
12.1. (\star) Let G be a finite reflection group in \mathbb{R}^{n}. Recall that the stabilizer $\operatorname{Stab}_{G}(p)$ of $p \in \mathbb{R}^{n}$ in G is the set of elements of G fixing p, i.e. $\operatorname{Stab}_{G}(p)=\{g \in G \mid g p=p\}$. G is irreducible if it has no invariant subspaces (and reducible otherwise).
(a) Let p belong to the intersection of two closed chambers of G only (i.e., p belongs to precisely one mirror α^{\perp}). Show that $\operatorname{Stab}_{G}(p)$ has order 2 (and is generated by r_{α}).
(b) Let $p \in \mathbb{R}^{n}$ belong to at least one mirror of $G, p \neq 0$, and let Γ be the group generated by reflections of G fixing p. Show that Γ is a reducible finite reflection group.
(c) Show that every chamber of Γ is a union of chambers of G.
(d) Show that $\operatorname{Stab}_{G}(p)$ takes any chamber of Γ to another chamber of Γ (i.e., every $g \in$ $\operatorname{Stab}_{G}(p)$ permutes chambers of $\left.\Gamma\right)$.
(e) Show that Γ acts transitively on all chambers C of G such that $p \in \bar{C}$.
(f) Show that $\operatorname{Stab}_{G}(p)=\Gamma$, i.e. the stabilizer of $p \in \mathbb{R}^{n}$ is generated by all reflections $r \in G$ such that $r p=p$.
12.2. (a) Let $G=I_{2}(3)\left(=S_{3}\right)=\left\langle s_{1}, s_{2} \mid s_{1}^{2}, s_{2}^{2},\left(s_{1} s_{2}\right)^{3}\right\rangle$. Show that all reflections of G are conjugated to each other in G.
(b) For $G=I_{2}(m)=\left\langle s_{1}, s_{2} \mid s_{1}^{2}, s_{2}^{2},\left(s_{1} s_{2}\right)^{m}\right\rangle$, is it true that all reflections in G are conjugated to each other?
(c) Same question for $G=\operatorname{Sym} P$, where P is a 3-dimensional cube (see Exercise 11.3).
12.3. Show that S_{n+1} has a presentation

$$
\left.S_{n+1}=\left\langle s_{1}, \ldots, s_{n}\right| s_{i}^{2},\left(s_{i} s_{j}\right)^{3} \text { for }|i-j|=1,\left(s_{i} s_{j}\right)^{2} \text { for }|i-j|>1\right\rangle
$$

12.4. (a) Let s_{1}, s_{2}, s_{3} be the three reflections generating the symmetry group of a 3-dimensional cube constructed in Exercise 11.3. Consider all six elements of Sym P of type $s_{i} s_{j} s_{k}$ for all i, j, k distinct. Show that all six elements are conjugated to each other in Sym P.
(b) Compute the order of these six elements.

