Topics in Combinatorics IV, Problems Class 8 (Week 18)

Problems class was mostly devoted to HW15-16. The main point is that it is a good idea to use what is known and not to use what is not known.
8.1. Let (G, S) be a Coxeter system, $w=s_{i_{1}} \ldots s_{i_{k}}$ a word. Let $s_{i} \in S$, assume that $s_{i} \in R(w)$. Then $s_{i}=s_{i_{j}}$ for some j.

Suppose all letters in w are distinct from s_{i}. Then $s_{i} \in R(w)$ is a product of other generators, and thus G is generated by $S \backslash s_{i}$. Denote $s_{j}=r_{\alpha_{j}}$, and define $L=\operatorname{span}_{\mathbb{R}}\left\{\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \backslash \alpha_{i}\right\}$. Then L has dimension $(n-1)$, and $\alpha_{i} \notin L$.

Observe that for $j \neq i$ for any $x \in \mathbb{R}^{n}$ we have $s_{j} x-x \in L$. Indeed,

$$
s_{j} x-x=\left(x-\left\langle x \mid \alpha_{j}\right\rangle \alpha_{j}\right)-x=-\left\langle x \mid \alpha_{j}\right\rangle \alpha_{j} \in L
$$

Furthermore, for every $g \in G$ we have $g x-x \in L$. This can be proven by induction on the length of g. The base is proved above, so we need to prove that if $g^{\prime} x-x \in L$ then $\left(s_{j} g^{\prime}\right) x-x \in L$. Indeed, denote $g^{\prime} x-x=l \in L$. Then
$\left(s_{j} g^{\prime}\right) x-x=s_{j}\left(g^{\prime} x\right)-x=s_{j}(x+l)-x=\left(s_{j} x-x\right)+s_{j} l=\left(s_{j} x-x\right)+\left(s_{j} l-l\right)+l=l_{1}+l_{2}+l \in L$,
where $l_{1}, l_{2} \in L$. Taking $g=s_{i}$ and $x=\alpha_{i}$, we obtain $s_{i} \alpha_{i}-\alpha_{i} \in L$. However, $s_{i} \alpha_{i}-\alpha_{i}=$ $-\alpha_{i}-\alpha_{i}=-2 \alpha_{i} \notin L$, so we got a contradiction.

