Topics in Combinatorics IV, Problems Class 7 (Week 16)

7.1. List the roots of G_{2} and draw the Hasse diagram of the root poset.

The Weyl group is $I_{2}(6)$, so it contains six reflections. We need to express six positive roots as linear combinations of simple roots α_{1} and α_{2}. We assume that α_{1} is a short root and α_{2} is long.
As $\left\langle\alpha_{2} \mid \alpha_{1}\right\rangle=-3$ and $\left\langle\alpha_{1} \mid \alpha_{2}\right\rangle=-1$, we see that

$$
3=\frac{\left\langle\alpha_{2} \mid \alpha_{1}\right\rangle}{\left\langle\alpha_{1} \mid \alpha_{2}\right\rangle}=\frac{\left(\alpha_{2}, \alpha_{2}\right)}{\left(\alpha_{1}, \alpha_{1}\right)},
$$

so we may assume $\left(\alpha_{1}, \alpha_{1}\right)=1$ and $\left(\alpha_{2}, \alpha_{2}\right)=3$. Then we have

$$
\left(\alpha_{1}, \alpha_{2}\right)=\left\|\alpha_{1}\right\|\left\|\alpha_{2}\right\|\left(-\cos \frac{\pi}{6}\right)=\sqrt{3}\left(-\frac{\sqrt{3}}{2}\right)=-\frac{3}{2}
$$

Due to Exercise 9.15, we have $\alpha_{1}+\alpha_{2} \in \Delta$, note that $\alpha_{1}+\alpha_{2}=r_{\alpha_{2}}\left(\alpha_{1}\right)$. Also, $r_{\alpha_{1}}\left(\alpha_{2}\right)=$ $\alpha_{2}-\left\langle\alpha_{2} \mid \alpha_{1}\right\rangle \alpha_{1}=\alpha_{2}+3 \alpha_{1} \in \Delta$. As $\left(\alpha_{1}+\alpha_{2}, \alpha_{1}\right)=1-\frac{3}{2}<0$, we have $\alpha_{2}+2 \alpha_{1} \in \Delta$.
Finally, let us compute $\left(\alpha_{2}+3 \alpha_{1}, \alpha_{i}\right)$. We have $\left(\alpha_{2}+3 \alpha_{1}, \alpha_{1}\right)=-\frac{3}{2}+3>0$, and ($\alpha_{2}+$ $\left.3 \alpha_{1}, \alpha_{2}\right)=3+-3 \frac{3}{2}<0$, so $\alpha_{2}+3 \alpha_{1}+\alpha_{2}=2 \alpha_{2}+3 \alpha_{1} \in \Delta$.
Computing lengths, we see that the roots $\alpha_{1}, \alpha_{1}+\alpha_{2}$ and $2 \alpha_{1}+\alpha_{2}$ are short, and the others are long. The highest root is $2 \alpha_{2}+3 \alpha_{1}$. We get the following Hasse diagram of the root poset.

7.2. List the roots of B_{3} and draw the Hasse diagram of the root poset.

The Dynkin diagram is $\underset{\alpha_{1}}{\bullet} \underset{\alpha_{2}}{\stackrel{\rightharpoonup}{\alpha_{3}}}$, so roots α_{1}, α_{2} are long and α_{3} is short. A computation similar to the one in the G_{2} case shows that we can assume $\left(\alpha_{1}, \alpha_{1}\right)=\left(\alpha_{2}, \alpha_{2}\right)=$ $2,\left(\alpha_{3}, \alpha_{3}\right)=1,\left(\alpha_{1}, \alpha_{2}\right)=\left(\alpha_{2}, \alpha_{3}\right)=-1\left(\right.$ and α_{1} is orthogonal to $\left.\alpha_{3}\right)$.
The Weyl group contains 9 reflections (cf. HW 11), so we need to express nine positive roots as linear combinations of simple roots α_{1}, α_{2} and α_{3}.
We have roots simple roots $\alpha_{1}, \alpha_{2}, \alpha_{3}$, as well as $\alpha_{1}+\alpha_{2}$ and $\alpha_{2}+\alpha_{3}$ (again, due to Exercise 9.15). Now, $\left(\alpha_{1}+\alpha_{2}, \alpha_{3}\right)=\left(\alpha_{2}, \alpha_{3}\right)<0$, so $\alpha_{1}+\alpha_{2}+\alpha_{3} \in \Delta$. Note that $\alpha_{2}+\alpha_{3}=r_{\alpha_{2}}\left(\alpha_{3}\right)$, so we can also find $r_{\alpha_{3}}\left(\alpha_{2}\right)=\alpha_{2}+2 \alpha_{3} \in \Delta$. Computing scalar product of $\alpha_{2}+2 \alpha_{3}$ with simple roots, we see that $\left(\alpha_{2}+2 \alpha_{3}, \alpha_{1}\right)=\left(\alpha_{2}, \alpha_{1}\right)<0$, so $\alpha_{1}+\alpha_{2}+2 \alpha_{3} \in \Delta$. Finally, we compute scalar product of $\alpha_{1}+\alpha_{2}+2 \alpha_{3}$ with simple roots and see that $\left(\alpha_{1}+\alpha_{2}+2 \alpha_{3}, \alpha_{2}\right)=-1+2-2<0$, so $\alpha_{1}+2 \alpha_{2}+2 \alpha_{3} \in \Delta$.

The short roots are α_{3} and its reflections, namely, $\alpha_{2}+\alpha_{3}$ and $\alpha_{1}+\alpha_{2}+\alpha_{3}$, the highest root is $\alpha_{1}+2 \alpha_{2}+2 \alpha_{3}$. We get the following Hasse diagram of the root poset.

