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Abstract

This report introduces the concept of penalised regression methods as a
tool to overcome issues faced by ordinary least squares regression, including
investigation into specific applications in real-world financial datasets.
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Introduction

Linear Regression is a statistical method used in a wide range of applications,
such as in data analytics and machine learning. In the fields of statistical
analysis, predictive modelling and machine learning, regression techniques
serve as fundamental tools for understanding and modelling relationships
between variables. Central to these methods lies Ordinary Least Squares
(OLS) regression, renowned for its simplicity and efficacy in estimating the
linear relationship between a dependent (response) variable and one or more
independent variables. The primary motivation behind OLS regression is to
minimise the sum of the squared differences between the observed and pre-
dicted values, which returns the line-of-best-fit through the data points in a
linear sense.

However, despite its widespread application, OLS regression has limita-
tions, particularly when dealing with high-dimensional data or when mul-
ticollinearity (a scenario where independent predictor variables are highly
correlated) is present. These situations can lead to overfitting, where the
model performs well on training data but poorly on unseen data, and can
render the model estimates unstable and difficult to interpret.

Penalised regression methods (otherwise known as regularisation methods or
shrinkage methods) include techniques such as Ridge Regression, the Lasso
(Least Absolute Shrinkage and Selection Operator), and Elastic Net. These
regression methods offer robust alternatives to OLS by introducing regu-
larisation terms into the loss function that the methods seek to minimise.
These regularisation terms penalise the size of the coefficients, which helps
to prevent overfitting, improve model generalization to new data, and in
some cases, aid in variable selection.

Ridge Regression introduces an ls penalty term, which is the square of the
magnitude of coefficients. This method is particularly useful in mitigat-
ing the multicollinearity problem by shrinking the coefficients evenly, but it
does not set any coefficients exactly to zero, which means it does not per-
form variable selection.



Lasso Regression, on the other hand, employs an [; penalty term, which
is the absolute value of the magnitude of coefficients. This characteristic
of the Lasso enables it to not only prevent overfitting but also to perform
variable selection by setting some coefficients to zero, thus excluding some
variables from the model entirely.

FElastic Net combines the penalties of Ridge and Lasso, making it partic-
ularly useful when dealing with highly correlated data. It blends the ability
to perform variable selection with the ability to handle multicollinearity, of-
fering a versatile and powerful modeling approach.

In the context of financial modelling, the predictive accuracy and inter-
pretability of the model are paramount. Financial datasets are often com-
plex, high-dimensional, and exhibit high correlations in the data, making
penalised regression methods potentially viable models. These methods can
enhance predictive performance and provide more reliable insights, which
are crucial for credit risk assessment, price forecasting models, and many
other financial applications.

The introduction of penalised regression methods represents a significant
advancement in the field of statistical modelling, offering a more nuanced
approach to dealing with the challenges posed by modern datasets. This
report aims to delve into the intricacies of these methods, explore their
theoretical underpinnings, demonstrate some of the predictive benefits and
illustrate their practical applications in financial modeling, providing a com-
prehensive overview of how these techniques can be effectively employed to
glean insights from complex financial data.



Linear Regression

2.1 Ordinary Least Squares Regression

The standard model of ordinary least squares (OLS) for multiple linear
regression is perhaps the most widely understood, due to its simplicity and
interpretability. Consider the standard model of multiple linear regression:

y=XB+e (2.1)
with y € R", 3 € R?, X € R"@»,

y is the response (dependent) variable; X is the predictor matrix, con-
sisting of x;; entries corresponding to the ith of n total observations of each
4 of p total predictor variables (regressors); 3 is the coefficient vector, with
each (; controlling the influence of its corresponding predictor variable in
the model; and € is the error term.

The model terms expand to give:

y=Po+ bix1 + Bowa + -+ Bprp + € (2.2)

where the [y coefficient is commonly known as the intercept term.

The error term, €, must conform to some key assumptions in order to ensure
the accurate modelling power of OLS regression. These key assumptions
are:

e El¢;] = 0: errors have mean 0 and do not depend on x

e Varle;] = o?: errors have a constant variance, are homoscedastic, and

do not depend on z
e ¢; and ¢; are independent for all 7 # j

e ¢; ~ N(0,0%): errors are independent and identically distributed as

Normal with mean 0 and variance o2.

If these assumptions hold true, then the Gauss-Markov Theorem states
states that OLS is the best unbiased linear estimator for the dataset.



However, though these assumptions may hold true in some scenarios, typ-
ically with small datasets, larger real-world datasets often do not conform,
and hence OLS regression becomes a less powerful tool within data science
and machine learning.

The B coefficients of the true, but unknown model are estimated by the OLS
regression model, yielding B coefficients, by minimising the residual sum of
squares (RSS):

RSS =Y (yi — i)’

i=1
= (v — XiB)?
=1

A closed form expression for the sum of square errors estimate for least
squares regression is therefore:

Y = XB)"(Y — XB) (2.3)

Yielding a closed form expression for the ordinary least squares model coef-
ficients: A
f=(XTx)"1xTy (2.4)

Theorem: The ordinary least squares regression coeflicients are unbiased,

~

that is E[5] = 3
Proof: Given the ordinary leasy squares coefficient estimate in Equation 2.4,

E[f] = E[(XTX)"'X"Y]
= (XTX)"'XTE[Y]
Noting that E[Y] = X3
E[f] = (XTX)""(XTX)B

=P

2.2 Why Penalised Regression?

To see why penalised regression methods are so widely used, understand-
ing of the shortcomings of ordinary least squares regression is key. Some
of the negative impacts of specific modelling issues that would ideally be
eliminated, or at least reduced, are very common in real-world, often high-
dimensional datasets.



When looking at the predictive ability of linear regression, one can decom-
pose it’s prediction error into square bias and variance. Least squares re-
gression possesses the zero-bias property, but can display high variance in
some scenarios. Reasons for high variance can come from various different
modelling intricacies.

2.2.1 Dimensionality

As expressed before, real world-high dimensional datasets often violate the
assumptions about € that make ordinary least squares so powerful. The
dimensionality of not only the true linear regression model, but also the
dataset used to fit a linear regression model, is key to ensure statistical
accuracy.

Ordinary least squares regression will include all p explanatory features
(predictor variables). When there are large number of predictors, a smaller
subset of ¢ < p particularly important predictors may be desirable. Not
only does this aid in the interpretability of the linear regression model, but
also this feature selection proposal could eliminate "noise” caused by less
relevant predictors.

It is also important note that linear regression is not well defined when
p > n, that is when the number of predictors is greater than the number of
observed data points.

Equation 2.4 expresses the matrix equation for OLS estimates:

g=(XTx)"'xTy (2.5)

Noting that Y € R", 3 € RP, X € R™P it is clear that for p > n, X7 X (the
matrix to invert) is singular, so there exists no unique solution. This leads
to problems fitting an accurate model to data consisting of lots of predictor
variables and not many observations.

2.2.2 Multicollinearity

Definition. Multicollinearity is a statistical phenomenon that occurs when
two or more independent variables in a regression model are highly corre-
lated with each other.

In the context of Ordinary Least Squares (OLS) regression, multicollinearity
can pose significant problems, affecting the precision of the estimates of the
model’s coefficients, which in turn can impact the interpretability and the
reliability of the model.



One of the key assumptions made for our least squares regression model is
that the errors, ¢; are independent of each other. Therefore, multicollinear-
ity leads to a less accurate regression model, as highly correlated variables
can cause to much "noise” in the model, which can lead to overfitting (see
Section 2.2.3 .

Effects of multicollinearity on OLS regression:

e Inflated Variance: Multicollinearity increases the variance of the
coefficient estimates, which means that the estimates of the coefficients
become less precise. High variance can make the model coefficients
unstable, where small changes in the data can lead to large changes in
the model coefficients and hence extrapolated (predicted) values.

e Unreliable Statistical Inferences: Due to the inflated variances,
the confidence intervals for the coefficient estimates can become very
wide, and hypothesis tests (like t-tests for individual regression coeffi-
cients) may not be reliable. This can lead to difficulties in determining
which independent variables are statistically significant predictors of
the dependent variable.

e Model Interpretability: Multicollinearity can make it difficult to
identify interpret the effects of individual predictor variables. When
variables are highly correlated, it becomes challenging to distinguish
their individual contributions to the response variable. Some or all
predictors could become insignificant when they should be significant
because of inflation in standard error for coefficients [2].

Testing for multicollinearity:
There are several ways to test for correlations between variables in a dataset:

e Correlation Matrix: One could examine the correlation matrix for
the independent variables. A popular type of correlation calculation
is the Pearson correlation coefficient, r:

Y@ -Dm-9) 20
V(@i — 2)%(yi — §)?

With z and y the two variables for which the correlation relationship
is being analysed. High correlation coefficients (near -1 or 1) between
lots of pairs of independent variables indicates potential multicollinear-
ity in the dataset.

Figure 2.1 (Left Panel) plots a heatmap of Pearson Correlation co-
efficients between independent numerical predictor variables in the
Credit dataset within the ISLR package in R [7]. We see for this
credit scoring dataset that there are clear correlations between Rat-
ing, Income, Balance and Limit explanatory variables.
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e Variance Inflation Factor (VIF): VIFs quantify how much the vari-
ance of an estimated regression coefficient increases if your predictors
are correlated, that is in comparison to if Rf equaled zero: detailing
the scenario in which the i** independent variable is orthogonal to the
other independent variables in the analysis. [15]. Variance Inflation
Factor is determined with the following calculation:

1 1
— — 2.7
1-— RZZ Tolerance (2.7)

VIF

Where R; is the unadjusted coefficient of determination for regressing
the i*" independent variable on the remaining ones, and the reciprocal
of the VIF is known as tolerance.

If no factors are correlated, the VIFs will all be equal to 1. In practice,
VIF >> 5 suggests high multicollinearity in a dataset [2].

The right panel of Figure 2.1 clearly shows that calculated VIFs of
Income, Balance and Limit against the response Rating are > 5,
and hence are likely contributing to multicollinearity within the credit
scoring dataset.

Variance Inflation Factor (VIF)
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Figure 2.1: Left Panel: Pearson correlation coefficients plotted for each
pair of numeric predictor variables in the Credit dataset. Right Panel: Bar
chart showing the Variance Inflation Factor calcualated for each explanatory
variable against the dependent Rating variable in the Credit dataset. R
code found in A.

Addressing multicollinearity:
Several approaches can be taken to mitigate its effects:

e Removing Variables: Eliminate one or more of the highly correlated
independent variables.

e Combining Variables: Combine highly correlated variables into a
single predictor through techniques like Principal Component Analysis
(PCA).

11



¢ Regularisation: Use penalised regression methods like Ridge regres-
sion or Lasso, which are designed to handle multicollinearity by shrink-
ing or completely eliminating the coefficients of correlated predictors.

2.2.3 Opverfitting

Definition. Overfitting occurs when the regression model fits too closely
the training data, so performs poorly on unseen data [21]. This is often due
to low bias, but high variance and an overly complex model, which leads to
a model that is not well-generalised.

Effects of overfitting:

e Poor generalisation: Overfitted models reflect the noise and anoma-
lies in the data (often caused by highly correlated variables), rather
than the overall population. This means means that predictions made
by the model on new data can be inaccurate and unreliable.

e Complexity and Interpretability: Overfitted models are often un-
necessarily complex, including many predictors that may not be rel-
evant to the underlying relationship being modeled. This complexity
can make the model difficult to interpret and understand.

In a more mathematical context, we can view overfitting consequences
by comparing how well a model performs on a training set in comparison to
a testing set. One of the ways we do this is by calculating the mean squared
error (MSE) of our regression model:

n

MSE= -3 (i 4i) (28)
=1

Where y; is the true value of the response variable in the training/ testing
set, and ¢; is the estimated value predicted by the regression model, after
fitting the corresponding x; predictor variable values to their corresponding
B; coeflicients.

When overfitting is present, the MSE calculated on the training set via Equa-
tion 2.8 tends to be low, but the MSE on the testing set is much higher,
meaning ~ predictions on unseen data are far less reliable.

Addressing Overfitting:

e Simplifying the Model: Reduce the complexity of the model by
removing irrelevant features or using fewer parameters.

12



e Cross-Validation: Use cross-validation (see Section 3.5 to ensure
that the model’s ability to generalize is not due to the specific way the
data was split.

e Penalised regression: Just like for multicollinearity, regularization
techniques like Ridge and Lasso can reduce the risk of overfitting, as
they add a penalty term to the loss function to constrain the size of
the coeflicients, effectively reducing model complexity.

2.3 What is Penalised Regression?

A penalised regression method is essentially a method of shrinking down a
subsection of the 3 coefficients of the OLS regression model, in order to re-
duce the impact of features that are not as relevant to the model. Penalised
regression methods are therefore sometimes known as ’shrinkage’ methods,
which force the regression model to shrink its coefficients towards 0 due the
‘penalty’ term imposed on its coefficients.

Recall that ordinary least squares (OLS) Regression selects predicted values
B in order to minimize the residual sum of squares (RSS):

RSS = Z(yz — X;f3)?
i=1

Non-OLS regression selects coefficients in order to minimise a similar objec-
tive function.

Specifically, penalised regression adds a penalty term (also known as a
regularisation term or shrinkage term),

AllBIlp (2.9)

1
e ||B]|p is the p-norm of the coefficients: ), (|5;|?)»

e )\ > ( is a hyper-parameter, in this case known as the tuning parame-
ter, defining how harshly the coefficients are penalised.

The aim is to now fit a penalised regression model to minimise the regular-
isation cost function:

> (i — XiB)* + MBIl (2.10)

i=1

Yielding penalised regression coefficients,

Bp=argﬂgnHy—XﬁHg+/\HBH§ (2.11)

13
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Figure 2.2: Figure showing the relationship between bias, variance, model
complexity and mean squared error [3].

In the process of shrinking the coefficients of predictors deemed to be less
relevant in the model, penalised regression methods introduce some bias
into our regression model, in order to reducing variance.

The aim is tuning A to find the optimum model by balancing the trade-off
between bias and variance, as can be seen in Figure 2.2.

14



Penalised Regression Methods

This report will focus on 3 commonly used penalised regression methods:
e Ridge regression: Ly = (3, HﬂZH%)% penalty term
e LASSO regression: L = (>_,|5;|) penalty term

e Elastic net regression: a weighted mix of LASSO and Ridge penalties

3.1 Ridge Regression

Ridge regression, first introduced by Hoerl and Kennard, 1970 [6] employs
the Lo regularisation term, in order to penalise the squares of the regres-
sion coefficients. Firstly, the setup of the environment within which ridge
regression can be performed.

e Start with fixed independent covariates (predictor variables) z; €
RP¢4=1,....n

e Observe y; = f(x;) +€,i=1,...,n

e f:RP — R unknown

e Var[e)] = o?

The Ridge regression is similar to Least Squares, but shrinks estimated
coefficients towards 0 that the model deems to be less relevant to the re-
sponse.

Given response vector y € R™ and predictor matrix X"™*P_ the ridge coeffi-
cients are defined as:

Bridge :argmmHy—XﬁHg—i-)\HBH% (31)

Where A > 0 is the tuning parameter for the penalty, which is determined
by K-Fold Cross Validation (see Section 3.6. A determines the amount of
shrinkage performed by the ridge regularisation term.

Usually when including the intercept term in the regression equation, its
corresponding coefficient is not penalised, as centreing the columns of X

15



solves to find the intercept Sy = ¥.
Hence, we can interpret the ridge regression as yielding ridge coefficients
that minimise the corresponding cost function

n

p p
D i—Bo—>_ Biry) +A> B (3:2)
=1 =1

i=1

Given the closed form expression for ordinary least squares in Equation
2.4, a closed form expression for the ridge coefficients can also be derived.
Given the expression for ordinary least squares coefficients and introducing
the ridge Lo penalty term:

(Y = XB)T(Y = XB) +A8" 3 (3.3)
the closed form expression for ridge coefficients can be derived.

(Y = XB)T(Y - XB) + 5"

= (VT = BIXT)(Y = XB) + ABY B
Expanding out the brackets:
=YYy —YTXB-pTXTYy + gT'XTXB+ 23T 8
=YTY —2v"Xp+ pTXTXB+ A\3T

Taking the derivative and setting equal to zero to find the minimum:

d
%:O—QYTX+2XTXﬁ+2)\B:0

And finally rearranging to find the ridge coefficient estimates:

— Brigge = (XTX + A 'xTy

Note: to impose the penalty terms with any shrinkage method, all predictor
variables must be standardised, otherwise the magnitude of the coefficients
will be skewed. For example, a feature in a smaller scale will be assigned a
coefficient disproportionately large compared to features on a larger scale,
and vice versa.

In practice, predictors in a dataset are all scaled to have variance 1, by
dividing each predictor variable by its standard deviation:

xij

\/ZL o (@ij — Tij)?

(3.4)

fij =

Theorem: (Existence theorem) For ridge regression, there always exists a

16



A > 0 such that the MSE is less than that of the least squares estimate
A=0.
Proof: proof of the theorem can be found in Hoerl (1970) [6]

This proof provides evidence that is the process of fitting a model to the
training set, Ridge regression always can find a regularisation term that will
be better than that of OLS regression.

Inspecting ridge coefficients in both panels of Figure 3.1 for the same credit
scoring as used in , as A increases, so does the penalty on the regression co-
efficients, as their magnitude decreases. Conversely, as the value of L; norm
of the coefficients increases, the regularisation term decreases and hence less
shrinkage occurs.

It is important to note that as the squares of the coefficients are penalised,
the ridge coefficients, Bndge may get close to 0, but can never equal 0. There-
fore, ridge regression models contain all p predictors. True models that in-
clude all p predictors, or very close to all p predictors, are known as dense
data generating models.

Theorem: Ridge coefficients are biased estimators.
Proof: This proof can be extended from the proof of least squares estimators
being unbiased:

E[Bridge] = E[(XTX + AI)_IXTY]

=E[(XTX + M) ' (XTX)(XTX) 1 xTy]
=E[(XTX + X)) M XTX)E[(XTX) 1 XxTY]
Noting that E[(XTX)"'X7Y] = E[Bys] = 8:
E[Briage] = B[(XTX +A)"H(XTX)]B

Hence bias is introduced, related to A O
This demonstrates that A controls the trade-off between bias and variance
in the ridge regression model. Through ridge regression, users determine
an acceptable loss in training accuracy (higher bias) in order to increase a
given model’s generalisation (lower variance). [8]

Ridge Advantages
Ridge regression’s penalty term, whilst introducing some bias, also intro-
duces major advantages over OLS regression for certain dataset features.

e Ridge regression can deal with n < p problems. This is observed
through analysis of the closed form matrix expression for Ridge coef-
ficients:

Bridge = (XTX + AI) 71Xy (3.5)

17



Even if X7 X is singular, the matrix term for which the inverse is
required is non-singular for A > 0, hence there exists a unique solution
to the equation. The introduction of the penalty term

e Shrinks coefficients hence reduces the impact of predictor variables
that are not relevant to the response variable. This is key in mitigating
the impact of multicollinearity, as shrinkage is imposed to decrease the
impact of noise caused by correlated variables.

e Decreases variance, leading to improved predictive performance on
unseen data.

Coefficients
0
I
Coefficients
0
I

Log Lambda L1 Norm

Figure 3.1: Trace plotd showing ridge coefficients against tuning parameter,
A, (left panel) and the L norm (right panel) for the simulated credit scoring
dataset [7]. Note that coefficients converge to 0 but never equal 0.

3.2 LASSO Regression

3.2.1 The LASSO

The LASSO (least absolute selection and shrinkage operator), first proposed
by Robert Tibshirani [18] is the other main regularisation method. Where
ridge doesn’t set any coefficients exactly to 0, the Li-penalty imposed by
the lasso means that it can, in fact, perform variable selection in the
linear model. This feature selection property is a key feature in correcting
multicollinearity. [12]

Definition: The lasso estimates are defined as:

Blasso :argmany_XﬁH%"i_)‘HﬁHl (36)

which minimise the quantity

n

> wi—Bo—>_ Bixy)>+ D18l (3.7)
j=1

=1

18



where, like ridge, A > 0 is a tuning parameter, selected via Cross-Validation
(Section 3.6).

Though there is no closed form expression available to calculate LASSO
coefficients, The LASSO has similar advantages to ridge:

e Can deal with n < p problems.

e Shrinks coefficients to reduces the impact of predictor variables that
are not relevant to the response.

e Decreases variance by increasing bias, leading to improved predictive
performance (on unseen data).

However, there are key differences between LASSO and Ridge regression that
dictate the more desirable model depending on the dataset being learned
from.

3.2.2 Ridge vs. The LASSO

Analysis of the variable selection feature of the LASSO leads into one of the
key differences between LASSO and ridge regression:

e When actual data-generating mechanisms are dense, and the true data
generating model includes lots of/ all p predictors, ridge regression is
generally more accurate, as ridge models include all p predictors.

e When actual data-generating mechanisms are sparse, where the true
data generating model includes a smaller subset of ¢ < p predictors,
LASSO regression is generally more accurate, as the feature selection
property yields sparse models so is more likely to be close to the true
model.

Figure 3.2 (left panel) demonstrates the relationship between Basso co-
efficients and lambda. The variable selection feature is clear here: as A
increases, the number of coefficients shrunk to zero increases, decreasing the
number of predictors included in the model and introducing a sparse, sim-
pler model.

Ridge and lasso regression can also be formulated as constrained opti-
misation problems:

Ridge:
(Y — XB)T(Y — X ) such that f78 <t

19
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Figure 3.2: Trace plots showing lasso regression coefficients against tuning
parameter, A, (left panel) and L; norm (right panel) for the simulated credit
dataset [7].

n p p
= minimise » (y; — Bo — » _ ai;) subject to y 7 <t
i—1 j=1 j=1
LASSO
(Y — XB)"T(Y — XB) such that 8] <t
n p p
—> minimise Z:(yZ — By — Zx”) subject toz 1B <t
7j=1 j=1

i=1 = _

For every A > 0, there exists a t such that the unique solutions for Ridge
and LASSO exist.

The constrained optimisation formulation demonstrates the differences in
the Ly and L; penalty terms. With 2 predictors, the B providing the mini-
mum RSS,; along with the penalty region defined by the conditions the op-
timisation problems are constrained by, can be plotted in order to observe
how Ridge and LASSO regression select B differently. Figure 3.3 illustrates
this, where the LASSO (left panel) has its penalty region constrained by
|B1| 4 |B2| <t and ridge (right panel) instead has its penalty region bound
by the circle 8?2 + 83 < t.

In the special case of n = p, that is the number of observations is the
same as the number of proposed predictors, X is the identity matrix (leading
diagonal of 1s and Os elsewhere, and the intercept Sy = 0, the B coefficients
for both ridge and LASSO regression can be computed explicitly. With this
setup, OLS regression minimises Z?Zl(yj —Bj)? = BJ‘?ZS = y; Computing
ridge coefficients:

aim to minimise:(y; — ;) + \3?

20



(a) (b)

Figure 3.3: Figure taken from [18], showing graphically how LASSO (a)
and ridge (b) coefficients are selected when balancing the RSS of the Least
Squares coefficients (contours lines) with the respective penalty terms (black
constraints). This illustrates why LASSO can select Blasso = 0, whilst B”dge
only get close to 0.

=y; — 2y;Bj + B} + \5;

d Aridge Aridge
g5 0=+ 2619 + 273}

— By = 2 i’: S (3.8)
To compute the LASSO coefficients:

aim to minimise:(y; 5]) + A5

=y —2y; 8 + 6] + >\|5j|

d R
— =0=—2y, + 26l,a550 /Blasso
dp I J g’
Differentiating piecewise:
N Yj — % if y; > /2\
Bjasso = Y + 5 if y] -5
0 if [y;] < %

The coeflicient estimates demonstrate the difference between the types of
shrinkage. The Ridge regression shrinks the OLS estimate to close to 0 as A
increases, whereas the LASSO penalty shrinks the coefficients at a constant
rate, unless

- A
l
lyjl = ‘B;S‘ < 5

in which case the L penalty pushes the coefficient to exactly zero.
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3.2.3 Adaptive LASSO

Since the introduction of the LASSO, multiple versions of the LASSO have
been introduced in an attempt to further optimise shrinkage methods, and
the bias-variance tradeoff. One of which is the adaptive LASSO.

Definition: The adaptive LASSO coefficients are defined to be [22]:

p
B =argmin ||V = XBJ3 + A3 w8l (3.9)
j=1

This yields estimates for coefficients using least squares, and then performs

variable selection via the LASSO, by assigning weights, w; = Bi As Bj in-
J

creases, the weights w; decrease, meaning the penalty imposed upon smaller

coefficients is greater (so shrink to 0 more quickly), whereas larger coeffi-

cients have a smaller bias after shrinkage.

One of the most fascinating aspects of the adaptive lasso is that it holds
oracle properties [22].

The oracle property essentially states that as n — oo, the adaptive LASSO
sets all the correct coefficients to zero of predictor variables in the model
that are not relevant. That is, say we have some set, S, of predictor indices
for the correct model of relevant predictors:

S={jel,...p:B+£0} (3.10)

Then say we have some set Sy of estimated coefficients deemed to not be
equal to zero by some regularization method, that is:

Sy={jel,.p:B#0} (3.11)
If this regularization method were to have the oracle property, then
Sy=95n—o00 (3.12)

The adaptive lasso is said to have this oracle property asymptotically. Intu-
itively, it could be thought that for large enough A would have this property,
however upon studying various regularization methods and their variable se-
lection properties, Fan and Li (2006) [4] suggested that the LASSO does not
have this oracle property.

3.2.4 Relaxed LASSO

The relaxed LASSO works on the basis of performing variable shrinkage and
variable selection separately.

22



Generally, LASSO regression is performed first to perform variable selection
and obtain a more sparse model of relevant predictors, and then another
regression method (e.g a combination of least squares and the lasso) is per-
formed to fit the final model:

n p
BA@ = arg mﬁin Z(yz - Zﬁjxij)z + )\qﬁz 1551 (3.13)
i=1 Jj J=1

3.3 Elastic Net Regression

Elastic net regression provides a weighted balance between ridge and the
LASSO, by adding the mixing parameter o € (0, 1), to incorporate both
l; and l; norm penalties into the RSS cost function. [23]. The elastic net
regression coefficients are therefore obtained via the following formulation:

l1—a
2

3:argngnlly—XﬁHgﬂLa/\HﬁHlJr NI (3.14)

Note: both A and « are selected by cross validation.

Mixing Percentage
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Figure 3.4: Figure showing RMSE calculated against tuning parameter, A,
with each coloured line representing a different mixing percentage, <, which
controls the balance between the ridge and LASSO penalty within the model.

Advantages of Elastic Net Regression:

e Grouping Effect: Elastic Net can handle the 'grouping effect’ more ef-
fectively than Lasso. The grouping effect corresponds to situations
where several predictors are highly correlated, where consequently
Lasso tends to select one variable from a group and ignore the others.
Elastic Net, by linearly combining the [; and Iy penalties, can select
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groups of correlated variables, which is often more interpretable and
desirable in practice.

e Stability in High Dimensions: In high-dimensional settings where the
number of predictors greatly exceeds the number of observations, Lasso
can behave erratically, whereas Ridge regression does not perform vari-
able selection. Elastic Net provides a more stable and consistent ap-
proach by blending the features of both, leading to better performance
in variable selection and coefficient shrinkage.

e Sparse Models: Like Lasso, Elastic Net encourages sparsity in the
model, but with greater flexibility due to the additional I penalty.
This can lead to more accurate and interpretable models, especially
in contexts where the true underlying model is believed to depend on
only a subset of the available predictors.

3.4 Penalised Logistic Regression

Penalised logistic regression extends the traditional logistic regression model
by introducing a penalty term to the loss function. Like the effect of the
penalty terms on OLS regression, this adjustment helps to prevent over-
fitting, manage high-dimensional data, and improve model generalisation
where binary outcomes are required.

3.4.1 Logistic Regression Model

Whereas OLS regression returns outcomes for a dependent variable that can
be of any arbitrary magnitude, the basic logistic regression model predicts
a binary outcome by modelling the log-odds of the dependent variable as a
linear combination of the independent variables. The probability p; that an
event occurs is given by

B 1

1l eXiP
where X; represents the predictor variables, and X; represents the coef-

ficients. The model is fitted by maximizing the likelihood function:

Di (3.15)

N
LB) =[]pa—p) v (3.16)
i=1

where y; are the binary outcomes, ¢ indexes each observation and N
is the total number of observations. Hence, the logistic regression model
calculates the probability of the event y; = 1 based on the predictors Xj;.
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3.4.2 Logistic Regression with LASSO and Ridge

In Ridge logistic regression, the I penalty term is imposed, and the objective
is the minimise the penalised cost function:

N p
—[>_wilog(pi) + (1 = yi)log(1 — pi)] + A Y _ B3 (3.17)
i=1 j=1
In LASSO logistic regression, the absolute values of 5 are penalised, and
the objective is the minimise the cost function:

N p
—[) " wilog(pi) + (1 — y:)log(1 — pi)] + A Y _ 155 (3.18)
=1

J=1

3.5 The Bayesian Setting

: Ridge regression and the lasso can be viewed through a Bayesian lens. [7].
The Bayesian regression setting assumes a prior distribution, p(8) for the
coefficient vector, 3. The likelihood of the data, expressed as f(Y|X, ),
details the likelihood function of the response vector Y, given the data X
and coefficients 8. Following Bayes’ Theorem, and assuming X is fixed, we
yield the form of posterior ditirbution up to a constant of proportionality

p(BIX,Y) o< f(Y|X, B)p(B) (3.19)

The usual linear model is assumed, with errors being independent and
identically distributed from a normal distribution.
The assumed distribution of the prior, p(3), dictates the specific penalised
regression method corresponding to the posterior mode of the model. Specif-
ically, assuming a density function g(e) such that p(g) = 1;:1 g(Bj), then

e If g corresponds to a Gaussian distribution with mean 0 and standard
deviation a function of A, that is

0.2

) (3.20)

Bj ~ N(0,
Then it follows that the posterior mode for § is given by the ridge
solution.
This prior encodes the belief that, a priori, the coefficients are likely
to be close to zero, with the strength of this belief controlled by the
regularization parameter A\. The larger the value of A, the stronger
the belief that the coefficients are small, leading to more significant
shrinkage.

25



e If g corresponds to a Laplace (double exponential) density, that is

p(B513 = Sean(-A3;) (321)

then it follows that the posterior mode of § is given by the lasso
solution.

The Laplace prior is sharply peaked at zero and has heavier tails than
the Gaussian distribution. This characteristic encourages sparsity in
the coefficients, 5, with many coefficients pushed exactly to zero when
A is sufficiently large. The sparsity property makes Lasso particularly
useful for variable selection in high-dimensional datasets where only
a subset of predictors is believed to be associated with the response
variable.

In summary, the Bayesian interpretation of Ridge and Lasso regression
offers a probabilistic perspective on regularisation. Ridge regression assumes
Gaussian priors on the coefficients, leading to shrinkage towards zero, while
Lasso assumes Laplace priors, encouraging sparsity by pushing many coef-
ficients exactly to zero. This interpretation connects the choice of penalty
in penalized regression methods to prior beliefs about the nature of the re-
gression coefficients and provides a principled framework for understanding
and applying these methods when such prior distribution conditions may be
assumed.

3.6 Choosing A

The performance of penalized regression methods such as Ridge, Lasso, and
Elastic Net heavily depends on the choice of the tuning parameter(s), which
control the strength of the penalty applied to the model coefficients. Se-
lecting the optimal value of these parameters is crucial for balancing the
bias-variance trade-off and achieving the best predictive performance.
Firstly, noting the results of the two extremums of \:

e \ =0 = Bm‘dge, BZQSSO = BZS, the least squares regression coefficients.
e A\ =00 = ﬁridge — O+a ﬁlasso =0.

Generally speaking, as the tuning parameter increases, the penalty im-
posed increases and hence both ridge and lasso estimate coefficients decrease.

For other regression methods, there are multiple different selection criterion
that one can attempt to minimise, such as Cp, AIC, BIC, Adjusted Retc.
However, these criterion depend on the dimensionality of the regression
model, which is not pre-determined in all regularisation methods.
Therefore, to tune A in practice, K-Fold Cross Validation is used.
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3.6.1 K-Fold Cross Validation

K-Fold Cross Validation is executed on a data-set via the following algo-
rithm, and as seen in Figure 3.5:

Algorithm : (K-Fold Cross Validation)
1. Split data into K number of folds (often K=10 is chosen).
2. Define a grid of possible A values

3. For each A, compute the MSE, as in Equation 2.8, on each ** fold
(validation set), and then compute the overall MSE for this A value.

4. Average out the MSE for each fold

5. Select the value of A for which the average MSE is the smallest

[ Training set

wsn [T T T T T T T T}
revwn (L T T T T [ ] W]
oo [ T T T T 1T M 1] =5

Training folds Test fold

Figure 3.5: Figure showing graphically the K-Fold Cross Validation Algo-
rithm.

Note: Generally speaking, A is selected to minimise the MSE, however
data scientists may select a slightly offset lambda. In the glmnet package
in R, one of the hyperparameter outputs is the A which outputs the simplest
model possible within 1 standard error of the minimum MSE, in order to
counteract overfitting (A > Apin.cv selected) or underfitting (A < Apin.cv
selected) of the model. The affect of this on training MSE can be seen in
Figure 3.7.

3.6.2 Nested Cross Validation

While standard cross-validation is effective for tuning parameter selection,
it can introduce bias when used simultaneously for model selection and per-
formance estimation. Nested cross-validation (NCV) addresses this issue by
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Figure 3.6: Figure showing how the selection of A affects mean squared error
of a simulated ridge regression [3].

providing a significantly less biased evaluation of the model’s performance.
[19]

Time Series A Analysis:

In the specific setting of time-series data analysis (common in financial mod-
els such as stock market forecasting), standard k-fold cross validation should
not be used. To simulate a real-world forecasting environment, that is from
the viewpoint of the present and predicting the future, the forecaster must
withhold all data about events that occur chronologically after the events
used for fitting the model [17].

Since the test set data comes chronologically after the training set for k-fold
cross validation, seen in Figure 3.5, a method is required that does not have
chronological bias. One such method is utilising hold-out cross-validation
where a subset of the data (split temporally) is reserved for validating the
model performance.

In addition, the fairly arbitrary choice of test set for k-fold cross valida-
tion means that the calculated test set error could be a poor estimate of
error on an independent test set.

Nested cross-validation utilises an inner loop for parameter tuning and an
outer loop for error analysis, as outlined in the Algorithm below and illus-
trated in Figure 3.8 | providing a possible method for a more appropriate
choice of A\ constant for fitting penalised regression models to time series
data.

Algorithm: (Nested Cross Validation)

1. Outer Loop: The dataset is split into kgyter folds. Each fold in turn
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Figure 3.7: Figure showing how the mean squared error changes as A in-
creases for a simulated ridge regression.

is used as a test set, with the remaining k,y,ter — 1 folds used for the
inner loop.

2. Inner Loop: Within each outer fold, the data is further divided into
Kinner folds for the purpose of tuning parameter selection, following
the cross-validation process described in 3.6.1 .

3. Model Training and Testing: For each outer fold, the model is trained
on the inner loop’s data with the optimal tuning parameters selected
from the inner CV and then tested on the outer test fold. This provides
an unbiased estimate of the model performance

One of the main advantages of nested CV is unbiased performance es-
timation: NCV allows for an unbiased estimate of the model’s predictive
performance on new data by separating the data used for tuning parameter
selection from the data used for performance evaluation. Another advantage
is robust model selection: NCV is particularly useful when comparing mul-
tiple models or sets of tuning parameters, as it ensures that the performance
estimation is not overly optimistic.

In conclusion, selecting the tuning parameter through cross-validation is
essential for optimizing the performance of penalized regression models.
Nested cross-validation further enhances this process by providing a more
reliable estimate of the model’s ability to generalize, making it a valuable
tool in scenarios involving multiple models or when an unbiased performance
estimate is crucial.
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Figure 3.8: Figure illustrating the nested cross validation process, with the
outer and inner folds, taken from [10].
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Simulations

4.1 Motivation

In this section, simulated data will be used to compare penalised regression
methods in different scenarios, focusing on how they differ and address fea-
tures in the model compared to ordinary least squares. All R code for these
simulations can be found in A.

4.2 Multicollinearity

4.2.1 Small Dimensions

This simulation details a model consisting of 2 highly correlated predictors.
This simulation is based on an example in [3]. Assuming a correct linear
model:

y=x1+x9+e€ (4.1)

Defining the intercept, Sp = 0; 81 = 1; f2 = 1 and the "noise” / error term,
e~ N(0,1).
Simulating highly correlated variables introduces multicollinearity into the

model:
Ty ~ N(O, 1)

z9 ~ N(0.9521,0.1%)

Note x5 is simply a scaling of z1, with some "noise” added.

Calculated least squares estimated coefficients and ridge estimated coeffi-
cients; iterating this process 30 times; and plotting the estimated 5{5, Bés in
comparison to Ildge, ;’dge, we see the spread between estimates in Figure
4.1.

In conclusion, the B’s show far more spread for ordinary least squares
regression than ridge regression when multicollinearity in present. In this
case, the ridge penalty has led to muchmore stability is coefficient estimates,
as the introduction in bias has led to a vast decrease in variance, yielding
much lower model prediction error.
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Highly correlated predictors, n=10, p =2, coefficients simulated 30 times
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Figure 4.1: Figure showing plotted 81 (blue) and S5 (red) for least squares
(left) and ridge (right) against each iteration, 4, in comparison to the as-
sumed correct coefficients (dotted lines).

4.2.2 Dense Data Generating Models

To somewhat accurately investigate multicollinearity within a high-dimensional
dataset, Monte Carlo simulations can be utilised to assess the behaviour of
the lasso, ridge and elastic net regularisation terms and resulting predic-
tive abilities of their respective models by the empirical process of actually
drawing lots of random samples and observing this behaviour. [13]. In these
high-dimensional simulations, the regression models willbe trained on half
of the simulated data, and will be analysed by averaging the MSE on the
testing set (the other half of the data) across the iterations of Monte Carlo
simulation. To fairly compare the regression models on these simulated
datasets, the true data generating models used will separate cases of dense
and sparse data generating mechanisms.

The Simulated Dataset.
Firstly, specifying the magnitude of collinearity by p = (0.0,0.3,0.6,0.9)

to yield the variance-covariance matrix, » , a positive-definite symmetric
matrix specifying the covariance matrix of the variables, such that:

1 p ... »p
p 1 ... »p
>=1. :
p p ... 1

Then, monte carlo simulations will be performed using the MASS pack-
age in R [20] to simulate the matrix of predictors:
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with 2;; ~ N(0,1), with a total of n observations and p covariates.
The response is simulated from the true data generating model:

y=PBo+Bix1+ -+ Bprp + € (4.2)

with € ~ N(0,12)

The models will be trained on a training set of n = 250 observation of
p = 100 predictors. Firstly, setting 3; = 1forj = 1,...,pandfBy = 0, the
proposed true data generating model is such that the intercept is 0 and all
other coefficients are 1:

y=0+x1+x2+ -+ 2100+ € (4.3)

Penalised regression methods can be analysed on a true dense data gen-
erating mechanism for simulated datasets of varied multicollinearity. The
predictive performance of different models is observed by training the models
on the observations, and calculating the mean squared error after prediction
on the testing set of remaining data points, that is:

n

MSE = Z(yi — ;%) (4.4)
i=1

fori=1,...,n

Table 4.1 shows the results yielded by the Monte Carlo simulation, by
averaging testing MSE values over 100 iterations. As can be seen, the OLS
regression model performs well with zero correlation introduced into the
training set, hence OLS assumptions are satisfied and the Gauss-Markov
Theorem holds. However, OLS regression performs increasingly more poorly
on the test set as the correlation between predictor variables increases, with
a significantly greater average test MSE. Contrastingly, LASSO and Ridge
penalised models perform better as multicollinearity in the dataset is intro-
duced. This speaks to the respective L; and Lo penalty terms abilities to
overcome correlations in the data.

Table 4.1: Test MSE
p=00]p=03]|p=06|p=09
OLS 0.80 24.39 48.22 71.36
LASSO 1.74 1.74 1.69 1.96
Ridge 1.69 1.44 1.25 1.07
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Table 4.2 shows the optimal A value for each p, that is A such that the
test MSE is minimised, hence showing the amount of shrinkage utilised by
each model. Clearly, the ridge model was more comfortable shrinking mul-
tiple coefficients. This speaks to ridge being the more appropriate model
for true dense data generating models (lots of predictors relevant to the re-
sponse), whereas lasso’s tendency to shrink covariates to 0 forces the tuning
parameter to be much smaller in this scenario.

Table 4.2: Optimal A
p=00]|p=03|p=06]|p=09
LASSO | 0.037 0.010 0.010 0.010

Ridge 0.10 8.17 20.15 20.55

Table 4.3 below shows the Bj estimates for j = 0,1,...,6, where the
simulation yields the highest amount of multicollinearity in the dataset,
p = 0.9. Clearly, the ridge regression model has selected coefficients that
diverge the least from the true §; = 1.0 for j = 1,...,6 for this simulation,
and also selects the intercept closest to the true g = 0. The OLS regression
model has obtained values generally with the most deviation from the true
data generating model, which is a key indicator of overfitting, helping to
explain the high test MSE (prediction error).

Table 4.3: Bj estimates:
Bo B | B2 | B3 | Bs | Bs | DB
OLS 0.123 | 1.05 | 0.57 | 1.26 | 1.04 | 0.93 | 1.16
LASSO | 0.18 | 1.27 | 0.56 | 1.64 | 1.46 | 0.56 | 1.63
Ridge | 0.087 | 1.03 | 0.95 | 1.01 | 1.04 | 0.98 | 1.02

In conclusion, it is clear that for true data generating models of lots
of relevant predictors to the response, ridge regression is the most powerful
predictive model. As multicollinearity increases in the data, OLS is proven in
this simulation to be a poor predictive model in comparison. This simulation
study has shown that in examples of a similar nature, the introduction of
bias in the B coefficient estimates could be crucial in order to yield accurate
predictions on unseen data.

4.2.3 Sparse Data Generating Models

A sparse data generating model is a model of predictor covariates relevant to
the response being significantly less than that of the total number of covari-
ates included in the training dataset. With the feature selection property
of LASSO regression, the resulting models are sparse and hence would be
epected to perform well in this setting. In this simulation, ridge, LASSO and
OLS will be compared as before, but adaptive LASSO and relaxed LASSO
are included to investigate these models as well.
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For this simulation, the dataset is set up as before, however the response is
simulated from a sparse data generating model, that is:

B =(1,0,0,1,0,0,1,0,0,...) (4.5)

proposes the true data generating model with 8; = 1Vi = 3k+1,k =1, ..., g.
That is:
y = Bra1 + Baza + Brar + ... + 51002100 + € (4.6)

As LASSO is theoretically the regression model of choice for sparse data
generating models, comparison with the adaptive lasso and relaxed lasso
variations could be an area of interest for certain datasets. Fitting of the
adaptive lasso model requires introduction of the weight function, wj, in
the regularisation term. This requires estimated coefficients of the ridge
regression model, Bj to create the absolute weights vector:

1
1551
Implementing this penalty factor into the LASSO regression model yields
the adaptive LASSO coeflicients:

p
Bada:argngnHY_XBH%—i_)‘ijlﬁl (48)
7=1

Imposing the same monte carlo simulated dataset conditions as before
and training the regression models on 1 half of the dataset of n = 500
observations, the average test MSE over 10 monte carlo simulations on the
remaining half of the dataset (the unseen data points) is recorded. Table
4.4 below provides these results.

Table 4.4: Test MSE
p=00]|p=03|p=06]|p=09

OLS 0.28 2.85 5.43 8.40
LASSO 1.39 1.28 1.29 1.27
Ridge 1.62 1.60 1.58 1.45

Adaptive LASSO | 1.24 1.23 1.22 1.29
Relaxed LASSO 1.51 1.32 1.42 1.27

As seen, OLS still fails to adapt its regression model accurately as correla-
tions between independent covariates increases, however performs extremely
well given uncorrelated predictors. In addition, the LASSO models becomes
the more effective of the penalised regression models, due to the tendency to
force coefficients to be exactly equal to 0 in order to yield sparse regression
models.
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Figure 4.2: Figure showing the number of non-zero coefficients

Plotting the number of non-zero coefficients selected by lasso regression mod-
els for their optimal A, as seen in Figure 4.2, illustrates each version of he
LASSO’s variable selection properties:

Noting that the true number of non-zero coefficients in this model is
34, Figure 4.2 shows that generally the adaptive lasso appears to be closest
to this number. The oracle property of the adaptive lasso states that as
n — 0o, the number of non-zero B converges to the true number. Scaling
the number of training data points, N, from 100 to 100,000 in 1 iteration of
the simulation, Figure 4.3 plots the number of non-zero coefficients selected
by the adaptive lasso. The graph would suggest this asymptotic oracle
property, perhaps verifying the oracle property proposal [22].

No. of non zero coefficients selected by adaptive lasso model as N increases
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Figure 4.3: Trace plot of the number of non zero coefficients selected by the
adaptive lasso as n increases.

R Code for this simulation is found in A.

4.3 p close ton

4.3.1 n=3, p=2

This simulation is based on a similar study in [3], and aims to understand the
robustness of OLS and Ridge regression in the case of few data observations.
Focusing on a model of 2 uncorrelated predictors, with n = 3 predictors, x;
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and x9 are simulated:
Ty ~ N(O, 1)
x2 ~ N(0,1)

The response, y is simulated from a true data generating model of
y=x1+x2+e¢€ (4.9)

with € ~ N(0,1). Hence, the true coefficients in this simulation are 5y = 0,

/31 = 17 /32 =1

Upon iterating estimated coefficients, B, 30 times for both least squares
and ridge regression, and plotting the spread of these coefficients in Figure
4.4, it is clear the ridge regression model is more robust in this situation,
and yields more consistent estimates, closer to the true 3; values.

< .o ° o 2
o § % °°

°

°
. o 004" 8 g%
o - ® o °

Estimated coefficients
[ ]
L]
L ]
Estimated coefficients
(]
()
)
L]
[ ]

Least squares iterations Ridge iterations

Figure 4.4: Figure showing plotted least squares coefficients (left panel)
and ridge coefficients (right panel) for 5; (blue) and (2 (red) against each
iteration, ¢. The black horizontal line in each plot is the true coefficient
value.

Conclusion: As seen in Figure 4.4, for each iteration, i, ridge estimated
coefficients are far more consistent than those for least squares, proving that
the introduction of some bias has again decreased variance for this model of
few observation in comparison to number of predictor variables.

4.3.2 p close to n in higher dimensions

Here, properties of ridge regression are generalised in higher dimensions,
where the number of predictor variables is still close to the number of ob-
servations.
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For this simulation, n = 100 and p = 99 are used. Like before:
x;~N(0,1),i=1,...,p (4.10)
observed 100 times, with
y =00+ Pix1+ ...+ Bg9299 + € (4.11)

the proposed model for the linear regression, presenting y as a linear com-
bination of the predictor variables.

The results from the simulation are plotted in Figure 4.5, which provides
similar evidence that ridge is far more robust in this example, and the re-
gression coefficients are again more consistent and close to the true value.
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Figure 4.5: Figure showing coefficient estimates for a least squares (left
panel) and ridge (right panel) regression model across a n=100, p=99 sim-
ulated dataset. The black horizontal line represents the true 3; value.

In Figure 4.5 suggests that the variance (spread) of ridge coefficients is
far smaller than that of the least squares estimates. This means that the
ridge coeflicients are far more consistent for this p=99, n=100 simulation,
so it would be assumed that the model is more accurate, and will perform
better on unseen data. R Code for this simulation is found in A.

4.4 Ridge, The Lasso, Elastic Net

In this section, results are explored of applying ridge, the lasso and elastic
net regression models to a simulated dataset, seatpos in the R package far-
away [5]. The purpose of this simulation is to investigate the effect of the
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tuning parameter, A\ > 0, on the training MSE and coefficent shrinkage of
each penalised regression model, and not to perform any predictive applica-
tion.

The simulated dataset of n=38 observations and p=9 independent variables
(8 predictors) is based on modelling the driving seat position of an individ-
ual against features such as foot size, leg length, height etc. The first few
observation of this dataset is included in the table in Appendix A.
Intuitively, this dataset includes multicollinearity. We can verify this using a
pairs plot to analyse the possible correlations within the dataset. As seen in
Figure 4.6, features such as Age and Height are fairly uncorrelated, whereas
features such as Height and HtShoes present high correlation.
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Figure 4.6: Figure showing a pairs plot of the simulated dataset, used to
inspect possible correlated relationships between variables.

Upon fitting ridge, lasso and elastic net regression methods are fit to the
dataset. It is discovered that for elastic net regression, the hyperparameter
« returns the smallest MSE value at o = 0.01. Comparison of mean squared
error results, as well as the magnitude of regression coefficients, establishes
how these models differ. Figure 4.7 and figure 4.8 show these differences.
In Figure 4.7, the left-hand vertical dotted line of each panel represents the
value of A for which the MSE is minimised, whereas the right-hand vertical
dotted line of each panel represents the value of A that returns the simplest
model given its MSE is within 1 standard error of the minimum MSE. R
Code for this simulation is found in A.
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Figure 4.7: Figure showing the training MSE of each of Ridge (left panel),
LASSO (centre panel) and Elastic Net (right panel)
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Figure 4.8: Figure showing the header of a selected subsection of a credit
scoring dataset, used in our investigation of relevant predictor variables.
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Applications: Penalised Regression in Fi-
nance

5.1 Penalised Logistic Regression for Loan Status
Classification

Logistic regression, which is useful for predicting the occurrence or non oc-
currence of a quality or outcome based on values of a set of forecaster vari-
ables, is a multivariate analysis model [9]. In the area of banking, corporate
finance and investments, logistic regression applications have frequently been
used, specifically for the default-prediction model.

Accurate prediction of creditworthiness is crucial for financial institutions
to make informed decisions about issuing loans and lines of credit. Tra-
ditional logistic regression often faces challenges like multicollinearity and
model overfitting in credit scoring datasets. This section explores the appli-
cation of penalised regression methods—ridge and lasso logistic regression to
credit score classification. This investigation includes a case study on a real-
world dataset, analysing whether penalised logistic regression models could
be a more appropriate approach than that of standard logistic regression.

5.1.1 The Dataset

For this investigation, a loan status classification dataset is used (Kag-
gle.com: A) to analyse how statistically viable penalised logistic regression
methods can be in comparison to standard logisitic regression, and whether
or not a financial institution in this field might choose to employ these tech-
niques. The dataset includes 28638 observations of 10 predictor variables,
with 1 binary response variable loan status. The first few observations can
be seen in Table 5.1.

Table 5.1: Loan Status Classification Dataset

age | income | home ownership | loan length | loan intent
22 | 59000 rent 123 personal
21 9600 own 5 education
25 9600 mortgage 1 medical
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loan grade | loan amount | loan status | default before? | cred hist len
D 35000 1 Y 3
B 1000 0 N 2
C 5500 1 N 3

5.1.2 The Model

The response variable loan status is a binary response variable, taking val-
ues 0 or 1, for a "good” or "bad” loan respectively. A loan is said to be
bad if a customer is in default, which means that person is unable to ser-
vice their financial debt/ obligation [1]. The response, denoted Y, follows
the Bernoulli distribution (Binomial distribution with n = 1) with unknown
probability, p, of success:

)1 success (bad loan - customer in default), with probability p,
0 failure (good loan), with probability 1 — p.

Like seen in section 3.4, the logistic regression model works to calculate the
probability of class membership, so in this example provides the probability
that a loan is in default (bad):

- 1 + e~ (Bo+B1X1+B2Xo+...

This is achieved by maximising the likelihood function:

N
L(3) = [[ oV (1 —po)' (5.1)
=1

The logistic regression model classifies a response from an unseen set of
data by calculating the probability of success:

P(Y=1)>05 = Y =1 (5.2)

To assess the assumed effectiveness of including the L1 and Lo penalties,
multicollinearity within the dataset can be investigated. High correlation
between lots of variables within the dataset should lead to inflated coeffi-
cients and overfitting for the standard logistic regression model, whilst the
penalised logistic regression models should retain a higher predictive ability,
as seen in simulations in Section (reference section).

To test for multicollinearity within the dataset, variance inflation factors

(VIFs) can be calculated, as specified in Section 2.2.2. Table 5.2 shows the
highest 4 VIFs calculated for this dataset, for numerical variables.
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Table 5.2: Variance Inflation Factors
Predictor | income | loan_length | loan_amnt | cred_hist_length

VIF 4.4 2.1 2.1 4.2

Noting that all VIF < 5 for numerical values, and a dataset containing lots
of observations for only 11 explanatory variables, it could be concluded that
the bias-variance tradeoff imposed by penalised logistic regression penalties
may not benefit this particular financial model. However, penalised logsitic
regression model showing powerful predictive abilities of at least similar to
that of the standard logistic regression would suggest a powerful model in
the case of a much less simple, high-dimensional dataset.

To test the hypothesis that penalised logistic regression is a powerful tool
for credit-deafult classification applications, ridge, lasso and standard logis-
tic regression models is fit to a random 70% of the data to train the models.
The model’s predictive accuracy is tested on the remaining 30% of the data
(the testing set).

5.1.3 Results

To analyse the predictive abilities of the model, the classifications of unseen
data of each model are compared against the true classification of the re-
sponse in the testing set. For each model, a confusion matrix is produced
that outputs the counts of each models predicted classifications on the test
set against the true value, as can be seen in the Tables 5.3 below.

5.3.1:Standard 5.3.2:LASSO 5.3.3:Ridge
true true true

pred | 0 1 pred | 0 1 pred | 0 1

0 6655 817 0 6657 784 0 6707 878

1 275 845 1 273 878 1 223 784

Calculating the accuracy (proportion of correct classifications), sensitiv-
ity (proportion of correct "bad loan”/ customer in default classifications)
and specificity (proportion of correct ”good loan” classifications) [11] pro-
vides the necessary data to conclude whether the penalised logistic regression
models may be more desirable in the credit classification field than that of
standard logistic regression. These values can be found in Table 5.4, all
rounded to 3 significant figures.

Table 5.4: Accuracy, Sensitivity and Specificity

Accuracy | Sensitivity | Specificity
Standard 0.873 0.508 0.960
LASSO 0.877 0.528 0.961
Ridge 0.872 0.472 0.968
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Though the ridge penalty yields the most desirable specificity, meaning
the model is most likely to correctly classify a loan which will not end up
defaulting, the lasso logistic regression model has the highest accuracy and
sensitivity. Given this application is regressing the response on just 11 pre-
dictor variables, with not a significantly high amount of multicollinearity
within the dataset, one can conclude that for a financial institution, the
lasso logistic regression model is a more appropriate model to fit than the
standard logistic regression model.

The penalised logistic model should, in theory confirmed by simulation in
section 2.2.2, continue to outperform the standard logistic regression model
further as an increased number of explanatory variables are introduced, per-
haps with an inherit correlation between other features as well. In fact, one
would assume that banks have extremely large datasets for loan application
classification.

Inspection of the estimated coefficients of the most accurate model signal
which variables are most likely to have the greatest impact on the determina-
tion of loan status, which can not only be useful to financial institutions, but
also to prospective customers who may wish to judge their chances before
applying for a loan. For example, a customer who was previously defaulted
on a loan, may wish to understand if this is likely to impact their ability
to receive a loan even if they now own a home outright. Inspection of the
relevant coefficients in the lasso model provides this information:

9 = 0.0324(cb_person_default_on_fileY') —1.18(person_home_ownershipOWN)
+0.09165(person-home_ownershipRENT')

Interpretation of these coefficients show that home ownership (3 = —1.18)
decreases the chances of a classification of 1 (customer defaulting) more than
a previous default record (3 = 0.0324) increases the chances of a "bad loan”
classification. This would suggest that a customer who has previously de-
faulted on a loan, but now bought a home, could reapply for a loan with a

bank using the same logistic regression model.

In conclusion, for a dataset of this nature, penalised logistic regression is
a very powerful tool. The ability of the L and Lo penalties to limit model
overfitting and mitigate against "noise” in high-dimensional datasets could
provide financial institutions, depending on their standards for accuracy,
sensitivity and specificity, with accurate enough models to ensure profitabil-
ity as datasets continue to increase in dimensionality. R Code for this study
is found in A.
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5.2 Stock Price Prediction

Stock price prediction, commonly referred to as stock price forecasting, in-
volves estimation of a future stock price traded on an exchange. Accurate
stock price forecasting can provide highly desirable opportunities for profit,
and provides a base for companies or individuals looking for the potential
to make a ”"bet” on the market, which may involve buying or a stock that
may be predicted to trend up or down respectively.

Correlation between stock prices is extremely potent in financial markets.
Though news events, economic recessions, potential conflict and many more
factors contribute to continuous random fluctuations in stock prices, compet-
ing companies and relevant index funds often see extremely similar trends in
stock price. This study will investigate the accuracy of penalised regression
models in counteracting overfitting that is commonly seen when ordinary
least squares regression is applied to stocks exhibiting high correlations.

5.2.1 Stock Market Data

The data these models are trained on is compiled from the start of 2021 until
the start of 2022, where the closing price of Google stock will be modelled
as the response variable to predict, with proposed explanatory features in-
cluding opening price, highest price, lowest price and volume of stock traded
for each day of Apple stock and Nasdaq 100 index fund. Apple is included
in the investigation to analyse the impact of one of Google’s largest com-
petitors [14], and the Nasdaq 100 is included as it is an index fund of 100
of the United States’ most profitable big tech companies, and it is said to
have influence over tech company stock [16]. The first 3 days of the training
data, of which there are 14 variables spanning 250 days total, can be viewed
in Table 5.5.

Table 5.5: Stock Market Data for Stock Price Prediction

Date Google Close | Google Open | Google High | Google Low
2020-01-02 68.3685 67.0775 68.407 67.0775
2020-01-03 68.0330 67.3930 68.625 67.2772
2020-01-06 69.7105 67.5000 69.825 67.5000

Goog Volume | Appl Open | Appl High | Appl Low | Appl Volume
28132000 74.0600 75.150 73.7975 135480400
23728000 74.2875 75.145 74.1250 146322800
34646000 73.4475 74.990 73.1875 118387200
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NSDQ Open | NSDQ High | NSDQ Low | NSDQ Volume
214.4 216.16 213.98 30969400
213.3 215.47 213.28 27518900
212.5 215.59 212.24 21655300

Investigation of multicollinearity, undertaken by the plotting of the Pear-
son correlation matrices as seen in Figure 5.1 reveals a potential linear regres-
sion modelling flaw, pointing towards inflated coefficients and overfitting.
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Figure 5.1: Figure showing Pearson correlation matrices within the stock

price prediction data.

As can be seen in Figure 5.1, the Pearson correlation coefficients calcu-
lated between Google stock price indicators & 1(opening price, closing price,
highest price, lowest price). There is a similar magnitude of correlation be-
tween the prices of the 3 different stocks, and given Pearson correlation
coefficient, r = 1 = perfectly positive correlation, multicollinearity can
be deduced in the dataset. As seen in Section 2.2.2, this indicates that the
introduction of a penalty term may be an appropriate regression method to

employ for stock price forecasting.

For this application, ridge, lasso and elastic net regression models are all
fit to the data, to explore the different results yielded between the 3 differ-
ent models and deduce the most appropriate for forecasting in stock price
datasets which exhibit similar relationships between exploratory predictors.
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5.2.2 Results

For the elastic net regression model, the optimum mixing parameter, o*, was
found to be o* = 0.13 for this study. To find the optimum «*, which controls
the balance between [; and [y penalties within the elastic net regression
model and hence the bias-variance tradeoff, the model was fit iteratively for
a increasing from 0 to 1 in 0.01 increments. The optimum « was recorded
for which the mean squared error was at its minimum when calculated on
the training set:

* 1 . %
o = argmin — z;(yi - X;0) (5.3)
=
Where in this case for elastic net regression,
l-«

5 AIBIS (5:4)

B= argmﬁinHnyﬁH%+a)\||BHl +

Table 5.6 below provides mean squared error results obtained after fitting
the penalised regression models on the training set (2020-2021), along with
the optimum A, which in this case was taken to be, similarly to in the
selection of «, the tuning parameter that also minimised the mean squared
€rTor.

Table 5.6: Training MSE and A Minimising MSE
Model Optimum A | Training MSE
Ridge 0.8749442 0.8971229

LASSO 0.05245153 0.4398327

Elastic Net | 0.00673034 0.316318

To draw conclusions on the effectiveness of each model for this stock
price forecasting application, unseen data, namely the price of Google stock
on daily close for the year of 2021 and the year of 2022, is estimated after the
relevant predictors are fit to each of the 3 sets of B estimated coefficients,
and the MSE is calculated on each year, acting as 2 testing sets. Both
years are tested, as the trading year of 2021 showed similar trends to the
2020 training set (both fairly steady up-trends), whilst 2022 was generally
a more volatile year for tech stocks (unlike the testing set). Table 5.7 below
provides the stock price forecast mean squared error for each of the trading
years 2021 and 2022.

Table 5.7: Test MSE for Forecasted Stock Price, 2021 and 2022

Model 2021 Forecasting MSE | 2022 Forecasting MSE

Ridge 42.75756 33.53733

LASSO 1.473568 2.169171
Elastic Net 0.7492672 1.103368
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Interpreting these results, the elastic net and lasso regression models
can both be seen to be fairly accurate in this setting, and the forecasted
MSEs being close to the training MSE would suggest both models are well
enough defined to perform well on the testing set as well as the training
set. However, the results obtained from the ridge model juxtapose this,
as the performance on the testing sets is significantly worse than on the
training set. This is symptomatic of overfitting and would suggest that the
noise caused by extremely highly correlated predictor variables has diverted
/BTidge coefficients too far from the true model. One possible cause of this
could be Ridge regression inability to perform feature selection, and would
suggest the true model, y = X does not include all p predictors, but a
smaller subset of them. Figures 5.2 and 5.3 plot the forecasted closing price
of Google stock obtained by each of the models within the same time series
as the true values.

Actual vs Forecasted Values, 2021
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Google Closing Price

o 50 100 150 200 250
Trading Day

Figure 5.2: 2021 time series data for predicted Google stock closing price
against the actual price (blue).

Actual vs Forecasted Values, 2022

Trading Day

Figure 5.3: 2022 time series data for predicted Google stock closing price
against the actual price (blue).

In conclusion, the elastic net and lasso models clearly perform well under
highly correlated stock market data. The ridge model’s inability to force co-
efficients to 0 leaves it vulnerable to inflated coefficients due to noise between
highly correlated variables. The elastic net, performing best, perhaps does
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this through its ability to mitigate from the grouping effect, in which lasso
perhaps removes relevant variables from the model due to high correlation
with another variable, instead of assigning both a similar coefficient [23]. R
Code for this study is found in A.
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Discussion

This report looked to explore penalised regression methods as alternative
linear regression models to the standard ordinary least squares, as well as
touching on areas of study such as Bayesian Shrinkage and Logistic Re-
gression, whereby penalised methods could exhibit similar benefits. This
has been achieved by exploring the theory behind regularisation terms, and
then investigating the impact on simulated datasets and real-world datasets
exhibiting features that do not adhere to data assumptions required by other
regression methods.

Chapter 2 examined ordinary least squares regression, and explored some
of the drawbacks under certain conditions. This led to the motivation be-
hind penalised regression methods and the issues with OLS regression that
data scientists may wish to negate, and introduction of Lo (ridge) and L;
(lasso) penalty terms provides a method that allows for balancing of the
bias-variance trade off.

For ridge and lasso regression, it is clear the circumstances in which each
method is more desirable. When a true data generating model is dense,
and lots of predictors are relevant to the response, ridge regression exhibits
powerful robustness, consistency and predictive accuracy. Conversely, when
a true data generating model is sparse, and a smaller subset of predictors
are relevant to the response, the feature selection property of the LASSO
allows it to counteract overfitting and yield a simpler model.

For logistic regression, explored in the loan status classification example
of Section 5.1, penalised methods have benefits over standard logistic re-
gression, which similarly to OLS can also yield inaccurate results in high-
dimensional datasets with high levels of correlation. Similarly, in stock price
prediction, the extremely high correlation between variables allows elastic
net regression, with the a parameter to balance the L; and Lo penalties, to
not only shrink variables to yield a simpler linear regression model, but to
also counteract the grouping effect.

Further investigation into regularisation, in a similar manner to this re-
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port, could involve research into neural networks with L; and Lo penalties,
which have applications in deep learning and prediction.
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Appendix A: R Code and Data

All R code used in this can be found at:
https://github.com/joshkaura/Penalised-Regression-Methods/tree/main

Seatpos data in faraway: Table: Seatpos Dataset - Faraway Package in
R [5]

Age | Weight | HtShoes | Ht | Seated | Arm | Thigh | Leg | hipcenter
46 180 187.2 184.9 95.2 36.1 45.3 | 41.3 -206.3
31 175 167.5 165.5 | 83.8 | 329 | 36.5 | 35.9 -178.
23 100 153.6 152.2 | 829 | 26.0 | 36.6 |31.0| -71.673

Loan Status classification dataset: https://www.kaggle.com/datasets/laotse/credit-
risk-dataset
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