Topics in Combinatorics IV, Homework 19 (Week 19)

Throughout the problem sheet Δ is a root system of rank n, $\Pi = \{\alpha_i\}$ are simple roots, $\tilde{\alpha}_0$ is the highest root, W is the Weyl group, h is the Coxeter number.

- 19.1. Compute the Coxeter number and exponents of Weyl group of type
 - (a) B_4 ;
 - (b) B_n .
- 19.2. (a) Show that the Coxeter number of Weyl group of type E_8 is equal to the Coxeter number of the Coxeter group of type H_4 .
 - (b) Show that the symmetric group S_{n+1} contains a subgroup isomorphic to the dihedral group $I_2(n+1)$.
- **19.3.** (a) Define $\gamma = \sum_{\beta \in \Delta^+} \frac{\beta}{(\beta,\beta)}$. Show that $r_{\alpha_i}(\gamma) = \gamma \frac{2\alpha_i}{\alpha_i,\alpha_i}$. Hint: use HW 16.1(a).
 - (b) Show that $\sum_{\beta \in \Lambda^+} \frac{(\alpha_i, \beta)}{(\beta, \beta)} = 1$.
 - (c) Let $v \in \mathbb{R}^n$, $v = \sum c_i \alpha_i$. Show that $\sum c_i = \sum_{\beta \in \Lambda^+} \frac{(v,\beta)}{(\beta,\beta)}$.
 - (d) Define quadratic from Q on \mathbb{R}^n by $Q(v) = \sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)}$. Show that Q is invariant with respect to W.

 Hint: $Q(v) = \sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)} = \frac{1}{2} \sum_{\beta \in \Delta} \frac{(v,\beta)^2}{(\beta,\beta)}$.
 - (e) Let $\{e_i\}$ be an orthonormal basis of \mathbb{R}^n . Denote $N = |\Delta^+|$. Show that $\sum_{i=1}^n \sum_{\beta \in \Delta^+} \frac{(e_i, \beta)^2}{(\beta, \beta)} = N$.
 - (f) Show that $\sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)} = (v,v)\frac{N}{n}$. Deduce from this that $\sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(v,v)(\beta,\beta)} = \frac{N}{n}$. Hint: use HW 18.4.
 - (g) Let $\alpha, \beta \in \Delta$, and let $(\alpha, \alpha) \leq (\beta, \beta)$. Show that $\langle \alpha \mid \beta \rangle = 0$ or ± 1 .
 - (h) Show that $\langle \alpha \mid \tilde{\alpha}_0 \rangle = \langle \alpha \mid \tilde{\alpha}_0 \rangle^2$ for any positive root $\alpha \neq \tilde{\alpha}_0$.
 - (i) Show that $N = \frac{(\operatorname{ht} \tilde{\alpha}_0 + 1)n}{2}$. Deduce from this that $h = 1 + \operatorname{ht} \tilde{\alpha}_0$. Hint: write $\frac{(\tilde{\alpha}_0, \beta)}{(\beta, \beta)}$ as $\langle \beta \mid \tilde{\alpha}_0 \rangle \frac{(\tilde{\alpha}_0, \tilde{\alpha}_0)}{2(\beta, \beta)}$ and use (c),(f) and (h).