Topics in Combinatorics IV, Problems Class 5 (Week 12)

The class was devoted to the counterpart of question 11.1, where P is a regular tetrahedron in \mathbb{R}^{3} centered at the origin.
5.1. Let P be a regular tetrahedron in \mathbb{R}^{3} centered at the origin. A symmetry of P is $g \in O_{3}(\mathbb{R})$ taking P to itself.
(a) Show that symmetries of P compose a group, denote it by Sym P.

If $g_{1}, g_{2} \in O_{3}(\mathbb{R})$ take P to itself, then so do g_{i}^{-1} and $g_{1} g_{2}$.
(b) Show that Sym P acts on the set of faces of P transitively.

Denote the vertices of P by v_{1}, \ldots, v_{4}. Then Sym P contains rotations r_{i} around the lines passing through v_{i} and the center of the opposite face. These rotations take any face of P to any other.
(c) Show that $\operatorname{Sym} P$ acts transitively on the set of flags, i.e. triples (v, e, f), where v is a vertex of P, e is an edge, f is a face, and $v \in e \subset f$.
Let (v, e, f) and $\left(v^{\prime}, e^{\prime}, f^{\prime}\right)$ be two flags. Using rotations r_{i}, we can take v to v^{\prime}. Let $g_{1} v=v^{\prime}, g_{1} \in \operatorname{Sym} P$, denote $e^{\prime \prime}=g_{1} e$. If $v^{\prime}=v_{j}$, then powers of rotation r_{j} act transitively on all three edges incident to v_{j}, so there is $g_{2} \in \operatorname{Sym} P$ such that $g_{2}\left(v^{\prime}\right)=v^{\prime}$ and $g_{2}\left(e^{\prime \prime}\right)=e^{\prime}$. So, $g_{2} g_{1}$ takes v to v^{\prime} and e to e^{\prime}, denote $f^{\prime \prime}=g_{2} g_{1}(f)$. If $f^{\prime \prime}=f^{\prime}$ then we are done. Otherwise, observe that there are precisely two faces containing e^{\prime}, and they are taken to each other by a reflection in the plane passing through e^{\prime} and the center of the opposite edge. Applying this reflection, we take $f^{\prime \prime}$ to f^{\prime}, preserving e^{\prime} and v^{\prime}.
(d) (this is specific to cube!)
(e) Compute the order of $\operatorname{Sym} P$.

The number of flags is $4 \cdot 3 \cdot 2=24$, the group $\operatorname{Sym} P$ acts on the set of flags with a single orbit and trivial stabilizer. Therefore, $|\operatorname{Sym} P|=24$.
(f) Show that Sym P is generated by reflections.

We have shown above that to take any flag to any flag we need rotations r_{i} and reflections. Now, every r_{i} is a product of two reflections, where the mirrors pass through the axis of r_{i} and any other vertex of P. There are six such reflections altogether (every mirror passes through an edge and the center of the opposite edge).
(g) Show that Sym P cannot be generated by two reflections.

If we assume that $\operatorname{Sym} P$ is generated by two reflections r_{α} and r_{β}, then the group would leave the space $\{\alpha, \beta\}^{\perp}$ of positive dimension invariant. However, $\operatorname{Sym} P$ is clearly irreducible.

Let (v, e, f) be a flag. Let $p_{1}=v$, denote by p_{2} the center of e, by p_{3} the center of f, and by O the center of P (i.e., the origin of \mathbb{R}^{3}). Let C be the cone over triangle $p_{1} p_{2} p_{3}$ with apex O, i.e. the intersection of the three halfspaces: we take plane passing through $0 p_{i} p_{j}$ and take the halfspace containing the third point p_{k}.
(h) Show that three reflections in the walls of C generate Sym P. Write down the relations among these generators (i.e., give a presentation of Sym P by generators and relations, where generators are the three reflections above).
Denote by s_{i} the reflection in plane $0 p_{j} p_{k}$. Then it is easy to see that six reflections mentioned above are $s_{1}, s_{2}, s_{3}, s_{1} s_{2} s_{1}, s_{2} s_{3} s_{2}$, and $s_{1} s_{2} s_{3} s_{2} s_{1}$.
We are left to find the relations, i.e. the orders of $s_{i} s_{j}$. Reflections s_{1} and s_{2} generate a dihedral group preserving f, so $\left(s_{1} s_{2}\right)^{3}=$ id. Similarly, reflections s_{2} and s_{3} generate a dihedral group preserving a neighboring face (which can be obtained from f by applying reflection $s_{1} s_{2} s_{3} s_{2} s_{1}$), so $\left(s_{2} s_{3}\right)^{3}=\mathrm{id}$. Finally, the reflections s_{1} and s_{3} commute (as the planes $0 p_{1} p_{2}$ and $0 p_{2} p_{3}$ are orthogonal), so

$$
\operatorname{Sym} P=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2},\left(s_{1} s_{2}\right)^{3},\left(s_{2} s_{3}\right)^{3},\left(s_{1} s_{3}\right)^{2}\right\rangle
$$

