Topics in Combinatorics IV, Homework 19 (Week 19)

Throughout the problem sheet Δ is a root system of rank $n, \Pi=\left\{\alpha_{i}\right\}$ are simple roots, $\tilde{\alpha}_{0}$ is the highest root, W is the Weyl group, h is the Coxeter number.
19.1. Compute the Coxeter number and exponents of Weyl group of type
(a) B_{4};
(b) B_{n}.
19.2. (a) Show that the Coxeter number of Weyl group of type E_{8} is equal to the Coxeter number of the Coxeter group of type H_{4}.
(b) Show that the symmetric group S_{n+1} contains a subgroup isomorphic to the dihedral group $I_{2}(n+1)$.
19.3. (a) Define $\gamma=\sum_{\beta \in \Delta^{+}} \frac{\beta}{(\beta, \beta)}$. Show that $r_{\alpha_{i}}(\gamma)=\gamma-\frac{2 \alpha_{i}}{\alpha_{i}, \alpha_{i}}$.

Hint: use HW 16.1(a).
(b) Show that $\sum_{\beta \in \Delta^{+}} \frac{\left(\alpha_{i}, \beta\right)}{(\beta, \beta)}=1$.
(c) Let $v \in \mathbb{R}^{n}, v=\sum c_{i} \alpha_{i}$. Show that $\sum c_{i}=\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)}{(\beta, \beta)}$.
(d) Define quadratic from Q on \mathbb{R}^{n} by $Q(v)=\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)^{2}}{(\beta, \beta)}$. Show that Q is invariant with respect to W.
Hint: $Q(v)=\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)^{2}}{(\beta, \beta)}=\frac{1}{2} \sum_{\beta \in \Delta} \frac{(v, \beta)^{2}}{(\beta, \beta)}$.
(e) Let $\left\{e_{i}\right\}$ be an orthonormal basis of \mathbb{R}^{n}. Denote $N=\left|\Delta^{+}\right|$. Show that $\sum_{i=1}^{n} \sum_{\beta \in \Delta^{+}} \frac{\left(e_{i}, \beta\right)^{2}}{(\beta, \beta)}=N$.
(f) Show that $\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)^{2}}{(\beta, \beta)}=(v, v) \frac{N}{n}$. Deduce from this that $\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)^{2}}{(v, v)(\beta, \beta)}=\frac{N}{n}$.

Hint: use HW 18.4.
(g) Let $\alpha, \beta \in \Delta$, and let $(\alpha, \alpha) \leq(\beta, \beta)$. Show that $\langle\alpha \mid \beta\rangle=0$ or ± 1.
(h) Show that $\left\langle\alpha \mid \tilde{\alpha}_{0}\right\rangle=\left\langle\alpha \mid \tilde{\alpha}_{0}\right\rangle^{2}$ for any positive root $\alpha \neq \tilde{\alpha}_{0}$.
(i) Show that $N=\frac{\left(\text { ht } \tilde{\alpha}_{0}+1\right) n}{2}$. Deduce from this that $h=1+\mathrm{ht} \tilde{\alpha}_{0}$.

Hint: write $\frac{\left(\tilde{\alpha}_{0}, \beta\right)}{(\beta, \beta)}$ as $\left\langle\beta \mid \tilde{\alpha}_{0}\right\rangle \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\beta, \beta)}$ and use (c),(f) and (h).

