Topics in Combinatorics IV, Homework 18 (Week 18)

Due date for starred problems: Friday, March 10, 6pm.

18.1. (\star) Let Δ be a root system, $\Pi=\left\{\alpha_{i}\right\}$ are simple roots.
(a) Let $\alpha, \beta \in \Delta^{+}, \alpha<\cdot \beta$ in the root poset, $\beta-\alpha=\sum_{j \in J} c_{j} \alpha_{j}$ for some $J \subset[n]$. Show that either $\beta-\alpha=\alpha_{j}$ (i.e. $|J|=1$ and $c_{j}=1$), or $\left(\beta-\alpha, \alpha_{j}\right) \leq 0$ for any $j \in J$.
Hint: Use Exercise 9.15 from lectures.
(b) Show that the root poset of a root system is ranked, where the rank of $\alpha=\sum c_{i} \alpha_{i}$ is $\sum c_{i}$ (this number is called the height of α and is denoted by ht α).
Hint: Compute $(\beta-\alpha, \beta-\alpha)$ in (a).
18.2. Let Δ be a root system, $\Pi=\left\{\alpha_{i}\right\}$ are simple roots, W is the Weyl group, and Σ is the Dynkin diagram of Δ.
(a) Let $I \subset[n]$ be some index set such that $\left(\alpha_{i}, \alpha_{j}\right)=0$ for all $i, j \in I$. Show that the standard parabolic subgroup W_{I} is isomorphic to $\left(\mathbb{Z}_{2}\right)^{|I|}$.
Hint: use HW 15.2.
(b) Let $\alpha \in \Delta, \alpha=\sum c_{i} \alpha_{i}$. Define the support of α to be the set $I \subset[n]$ such that $i \in I$ if and only if $c_{i} \neq 0$. Show that if $\left(\alpha_{i}, \alpha_{j}\right)=0$ for all $i, j \in I$ then $\alpha= \pm \alpha_{i}$ for some $i \in[n]$.
(c) Let $\alpha \in \Delta, \alpha=\sum c_{i} \alpha_{i}, I$ is the support of α. Show that vertices of Σ corresponding to $\alpha_{i}, i \in I$, form a connected subgraph of Σ.
18.3. Let Δ be a root system. Show that the highest root $\tilde{\alpha}_{0}$ is always long, i.e. $\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right) \geq(\alpha, \alpha)$ for any $\alpha \in \Delta$.
18.4. Let (W, S) be an irreducible Coxeter system. The goal of this exerxise is to show that if there is a quadratic form Q on \mathbb{R}^{n} invariant under W, then $Q(x)=c(x, x)$ for some $c \in \mathbb{R}$. Given a quadratic form Q, we will abuse notation by writing $Q(x, y)$ instead of $\frac{1}{2}(Q(x+y)-Q(x)-Q(y))$.
(a) Let Q be a quadratic form invariant under W, i.e. $~ Q(x, y)=Q(w x, w y)$ for every $w \in W$. Recall that $Q(x, y)=(A x, y)$ for some $A \in M_{n}(\mathbb{R})$. Show that $w(A x)=A(w x)$ for every $x \in \mathbb{R}, w \in W$.
(b) For $s_{i} \in S$ let $s_{i}=r_{\alpha_{i}},\left\|\alpha_{i}\right\|^{2}=2$. Show that $r_{\alpha_{i}}\left(A \alpha_{i}\right)=-A \alpha_{i}$, and $A \alpha_{i}=c_{i} \alpha_{i}$ for some $c_{i} \in \mathbb{R}$.
(c) Let $\left(s_{i} s_{j}\right)^{2} \neq e$. Show that $c_{i}=c_{j}$. Deduce from this that $Q(x)=c(x, x)$.

Hint: compute $A s_{i}\left(\alpha_{j}\right)$ and $s_{i}\left(A \alpha_{j}\right)$.

