Topics in Combinatorics IV, Homework 13 (Week 13)

Due date for starred problems: Friday, February 10, 6pm.

- **13.1.** (a) Let G be a simply-laced finite reflection group (i.e., all m_{ij} are equal to 2 or 3), or one of H_3 and H_4 . Show that all reflections of G are conjugated in G.
 - (b) Let G be a finite reflection group, and let $r_1, r_2 \in G$ be two reflections. Show that the dihedral subgroup generated by r_1 and r_2 is conjugated in G to a subgroup generated by some simple reflections s_i and s_j .
- **13.2.** (a) Let G be a Coxeter group defined by $G = \langle t_1, t_2, t_3 | t_i^2, (t_1t_2)^2, (t_1t_3)^2, (t_2t_3)^3 \rangle$. Show that G is isomorphic to $I_2(6)$.
 - (b) Show that for any odd k a Coxeter group $G = \langle t_1, t_2, t_3, | t_i^2, (t_1t_2)^2, (t_1t_3)^2, (t_2t_3)^k \rangle$ is isomorphic to $I_2(2k)$.
- **13.3.** (*) Let G be any group with a finite generating set S. Assume also that S is symmetric, i.e. for any $s \in S$ the inverse s^{-1} is also contained in S. Let $g, g' \in G$, and let l(g) denote the shortest length of a reduced word representing g.
 - (a) Show that $|l(g) l(g')| \le l(g'g^{-1})$.
 - (b) Show that $d(g,g') = l(g'g^{-1})$ defines a metric on G.