Topics in Combinatorics IV, Homework 18 (Week 18)

Due date for starred problems: Friday, March 10, 6pm.

- **18.1.** (*) Let Δ be a root system, $\Pi = \{\alpha_i\}$ are simple roots.
 - (a) Let $\alpha, \beta \in \Delta^+$, $\alpha < \beta$ in the root poset, $\beta \alpha = \sum_{j \in J} c_j \alpha_j$ for some $J \subset [n]$. Show that either $\beta \alpha = \alpha_j$ (i.e. |J| = 1 and $c_j = 1$), or $(\beta \alpha, \alpha_j) \leq 0$ for any $j \in J$. *Hint:* Use Exercise 9.15 from lectures.
 - (b) Show that the root poset of a root system is ranked, where the rank of $\alpha = \sum c_i \alpha_i$ is $\sum c_i$ (this number is called the *height* of α and is denoted by ht α). *Hint:* Compute $(\beta - \alpha, \beta - \alpha)$ in (a).
- **18.2.** Let Δ be a root system, $\Pi = \{\alpha_i\}$ are simple roots, W is the Weyl group, and Σ is the Dynkin diagram of Δ .
 - (a) Let $I \subset [n]$ be some index set such that $(\alpha_i, \alpha_j) = 0$ for all $i, j \in I$. Show that the standard parabolic subgroup W_I is isomorphic to $(\mathbb{Z}_2)^{|I|}$. *Hint:* use HW 15.2.
 - (b) Let $\alpha \in \Delta$, $\alpha = \sum c_i \alpha_i$. Define the support of α to be the set $I \subset [n]$ such that $i \in I$ if and only if $c_i \neq 0$. Show that if $(\alpha_i, \alpha_j) = 0$ for all $i, j \in I$ then $\alpha = \pm \alpha_i$ for some $i \in [n]$.
 - (c) Let $\alpha \in \Delta$, $\alpha = \sum c_i \alpha_i$, *I* is the support of α . Show that vertices of Σ corresponding to α_i , $i \in I$, form a connected subgraph of Σ .
- **18.3.** Let Δ be a root system. Show that the highest root $\tilde{\alpha}_0$ is always long, i.e. $(\tilde{\alpha}_0, \tilde{\alpha}_0) \ge (\alpha, \alpha)$ for any $\alpha \in \Delta$.
- **18.4.** Let (W, S) be an irreducible Coxeter system. The goal of this exercise is to show that if there is a quadratic form Q on \mathbb{R}^n invariant under W, then Q(x) = c(x, x) for some $c \in \mathbb{R}$. Given a quadratic form Q, we will abuse notation by writing Q(x, y) instead of $\frac{1}{2}(Q(x+y)-Q(x)-Q(y))$.
 - (a) Let Q be a quadratic form invariant under W, i.e. Q(x,y) = Q(wx,wy) for every $w \in W$. Recall that Q(x,y) = (Ax,y) for some $A \in M_n(\mathbb{R})$. Show that w(Ax) = A(wx) for every $x \in \mathbb{R}, w \in W$.
 - (b) For $s_i \in S$ let $s_i = r_{\alpha_i}$, $\|\alpha_i\|^2 = 2$. Show that $r_{\alpha_i}(A\alpha_i) = -A\alpha_i$, and $A\alpha_i = c_i\alpha_i$ for some $c_i \in \mathbb{R}$.
 - (c) Let $(s_i s_j)^2 \neq e$. Show that $c_i = c_j$. Deduce from this that Q(x) = c(x, x). *Hint*: compute $As_i(\alpha_j)$ and $s_i(A\alpha_j)$.