
Bayesian Approaches to Penalised Regression

Anthony Burn

April 21, 2024

Preface

This piece of work is a result of my own and I have complied with the Department’s
guidance on multiple submission and on use of AI tools. Material from the work of others
not involved in the project has been acknowledged, quotations and paraphrases suitably
indicated, and all uses of AI tools have been declared.

i

Contents

Preface i

1 Introduction 1

2 Linear Regression 2
2.1 Ordinary Least Squares Regression . 2
2.2 Collinearity in Least Squares Regression . 3
2.3 Overfitting . 5

3 Ridge and Lasso Regression 7
3.1 Ridge Regression . 7
3.2 The Bias-Variance Trade off . 10
3.3 Lasso Regression . 12

4 Bayesian Linear Regression 13
4.1 Bayesian Methodology . 13
4.2 Choosing Priors . 14
4.3 Bayesian Ridge . 16

4.3.1 Dealing with σ2 . 18
4.3.2 The Normal-Inverse-Gamma (NIG) Prior 19

5 General Bayesian Shrinkage Priors 22
5.1 Hierarchies in Bayesian Penalised Regression 22
5.2 Bayesian Lasso and Elastic Net . 24

5.2.1 Bayesian Lasso . 24
5.2.2 The Elastic Net . 25

5.3 Determining Optimal Penalisation Parameters 28
5.3.1 Full-Bayes . 29
5.3.2 Empirical-Bayes . 30
5.3.3 Cross-Validation . 31

5.4 Variable Selection . 35
5.4.1 Lack of Sparsity Inducing Power of the Ridge Prior 35
5.4.2 Spike-And-Slab . 36
5.4.3 Continuous Sparse Priors . 39
5.4.4 The Finnish Horseshoe . 44

5.5 Specifying a Custom Prior . 46
5.6 Comparing Variable Selection Schemes . 49

6 Simulation Study 50

7 Conclusion 55

Appendices 58

ii

CONTENTS iii

A Appendices 59
A.1 Example 2.2.2 . 59
A.2 Example 3.2.3 . 59
A.3 Data Generation (parameters tuned for 4.3.1) 60
A.4 Stan NIG prior . 61
A.5 LOO-CV in RStudio . 62
A.6 Normal-Inverse-Gamma Prior Ready for LOO 63
A.7 Spike and Slab Stan . 63
A.8 Horseshoe Prior Stan . 64
A.9 Strawderman-Berger Prior Stan . 65
A.10 Finnish Horseshoe Prior Stan . 65
A.11 Hierarchical NIG Prior Stan . 66
A.12 Variable Selection Functions . 67
A.13 Simulation Master (functions) . 69
A.14 Simulation Study (Running) . 74
A.15 Figures . 79
A.16 Example 5.2.2. 79
A.17 Bayesian Lasso Stan . 81
A.18 Elastic Net Stan . 81
A.19 Burn (custom) Prior Stan . 82

Chapter 1

Introduction

In 1970, Arthur E. Hoerl and Robert W. Kennard [10] proposed an ad-hoc solution to prob-
lems faced in linear regression. They found that linear models often become more useful
and exhibit superior predictive accuracy with the introduction of a penalising parameter
to reduce the size of estimated β̂ coefficients. This project introduces the problems which
plague ordinary least square regression and details how they are fixed through coefficient
penalisation.

The ridge regression estimator and the lasso regression estimators both improve the
predictive performance of linear models, and have surprisingly elegant links to Bayesian
statistics which are detailed in this project. However, the transition from Frequentist to
Bayesian statistics prompts extra difficulties and questions, for instance, how should we
determine the penalisation parameter? How can we determine coefficients in the Bayesian
setting? How do we determine reasonable prior distributions for our parameters? This
project attempts to answer these questions while providing an intuitive and simple in-
troduction to Bayesian thinking with regards to linear regression. Upon setting up our
models, we then compare their efficacy and parsimony through a simulation study. The
Bayesian approach has several advantages over traditional approaches such as:

• Intuitive derivations of popular frequentist penalisation techniques in the Bayesian
setting, using well known distributions (for example the derivation of (4.4))

• Having multiple ways to calculate the optimal penalising parameter, not just through
cross-validation (as is the common case)

• The opportunity to carry out a Bayesian analysis of our estimated parameters. This
means we can set up credible intervals for all estimated parameters, which (depending
on personal preference) can be nicer to interpret

• Including extra information in our models through the use of prior distributions on
various parameters and hyper-parameters can often improve model performance

• Superior predictive and inferential accuracy in many cases (as data suggests in our
simulation study)

We will show the derivation of Bayesian regression in a simple setting by hand and
then use RStan, [22], to perform complicated derivations and algorithms quickly and
effectively. Using RStan makes it so that we can create powerful and complicated models
which perform very competitively with Frequentist equivalents. All code is stored in the
appendix.

1

Chapter 2

Linear Regression

2.1 Ordinary Least Squares Regression

Let us say we wish to predict the height of a tall tree, as it is not easy to measure directly.
Various factors may impact (or be related to) the height of the tree, for instance, the width
of the base, the species of tree, soil density, rainfall and so on. Alongside knowledge of the
true height of a few trees and their respective factors, we can fit a linear model to predict
the height of trees using the various recorded factors, meaning we do not need to physically
measure their heights to have a reasonable estimate of them. In this motivating example,
the height of the tree is our response variable, Y = (y1, y2, ..., yn)

T , a n× 1 matrix, and
the various factors are our predictor variables, stored in the design matrix, X, a n× p1

matrix. With n representing the number of observations, while p is the number of predictor
variables. The linear model states Y = Xβ+ ϵ, with β = (β0, β1, ..., βp−1)

T being a p× 1
vector. The components of the vector β are called the regression parameters2 and these
parameters relate the predictor variables with the response. And, ϵ = (ϵ1, ϵ2, ..., ϵn)

T ,
an n × 1 vector. Notice that ϵ = Y − Xβ, and for each individual i ∈ {1, ..., n}, ϵi
is the distance between the response yi and

∑p−1
j=0 xijβj . We assume that for ∀i, ϵi are

independent and identically distributed such that ϵi ∼ N (0, σ2).
In order to make inferences about the relationship between our response vector, Y , and

our data, X, we must find an appropriate β. We assume that there are ”true” values of β,
which govern the true relationship between Y and X. In reality we do not know these true
values for β, and so we must estimate them. The most simple method of estimating β is
through least squares estimation, we also call this OLS (ordinary least squares) regression.
OLS regression is called as such as it estimates β to be whichever β̂ which minimises the
value of the sum of the square errors of our model, ϵT ϵ =

∑n
i=1 ϵ

2
i .

β̂ = argmin
β

ϵT ϵ, (2.1)

ϵT ϵ = (Y −Xβ)T (Y −Xβ),

= Y TY − Y TXβ − βTXTY + βTXTXβ,

∂(ϵT ϵ)

∂β
= −XTY −XTY +XTXβ + (βTXTX)T .

1When our model includes an intercept term, β0, the entries of the first column of the design matrix
are all 1.

2The regression parameters, β, are also referred to as the coefficients

2

CHAPTER 2. LINEAR REGRESSION 3

And now since we wish to minimise ϵT ϵ, we set the above expression to zero.

∂(ϵT ϵ)

∂β̂
= −2XTY + 2XTXβ̂ = 0,

XTXβ̂ = XTY .

Hence, we derive the normal equation,

β̂ = (XTX)−1XTY . (2.2)

The normal equation, (2.1), gives us the vector, β̂ = (β̂0, β̂1, ..., β̂p−1)
T , which minimises∑n

i=1 ϵ
2
i among the data used to train the model. We introduce the idea of estimator bias

to understand the basic properties of the estimate of β provided by the normal equation.

Definition 2.1.1. Bias refers to the difference between the expectation of our estimator,
E[β̂], and the true value of β.

Bias := E[β̂]− β.

For the normal equation estimate of β, (2.1), we calculate;

β̂bias = E[β̂]− β,

= E[(XTX)−1XTY]− β,

= (XTX)−1XTE[Y]− β,

= (XTX)−1XTXβ − β,

= 0.

Since the bias of this estimator is zero, we say that it is an unbiased estimator of the
”true” β. Furthermore, we can calculate the variance of β̂ as follows,

Var(β̂) = Var((XTX)−1XTY),

= (XTX)−1XTVar(Y)[(XTX)−1XT]T ,

= σ2(XTX)−1.

Although the above expression for Var(β̂) is correct, a real situation in which we know
σ2 is very rare. Hence, it must be estimated. It can be shown that

s2 =
ϵ̂T ϵ̂

n− p

is an unbiased estimator3 of σ2. Due to the need to estimate σ2, we consider the stan-
dard error of β̂ (SE[β̂] = s

√
(XTX)−1) rather than the standard deviation (SD[β̂] =

σ
√
(XTX)−1), and use the t-distribution with n− p degrees of freedom when estimating

its properties. The lack of bias and the easily calculated variance of β̂ make it an appealing
option for fitting a linear regression model. However, in reality we often find that (2.1)
does not provide us with the optimal β̂, in terms of predictive and inferential power.

2.2 Collinearity in Least Squares Regression

Definition 2.2.1. Collinearity in linear regression refers to the event of two (or more)
predictor variables being strongly linearly related [27].

3Where ϵ̂ = Y −Xβ̂.

CHAPTER 2. LINEAR REGRESSION 4

Collinearity manifests itself with regards to our linear model within the design matrix,
X. It results in multiple columns of X being very similar, and is especially common in
models with lots of predictor variables (when p is large). While collinearity is present in
predictor variables the individual components of β̂ representing the relationships between
the predictors and the response will exhibit high standard errors.

Example 2.2.2. (Code in appendix, 2.2.2 A). Consider data simulated as follows:

X ∼ N3

0
0
0

 ,

1 0 0
0 1 0.9
0 0.9 1

 .

We take n = 10 samples from this multivariate normal distribution. Notice that variable
x1 is independent of x2 and x3, however, x2 and x3 have a high covariance of 0.94. During
simulation this means that there will be high collinearity between x2 and x3. Consider a
true vector of β given by β = (5, 5, 5)T and a response variable, Y , given by Y = Xβ+ ϵ,
where ϵi ∼ N(0, 1). Fitting a linear regression model to use the generated data, X, to
predict the response, Y , results in estimates of the true β being calculated using (2.1).
These estimates, β̂, will have standard errors which roughly represent how sure we are
that the given β̂j takes the value which we have assigned to it. Using these standard
errors we can also run statistical tests to estimate the probabilities that any given βj is
insignificant (where βj = 0). When simulated the data above gives the following statistics.

j β̂j Std. Error t-value p-value

1 5.25 0.253 20.7 8.22× 10−7

2 4.47 0.975 4.59 3.74× 10−3

3 5.08 0.752 6.75 5.15× 10−4

Table 2.1: A table of results for the simulation detailed above.

Table 2.1 above shows the high standard errors of coefficients for highly collinear pre-
dictors, in this case j = 2 and j = 3 are collinear. The standard error of β̂1 is much lower
than that of β̂2 and β̂3. We say that a coefficient is insignificant if it equal to zero. The
table also shows the probability that any given predictor is insignificant in predicting the
value of Y . Since the standard errors for j = 2 and j = 3 are higher, the chance that the
related predictor variables are insignificant is much greater (although in this case they are
still all significant), in spite of the fact that the true value for each βj = 5.

The standard errors of the β components are given by SE(β̂i) = s
√
[(XTX)−1]ii,

where s is the unbiased estimate of the standard deviation of the error term, ϵi. In this
collinear case, the collinearity results in [(XTX)−1]22 and [(XTX)−1]33 being larger. To
aid with intuition, picture the model as unsure of which of the variables, β̂2 or β̂3, are
causing the underlying error. The data influencing β̂2 and β̂3 is so similar that the model
attributes high standard error to both of the estimates due to the uncertainty in which
of the two estimates are furthest from their theoretical true values (in the above example
the true values would be 5 for both betas).

Definition 2.2.3. Super-collinearity occurs when multiple predictor variables are ex-
actly linearly correlated.

4In this case, since the variances are all 1, the covariance is equivalent to the correlation between the
variables

CHAPTER 2. LINEAR REGRESSION 5

When we observe super-collinearity, some of the columns of X will be linearly depen-
dent and so, X will not be full of rank [27]. This indicates that XTX is singular, as
follows:

Consider an X ∈ Rn×p such that rank(X) < p. Hence, ∃ v ∈ Rp such that Xv = 0n,
where v is non-trivial. Then,

Xv = 0n,

XTXv = XT0n,

= 0p

Assuming XTX is invertible,

v = (XTX)−10p,

=⇒ v = 0p.

However, this is a contradiction as we assumed that v was non-trivial, and so our assump-
tion that XTX is invertible is false. This tells us that we cannot use equation (2.1) for
any models exhibiting super-collinearity since (XTX)−1 will be undefined □.

2.3 Overfitting

Definition 2.3.1. Overfitting occurs when a model is fit very closely to training data
resulting in poor predictive accuracy.

Within the context of the linear model, using the normal equation to obtain β̂ often
results in the model compensating for outlying data points in the design matrix, X. When
dealing with a data set containing a low number of observations, n small, outliers often
have a large influence on the values of β̂. Moreover, the model will often unnecessarily
account for random patterns in the error terms, ϵ, which arise in the training data. This
leads to β̂ values being too large, i.e. β̂ > β, resulting in poor predictive accuracy. This
concept is highlighted in figure 2.1.

Figure 2.1: The figure above shows models trained and tested on simulated data, plotted
with respect to one predictor variable.

CHAPTER 2. LINEAR REGRESSION 6

Figure 2.1 shows that the OLS line accounts for random patterns found in the error
terms, ϵ, in the data which the model was trained on. Accounting for errors in this way is
an example of overfitting. This overfitting hinders the predictive performance of the model.
The ridge regression line, is much simpler and is generally more effective at prediction.
We introduce ridge regression in the following chapter. Overfitting is undetectable when
testing a model on the data with which it has been trained, and it only becomes apparent
through inaccurate predictions. This is why we test our model on data which was not used
during the training of our model. This distinction is particularly important with respect
to OLS regression. OLS regression provides the closest fit to the data points that it is
trained upon which is mathematically possible, by minimising the residual sum of squares.
Because of this, if we only tested our model using the data with which it was trained we
would (potentially wrongly) believe that OLS regression provides the most optimal model
possible.

There are alternative regression methods available to OLS regression which can reduce
the impacts of collinearity and overfitting, such as principal component analysis (PCA)
[12]. PCA can improve predictive performance by compressing our data into uncorrelated
principal components, however, by changing the type of regression in this way we lose
the human interpretability of our model. This makes it harder to infer the relationship
between the response vector and our predictor variables. In general, when we seek to
make inferences about which factors impact a response variable, we seek a parsimonious
model. This means that we want our model to be simple. A simple model allows us to
make clearer observations about individual predictor variable’s effect on the response, and
linear regression is very simple and easy to interpret. The penalised regression methods
discussed in the next chapter reduce the problems of collinearity and overfitting in ordinary
least squares regression while keeping the models intuitive to interpret.

Chapter 3

Ridge and Lasso Regression

3.1 Ridge Regression

The problems of collinearity and overfitting in linear regression lead to the creation of the
ridge regression estimator [10].

Definition 3.1.1. The ridge regression estimator is the estimate of β given by the
following equation.

β̂(λ) = (XTX + λI)−1XTY , λ ∈ R+. (3.1)

The variable λ is known as the penalisation parameter and can be adjusted for best results.
Notice the similarity between (3.1) and (2.1), the only difference being the replacement of
(XTX)−1 with (XTX + λI)−1. Also, spot that if λ = 0 then (3.1) is identical to (2.1).
This penalising term is a way to reduce the impacts of overfitting and collinearity within
the data, the details of which we describe later in this section.

Definition 3.1.2. The p−norm ∥ · ∥p of an n dimensional vector, v, is given by ∥v∥p =
(vp1 + vp2 + ...+ vpn)

1
p .

Definition 3.1.3. The ridge loss function is given by

Lridge(β;λ) = ∥Y −Xβ∥22 + λ∥β∥22,

and we pick β̂ridge such that,

β̂(λ) = argmin
β

∥Y −Xβ∥22 + λ∥β∥22 , (3.2)

= argmin
β

n∑
i=1

(yi − xT
i β)

2 + λ

p∑
j=1

β2
j ,

[28] where xT
i denotes the ith row vector of X (which will have dimensions 1× p).

It is important to note that we do not penalise the intercept term β̂0 while using
frequentist penalisation methods. We can understand why this is the case by considering
a case raised in [24] (p.64). They raise the point that, if we were to penalise β0, then
shifting all response variables, yi → yi + c would not result in a shift of the predictions by
the same amount as β0 would shift to be less than β0 + c due to the penalisation. This is
not desirable.

Another important practical note for applying ridge (and all other penalised regression
methods) is that before we implement these techniques, we must first standardise our data
matrix, X. This is because the scale of our data impacts the values of β. Consider a single

7

CHAPTER 3. RIDGE AND LASSO REGRESSION 8

variable placed on a large scale, for instance we measure the volume of a swimming pool
in cubic millimeters as one of our predictor variables in a model. This results in the
associated column of data in our design matrix X being very large. Hence, the associated
βj coefficient will be much smaller than if we had used a different unit to measure the
volume such as cubic meters. Because this coefficient will be smaller, it will contribute less
to the penalty term. This is undesirable as we have no theoretical reason for this coefficient
to contribute less to the penalty. This issue is fixed by standardising the columns of our
data matrix. We do this using the equation for the standardised data cell, x̃ij ,

x̃ij =
xij − x̄j√
Var(xj)

,

where x̄j represents the mean of the jth column of X, and Var(xj) is the variance of
column j ofX, and xij is the data in the ith row and the jth column ofX. The standardised
design matrix, X̃ will have column means of zero and column variances of 1.

We wish to compare the models which arise using the least squares model, with β̂
given by (2.1), and a ridge regression model using equation (3.1). So, we now examine the
bias of the ridge regression estimator, and its penalising impact on the response variable.

Proposition 3.1.4. The magnitude of the bias of the ridge estimator is monotone in-
creasing with respect to the penalising parameter, λ.

Proof. To find the bias of the ridge estimator we must first find its expectation.

β̂(λ) = (XTX + λI)−1XTY ,

E[β̂(λ)] = E[(XTX + λI)−1XTY],

= (XTX + λI)−1XTE[Y],

= (XTX + λI)−1XTXβ.

Consider the expression,
XTX = XTX + λI − λI,

premultiplying both sides by (XTX + λI)−1 gives us,

(XTX + λI)−1XTX = I − λ(XTX + λI)−1.

We can substitute this into our expression for E[β̂(λ)]

E[β̂(λ)] = β − λ(XTX + λI)−1β,

hence, we find the bias of the ridge estimator to be:

Biasridge = −λ(XTX + λI)−1β. (3.3)

The equation above shows that the bias of the ridge regression estimator has a linear rela-
tionship with the penalising parameter, λ. Hence, |Biasridge(λ)| is a monotone increasing
function with respect to λ, meaning that as λ increases, so does the bias.

Proposition 3.1.5. The magnitude of the fitted values ŷi(λ) which make up the vector
Ŷ = Xβ̂(λ) shrink towards zero as λ increases.

Proof, [27] (p.9). By using a singular value decomposition (SVD) of our design matrix,
X, we know we can write that X = UDV T . SVD tells us that U and V are n×n and p×p
respectively. Also they are both orthogonal (UUT = UTU = In×n and V V T = V TV =

CHAPTER 3. RIDGE AND LASSO REGRESSION 9

Ip×p. Furthermore, we know that D is an n× p diagonal matrix, meaning that it only has
non-zero elements when the row number equals the column number. If n > p, then

D =

d1 0 0 0
0 d2 0 0
0 0 d3 0
...

...
...

...
. . .

0 0 0 0 ... dp

0 0 0 0 ... 0
...

...
...

...
. . .

...
0 0 0 0 ... 0

likewise if p ≥ n, then

D =

d1 0 0 ... 0 ... 0
0 d2 0 ... 0 ... 0
0 0 d3 ... 0 ... 0
...

...
...

. . . 0 ... 0
0 0 ... dn 0 ... 0

 .

Now, we use this to rewrite equation (3.1).

β̂(λ) = (XTX + λIp×p)
−1XTY ,

ŷ = Xβ̂(λ),

= UDV T (V DTUTUDV T + λV V T)−1V DTUTY.

Using the orthogonality properties of U and V means that V V T = Ip×p and UTU = In×n,

= UDV T (V DTDV T + λV V T)−1V DTUTY,

= UDV TV (D2 + λIp×p)
−1V TV DTUTY,

= UD(D2 + λIp×p)
−1DTUTY (3.4)

Let’s carry out the same analysis for β̂LS , where β̂LS represents the least squares estimate
of β.

β̂LS = (XTX)−1XTY,

ŷ = Xβ̂LS ,

= X(XTX)−1XTY [(2.1)],

= UDV T (V DTUTUDV T)−1V DUTY,

= UDV TV (D2)−1V TV DUTY,

= UD(D2)−1DUTY. (3.5)

Using the notation di = Dii, we now compare the ith element in both (3.4) and (3.5).
This gives us ŷi(λ) = di/(d

2
i + λ) and ŷi = d−1

i . From these two equations we notice that
di/(d

2
i +λ) < d−1

i =⇒ ŷi(λ) < ŷi, and this holds for ∀λ > 0. And from this inequality we
also notice that as λ → ∞, ŷ(λ) → 0. [27] (p.9). This is the reason why λ is often referred
to as the shrinkage parameter as well as the penalisation parameter. The shrinkage caused
by using the ridge regression estimator helps combat the inflating effects of overfitting and

CHAPTER 3. RIDGE AND LASSO REGRESSION 10

collinearity, leading to a better fit with regards to prediction (than OLS regression in
general). We highlight the shrinkage of coefficients relative to the size of the penalising
parameter, λ, in ridge regression using figure 3.1 (obtained from generic linear regression
simulated data). Notice that all coefficients shrink towards zero. The true values of βi are
an equally spaced sequence between −4 and 4.

Figure 3.1: This graph shows values of β̂i, and how they vary as λ is increased (in this
case for ease of reading we use log(λ), since for extreme shrinkage we need extreme values
of λ).

3.2 The Bias-Variance Trade off

If using ridge regression gives us biased estimates, β̂(λ), of the true β then how can we
trust the coefficients we obtain by using its equations? To answer this question we must
understand the nuanced idea of the bias-variance trade off. We have shown that increasing
the value of λ increases the bias of our estimate and in this subsection we will go on to
show that increasing λ has the useful effect of decreasing the variance of our fitted values.

Proposition 3.2.1. Var(β̂(λ)) < Var(β̂OLS) for ∀λ > 0.

Proof. Consider the operator Wλ := (XTX + λIp)
−1XTX [27] (p.6). We first show

this operator is linear with respect to any vectors a, b ∈ Rp. For ϕ, ρ ∈ R, we have that:

Wλ(ϕa+ ρb) = (XTX + λIp)
−1XTX(ϕa+ ρb),

= (XTX + λIp)
−1XTX(ϕa) + (XTX + λIp)

−1XTX(ρb),

= ϕ(XTX + λIp)
−1XTXa+ ρ(XTX + λIp)

−1XTXb,

= ϕWλ(a) + ρWλ(b). (3.6)

(3.6) is the condition needed to show that Wλ is a linear operator. We now apply Wλ to
β̂OLS .

Wλβ̂OLS = (XTX + λIp)
−1XTX(XTX)−1XTY,

= (XTX + λIp)
−1XTY,

= β̂(λ).

Hence, Var(β̂(λ)) = Var(Wλβ̂OLS). Using that Wλ is linear and non-random we deduce
Var(Wλβ̂OLS) = WλVar(β̂OLS)W

T
λ . Using Var(β̂OLS) = σ2(XTX)−1:

Var(β̂)− Var(β̂(λ)) = σ2((XTX)−1 −Wλ(X
TX)−1W T

λ).

CHAPTER 3. RIDGE AND LASSO REGRESSION 11

And with W−1
λ := (XTX)−1(XTX+λIp) alongside (W

T
λ)−1 := (XTX+λIp)(X

TX)−1.

= σ2Wλ(W
−1
λ (XTX)−1(W T

λ)−1 − (XTX)−1)W T
λ ,

= σ2Wλ((X
TX)−1(XTX + λIp)(X

TX)−1(XTX + λIp)(X
TX)−1 − (XTX)−1)W T

λ ,

= σ2Wλ((Ip + λ(XTX)−1)(XTX)−1(Ip + λ(XTX)−1)− (XTX)−1)W T
λ ,

= σ2Wλ(((X
TX)−1 + λ(XTX)−2)(Ip + λ(XTX)−1)− (XTX)−1)W T

λ ,

= σ2Wλ((X
TX)−1 + λ(XTX)−2 + λ(XTX)−2 + λ2(XTX)−3 − (XTX)−1)W T

λ ,

= σ2Wλ(2λ(X
TX)−2 + λ2(XTX)−3)W T

λ ,

= σ2(XTX + λIp)
−1(XTX)−1(2λ(XTX)−2 + λ2(XTX)−3)(XTX)(XTX + λIp)

−1,

= σ2 (XTX + λIp)
−1︸ ︷︷ ︸

Positive Semi-Definite

(2λIp + λIp + λ(XTX)−1)︸ ︷︷ ︸
Positive Semi-Definite

(XTX + λIp)
−1︸ ︷︷ ︸

Positive Semi-Definite

.

Since each of the products in this expression for Var(β̂) − Var(β̂(λ)) are positive semi-
definite (∀λ > 0), [27] (p.12), we can deduce Var(β̂)− Var(β̂(λ)) ≥ 0 .

And so, as we increase the penalisation parameter, λ, we decrease the variance of our
predictors at the expense of introducing bias (specifically towards zero).

Definition 3.2.2. The PMSE, predictive mean square error, of a model is given by the
following expression;

PMSE :=
1

n

n∑
i=1

(yi − xT
i β̂)

2,

in which yi are response values which were not used in training, and Xβ̂ is our prediction
of the value of yi given the corresponding testing data xT

i .

The PMSE is a measure of the predictive accuracy of a model. Models generally seek
to minimise the PMSE. To accurately measure the PMSE of a model we must test it on
data which has not been used in the training of the model. If we used the training dataset
to calculate the PMSE the returned value be the mean of the residual sum of squares (also
known as the mean squared error, MSE) which is minimised by β̂OLS , which we know
can offer sub-optimal estimates of the coefficients. If the model is tested on data which
has been used in training, the coefficients will have been changed as a result of those data
points. This means that the model has already accounted for the specific data it is being
tested on, and so, it performs better.

Example 3.2.3. Using the code found in 3.2.3 A, we wish to make an inference about
which of two models is more useful for prediction. Firstly, we randomly select 80% of our
data to use for training our model, leaving the other 20% to use in comparing our models.
Once we have separated and scaled our data, we train both a least squares regression model
and a ridge regression model. While doing this we only feed our models the training data.
Now, we give the models the predictor variables relating to the test set. With this we
estimate what the response of the test set will be. After this prediction process, we are
ready to calculate the PMSEs of both models, given this particular dataset.

PMSE =
1

n

n∑
i=1

(yi − ŷi)
2

Where in this case yi is from the test set of responses, and ŷi is from the test set of
predictors. Running this calculation for both models returns (after readjusting the scale of
our predictions),

PMSEOLS = 6.80,

PMSERidge = 5.38.

CHAPTER 3. RIDGE AND LASSO REGRESSION 12

These values suggest that the ridge regression model is preferable to the least squares regres-
sion model as PMSERidge < PMSEOLS. This is what we would expect due to the least
squares regression model being vulnerable to overfitting and collinearity. These factors lead
to the respective values of β̂ being inflated. This inflation is tackled by the penalisation
parameter present in the ridge regression model’s formula for β̂.

3.3 Lasso Regression

Lasso regression, similar to ridge regression involves minimising a loss function dependent
on the penalisation parameter, λ.

Definition 3.3.1. The lasso loss function is given by

Llasso(β;λ) = ∥Y −Xβ∥22 + λ∥β∥1, (3.7)

and we pick β̂lasso such that,

β̂(λ) = argmin
β

∥Y −Xβ∥22 + λ∥β∥1 ,

= argmin
β

n∑
i=1

(yi − xT
i β)

2 + λ

p∑
j=1

|βj |,

[23](p.2), where xT
i denotes the ith row vector of X (which will have dimensions 1× p).

As with ridge regression (3.1), λ can be adjusted for best results, typically via cross-
validation. Cross-Validation (CV) splits up the data used to train the model into smaller
training and testing sets (the number of splits considered within the data is known as the
number of folds). More folds leads to better performance, but requires more computation
power. CV seeks to improve various performance metrics (such as PMSE and MSE) using
training sets within the data supplied to the model with comparison to test sets also within
the data given to model. The intricacies of CV are complicated and beyond the scope of
this project, see [21] for more information.

The Lasso Estimator was first proposed in 1996 by Robert Tibshirani, [23]. It has
various advantages over the original ridge estimator, principally its ability to perform
parameter selection. This means that as the penalty parameter, λ, the less significant
coefficients, β̂j are set to zero. This is different to ridge regression which keeps shrinking
the parameters but fails to set coefficients to zero. Parameter selection is very useful
for making inference, as if we can reduce the number of predictors, p, then we can better
understand the underlying relationship between the significant predictors and the response
variable. Furthermore, when used in conjunction with CV, it has been found recently that
even better predictive performance can be achieved in a process known as model relaxation.
This process involves running an initial lasso and increasing λ, eliminating insignificant
predictors, and then executing the lasso on the dataset again, but having removed the
less significant predictors from the start of analysis at λ = 0, see [25]. The use of the
Lasso to create a more parsimonious model is very powerful, and this property is one
advantage of the Frequentist approach to linear regression over the Bayesian approach
which fails to automatically perform variable selection. However, the Bayesian approach
to linear regression has many benefits which we explore in the next few chapters of this
project. We will highlight the methodology behind Bayesian linear regression, and how
shrinkage priors placed on our coefficients can improve regression similarly to frequentist
penalisation methods. The frequentist ridge and lasso methods we have already outlined
make for a good baseline of linear regression models for which to compare their Bayesian
equivalents.

Chapter 4

Bayesian Linear Regression

4.1 Bayesian Methodology

In this chapter we demonstrate how we can apply the Bayesian methodology to linear
regression, starting with a simple model and gradually building up theory so that we
can obtain powerful models. The main difference between the Bayesian models and the
traditional models is in how we treat the coefficients. Previously, we used deterministic
formulae to determine our estimators of β. This changes in the Bayesian case, where we
now consider β to be a random variable, with its own prior distribution. The ’true’ values
of β are considered to be a realisation of the posterior distribution for β in the Bayesian
formalism. Our choices of prior distributions for our coefficients impacts the posterior
distribution for β. We will particularly analyse the cases in which we apply shrinkage
priors to β. We begin by reiterating the assumptions of the linear model. Recall the
model:

Y = Xβ + ϵ,

where X represents the n× p data matrix and β ∈ Rp contains the information about the
relationship between the data and the response, and ϵ is the n × 1 matrix representing
the inherent error in the model. This error is distributed such that its i components

ϵi
iid∼ N(0, σ2). Using this information we can say that1,

y|β, σ2 ∼ N(Xβ, σ2In). (4.1)

As with the frequentist case, we are interested in estimating the parameter β. OLS
regression used the maximum likelihood estimate of β for this, however, in the Bayesian
case we consider each βj for j ∈ {1, ... , p} to be a random variable which is distributed
according to an unknown distribution. In Bayesian linear regression, we attempt to learn
about this unknown distribution using Bayes’ Theorem, which tells us that[14](p.59),

p(β|y) =
f(y|β)p(β)

f(y)
.

This is interpreted as follows:

• p(β|y) is the posterior distribution of β, and making inferences about β from this
probability density function (pdf) is our goal. The posterior, p(β|y), can be viewed
as a compromise between our prior beliefs, and the likelihood, with the likelihood’s
influence on the posterior increasing as we observe more training data

• f(y|β) is the likelihood of y. It is important to note that this function is not a
pdf, rather it represents a distribution. As such it is not restricted to taking values

1In the Bayesian formalism, it is more common to refer to the response vector, Y , using the lower case
y. We shall switch to this notation, but note that they have identical meanings to us.

13

CHAPTER 4. BAYESIAN LINEAR REGRESSION 14

between zero and one. In linear regression this can be found using (4.1). Using
the assumptions of the linear model, we assume that each yi component of y is
independent of one another. Hence, the likelihood of y can be written as a product
of the yi normal distributions. yi ∼ N(xT

i β, σ
2) (where xi represents the ith row

vector of X). As such,

f(y|β) =
n∏

i=1

1

σ
√
2π

exp

(
−

1

2σ2
(yi − xT

i β)
2

)
. (4.2)

• p(β) is the pdf which represents our prior beliefs about β. We can pick many options
for this pdf, and it is the mechanism through which we introduce coefficient shrinkage
in the Bayesian paradigm

• f(y) is the normalising constant. This constant ensures
∫ +∞
−∞ p(β|y) dβ = 1. It

can be written as
∫ +∞
−∞ f(y|β)p(β) dβ. This term is usually ignored because us-

ing Markov chain Monte Carlo (MCMC) methods, which we describe later, sample
directly from the posterior and so normalisation is not a concern to us

Definition 4.1.1. The Maximum A Posteriori (MAP) estimate of a random vari-
able, for instance β, is written as β̂MAP and is the value of β which maximises it’s
respective posterior distribution p(β|y).

β̂MAP : = argmax
β

p(β|y),

= argmax
β

f(y|β)p(β)
f(y)

.

Since f(y) is independent of β, this is equivalent to:

β̂MAP = argmax
β

f(y|β)p(β). (4.3)

This is very similar to taking the maximum likelihood estimate, the difference being that
we multiply the likelihood by the prior, and seek to maximise this product, rather than
maximising the likelihood alone, [26] (p.4). The MAP estimate of β is useful in analysing
the behaviour of our posterior distribution. However, it is important to note that we still
believe that β is a random realisation of our posterior distribution, the MAP estimate is
merely the value of β with the highest posterior density. In fact, the continuous nature of
the posterior pdf implies that P(β = β̂MAP) = 0, as the chance that a realisation of the
posterior distribution for β takes any given singular value is zero.

4.2 Choosing Priors

When it comes to picking a prior distribution, p(β), we have unlimited possibilities. Our
choice of prior depends on what we wish to achieve with our model, and our data. A
popular choice is that of the flat prior [13], p(β) ∝ 1. This prior choice is not a valid
probability density function, as

∫
Rp p(β)dβ does not converge, and so, it is known as

an improper prior density. Despite being improper it usually leads to valid posterior
distributions. These posterior distributions are exclusively formed by the data in the
likelihood, and so, we find that,

β̂MAP = β̂MLE = argmax
β

f(y|β).

CHAPTER 4. BAYESIAN LINEAR REGRESSION 15

It is not uncommon for these priors to be chosen naively, believing them to be the most
objective reflection of reality2. Due to their improperness, the posterior distribution must
also be checked for properness. To ensure properness but still have a posterior which is
very heavily data dependent, sometimes people use a prior such as βj ∼ N(0, 10002) or
another very flat appearing diffuse prior. These priors are subject to the same problems
as MLE estimates from the normal equation, (2.1), such as overfitting and collinearity
inflating estimates of β. Furthermore, we argue that the belief that these priors are
objective reflections of reality is flawed.

We will now discuss the philosophy of our prior choices. Similar ideas about prior
choices to the following are discussed here [13] (within the context of ecology). We argue
that useful models tend to be based upon multiple assumptions. In the case of linear
regression, we assume that our response variables, yi are independent and normally dis-
tributed. This assumption is rarely flawless, however, it allows us to make useful inferences
about relationships between predictors and responses. These assumptions themselves can
be viewed as ”prior beliefs”, even in the frequentist case, and as we explored in chapter
3, adding even more ”prior beliefs” can greatly improve model performance. In chapter
3 the additional ”prior beliefs” were that we want to pick the β̂ which maximises the
likelihood, while not being too large (this is the purpose of the penalty term). And so, as
in the frequentist case, in the Bayesian case we consider choices of prior not based upon
their ”subjectivity” or ”objectivity” (the degree to which any given prior choice is either
of these is itself subjective), rather we consider prior choices based on their usefulness and
results in modelling. Different priors are appropriate in different settings; and assumptions
we make can greatly influence our posterior distributions, but this is not itself a bad thing.
To quote the late George Box, ”All models are wrong, but some are useful”.

We can pick informative priors, which specifically pull posterior values of β towards
certain values perceived to be likely based upon expert advice or previous experiments.
These priors need justification if used, but can be very helpful especially in scenarios with
not many observations. A common method of determining these priors is through expert
elicitation [2]. Also, it should be noted that it is possible to naively pick an informative
prior based upon the data which we have observed and are trying to model. This is
a mistake as it results in the data being represented twice, once in the likelihood, and
once in the prior. This can lead to a false confidence in the posterior model parameters’
distributions.

We can also pick weakly informative priors, [13] (p.2). These priors may not be picked
because they provide valid information for a certain dataset, rather, they have general
helpful properties. Shrinkage priors are an example of weakly informative priors as they
do not introduce much unique information to our model. Rather, they are used to combat
common issues with regression. We use them to greatest effect when we have a prior belief
that our model’s estimates of the βj coefficients will likely be inflated. We shall apply
the principles of penalised regression in a Bayesian context, through weakly informative
priors.

In the frequentist paradigm, the addition of the penalty term in the ridge and lasso
estimators can be seen as slightly arbitrary as it raises the question; ’why add on these
specific penalty terms and not others?’. Meanwhile, Bayesians have a natural way to
include the penalisation of coefficients; through the prior distributions. Through MAP
estimates many Bayesian penalising priors have clear links to popular frequentist penal-
isation techniques. Furthermore, these connections arise often by placing fairly intuitive
prior distributions upon βj , leading to pleasant relationships between common distribu-
tions and penalisation. We first investigate the simplest, and most intuitive Bayesian
penalising prior, the ridge prior, after a motivating example.

Example 4.2.1. This example highlights an issue with constant and uninformative priors.

2In fact, Stan (a popular probabilistic programming language) takes flat priors by default for estimated
parameters (such as β in our case) unless the code specifies a different prior.

CHAPTER 4. BAYESIAN LINEAR REGRESSION 16

We generate data, Xij ∼ N(0, 1), with i ∈ {1, ... , 8} (so we have 8 observations, n = 8),
and j ∈ {1, , ... , 10} (with 10 predictor variables, p = 10). This data is connected to a
response vector y through the equation y = Xβ + ϵ, with each component of β, βj = 5,

and ϵi
iid∼ N(0, 32). We fit a standard linear model, a frequentist ridge model, a Bayesian

ridge model (introduced in the following section) and a non-informative flat prior Bayesian
model (all without intercept terms).

Regression β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 β̂7 β̂8 β̂9 β̂10
OLS -1.6 23.9 -0.5 11.3 11.3 -13.0 9.33 2.6 NA NA
Ridge 2.1 2.9 1.6 3.5 1.0 2.5 1.0 1.0 0.9 2.8
Bayes’ Ridge 6.3 4.9 4.1 6.1 5.8 1.8 4 3.4 6.0 6.0
Bayesian
(flat prior)

−1.3× 1014 6.2× 1014 9.8× 1013 6.5× 1014 1.2× 1014 −1.2× 1015 3.9× 1014 −2.9× 1014 −1.1× 1014 −2.6× 1014

Table 4.1: Table of obtained β estimates. For Bayes’ regressions a mean of posterior
samples is reported.

Firstly, we shall begin our analysis of the above table by considering the ordinary
least squares estimates of the coefficients. Recalling that the true values of βj = 5, ∀j ∈
{1, ... , 10}, we see that these estimates are not very good. Furthermore, it fails to estimate
β9 and β10. This is because in RStudio, the function, lm(·), uses the normal equation,
(2.1), to calculate estimate β̂. The problem is that since p > n in this case, we have
that the XTX term required for the calculation of the normal equation is rank deficient.
Hence, the solution does not exist as (XTX)−1 does not exist. The lm(·) function deals
with this by crudely pretending that β9 and β10 are zero. This effectively removes the 9th

and 10th columns of X, removing the rank deficiency by discarding both data columns,
creating a new simplified data matrix X̃ and using this to find coefficient estimates. Now
we consider the Bayesian flat prior regression. We know that the posterior modes for each
βj will be the MLE estimates β̂j given by the normal equation. We have already seen
that because p > n in this case, the MLE estimate does not exist for all of our βj coef-
ficients. The relationship between the MAP of the flat prior regression and the MLE in
OLS regression appears to cause issues in determining coefficients in the case where p > n,
resulting in huge and non-sensicle coefficient estimates. This highlights the importance of
prior selection in Bayesian regression, especially in low-data scenarios. The Frequentist
ridge manages to estimate each parameter due to the inclusion of the penalty term in the
calculation of β̂j which means we use (XTX + λI) in our calculation as opposed to the

singular XTX. This gives us answers for each β̂j which are not too far off of the correct
βj = 5. However, we see that when we use the prior associated with ridge regression for
our Bayesian model, we achieve a very fair estimate of β considering the low sample size
relative to the number of covariates we have. The difference between the two Bayesian
models we employed in this example are night and day, and this difference is solely due
to using different prior distributions for our βj. This stark improvement caused by our
choice in prior, and strength compared to traditional frequentist penalised regression meth-
ods is why the remainder of this project is dedicated to our choices of prior distributions
with respect to various parameters within Bayesian regression, and how they impact their
respective posterior distributions.

We begin our exploration of Bayesian penalisation with the simplest penalising prior
for βj , the ridge prior, after a note about how we will be treating the intercept term within
this project.

4.3 Bayesian Ridge

Note about the intercept term, β0 (more commonly referred to as α in Bayesian regression).
We do not assign β0 the same penalising prior distributions as we do for βj , ∀j ∈ {1, ... , p}.
This is due to the fact that β0 will not suffer from the inflating effects of overfitting and

CHAPTER 4. BAYESIAN LINEAR REGRESSION 17

collinearity as the other coefficients will. As such, we recommend when doing Bayesian
regression in practice, assigning β0 a prior density based upon expert information about
the given data or, using a non-informative prior such as a flat prior. In this project, to more
fairly and simply compare different penalising techniques, we assume that the intercept
is 0 (and not included in our model unless stated otherwise). For this assumption to be
valid, we shall generate data such that the mean response value is zero (ȳ = 0) when
we do not include an intercept in our model. When we will use an intercept term, the
assumption of a flat prior is useful for our purposes as we can focus more exclusively
on prior penalisation, without needing to concern ourselves with how the intercept term
impacts our model.

Consider a normal prior distribution for βj |λ, σ2 ∼ N(0, σ
2

λ) ∀j ∈ {1, ... , p}. We wish
to find our MAP estimate of β under this prior.

β̂MAP = argmax
β

f(y|β)p(β|λ, σ2), (4.3)

= argmax
β

[log(f(y|β)) + log(p(β|λ, σ2))].

Firstly, consider log(f(y|β)),

log(f(y|β)) = log

[
n∏

i=1

1

σ
√
2π

exp

(
−

1

2σ2
(yi − xT

i β)
2

)]
,

∝ log

[
exp

(
−

1

2σ2

n∑
i=1

(yi − xT
i β)

2

)]
,

= −
1

2σ2

n∑
i=1

(yi − xT
i β)

2,

where we have eliminated constants which are independent of β. Now, consider log(p(β|λ, σ2)),

log(p(β|λ, σ2)) = log(p(β1, ..., βp|λ, σ2)),

= log(p(β1|λ, σ2) · · · p(βp|λ, σ2)), [as the priors for βj are independent of each other],

= log

 p∏
j=1

p(βj |λ, σ2)

 ,

= log

 p∏
j=1

√
λ

σ
√
2π

exp

(
− λ

2σ2
β2
j

) ,

∝ −
λ

2σ2

p∑
j=1

(βj)
2.

Substituting these into our β̂MAP equation gives,

β̂MAP = argmax
β

−
1

2σ2

n∑
i=1

(yi − xT
i β)

2 −
λ

2σ2

p∑
j=1

β2
j ,

= argmin
β

1

2σ2

n∑
i=1

(yi − x2
iβ)

2 +
λ

2σ2

p∑
j=1

β2
j ,

= argmin
β

∥Y −Xβ∥22 + λ∥β∥22. (4.4)

Notice that the equation for the MAP of the Bayesian ridge estimator is identical to
the MLE of the frequentist ridge loss function, this tells us that in the Bayesian setting,

CHAPTER 4. BAYESIAN LINEAR REGRESSION 18

using the normal distribution specified above as a prior for each βj results in an identical
minimisation problem as the Frequentist ridge case. Note: in general, when we will refer to
the Bayesian version of a traditional penalisation technique, such as lasso, we are implying
that the Bayesian maximum a posteriori estimate is equivalent to the choice of β̂j which
minimises the associated frequentist loss function. For example in the Bayesian lasso we
expect;

β̂MAP (lasso) = argmin
β

∥Y −Xβ∥22 + λ∥β∥1.

This means we should expect the penalisation achieved by both approaches to be theo-
retically similar between the two different paradigms. In reality, the results achieved by
both techniques will differ, due to the differences in methodology and analysis of results.
The impact of varying λ in ridge regression has clear parallels with the Frequentist case.

Figure 4.1: A graph of the impact of the shrinkage parameter, λ, on the prior density.

When we increase λ, we are effectively increasing our confidence in the fact that βj is
near to zero. This has the impact of shrinking our β parameters. However, looking at the
prior distribution for βj |λ, σ2 ∼ N(0, σ

2

λ), we notice that for λ ∈ (0, 1), although our prior
is still centered on zero, we will be increasing the variance of our prior. Picking λ very
low indicates low confidence in βj being small. Note: Within the Bayesian paradigm we
cannot set λ = 0 as this would result in an undefined variance, unlike in the Frequentist
case, however, the closer λ is to zero, the more similar the prior will perform to a flat
prior.

4.3.1 Dealing with σ2

The ridge prior, β|σ2, λ ∼ N(0, σ
2

λ), is dependent upon the value of σ2. In other words,
to estimate β using this prior, we must also estimate the error in our model. As such, we
estimate σ2 and so must assign it a prior and involve it in the equation for our posterior
as follows:

p(β, σ2|λ,y) =
f(y|β, σ2)p(β|σ2, λ)p(σ2)

f(y)
,

in which we have a prior for σ2, p(σ2), and our posterior becomes joint with respect
to β and σ2, p(β, σ2|λ,y). A popular prior specification for σ2 is the inverse-gamma
distribution, and it is also helpful as it results in a tractable joint posterior with our
ridge prior, meaning that we can manually derive an expression for our joint posterior
distribution. Figure 4.2 gives a look at the shape of this prior distribution which is
commonly placed upon σ2. A higher value for a increases the size of the peak near zero,
while larger b makes the tail of the distribution more pronounced. Practically, this means

CHAPTER 4. BAYESIAN LINEAR REGRESSION 19

Figure 4.2: A figure to show the impacts of varying the parameters of the inverse-gamma
distribution.

that if we are confident in our variance being relatively small, we will want a larger value
for a, however, if we are very uncertain, a bigger value for b will be appropriate.

4.3.2 The Normal-Inverse-Gamma (NIG) Prior

The NIG prior refers to the case in which we are using a normal prior for β (such as the
ridge prior), and an inverse-gamma prior for σ2. This prior specification is conjugate, and
so we can solve for a closed form of our posterior distribution.

p(β, σ2|λ) = p(β|σ2, λ)p(σ2),

=

p∏
j=1

(λ

σ22π

) 1
2

exp

(
λ

2σ2
(βj)

2

)×
ba

Γ(a)

(
1

σ2

)a+1

exp

(
b

σ2

)
,

∝

(
1

σ2

)a+ p
2
+1

exp

(
−

1

σ2
(b+

λ

2
βTβ)

)
. (4.5)

And, the likelihood is given by;

f(y|β, σ2) =

[
1

σ
√
2π

]n
exp

(
−

1

2σ2

n∑
i=1

(yi − xT
i β)

2

)
. (4.6)

Taking the product of (4.5) and (4.6) and using the multivariate completion of squares [3]
(p.2):

uTAu− 2αTu = (u−A−1α)TA(u−A−1α)−αTA−1α,

we find the posterior density for these specifications p(β, σ2|y, λ) is of the same NIG form
as our prior, with the following transformed parameters:

p(β, σ2|y, λ) =

(
1

σ2

)a∗+ p
2
+1

exp

(
−

1

σ2
(b∗ +

1

2
(β − µ∗)TV ∗−1(β − µ∗)

)
. (4.7)

CHAPTER 4. BAYESIAN LINEAR REGRESSION 20

The transformed parameters are given as follows:

µ∗ =

(
λ

σ2
Ip +XTX

)−1

XTy,

V ∗ =

(
λ

σ2
Ip +XTX

)−1

,

a∗ = a+
n

2
,

b∗ = b+
1

2
(yTy − µ∗TV ∗−1µ∗) [3].

We have now derived the joint posterior for this prior specification, and we notice that
it is of the same form as our prior specification, the NIG prior. This is a result of our
prior exhibiting conjugacy. Using this we can immediately sample from our posterior, as
we just need to sample from the same distributions specified in our prior, but using our
updated parameters listed above. Hence, we sample (for l = {1, 2, ...} iterations)

σ2(l) ∼ IG(a∗, b∗),

β(l) ∼ MVN(µ∗, σ2(l)V ∗) [3].

Using these samples we can perform Bayesian inference on our posterior parameters. Often
the most useful inference we can do is determining which of our βj coefficient parameters
are insignificant (if there are any). If we determine a parameter is insignificant we can
decide to remove it from our model. In the Bayesian paradigm a useful method for
diagnosing the significance of our coefficients is the credible interval.

Example 4.3.1. Consider data generated, using 4.3.1 A, such that Xi,j ∼ N(0, 1), i ∈
{1, ... , 100}, j ∈ {1, 2, 3}. We will set our error term such that, ϵ ∼ N(0, 3). Note that
this error is quite large relative to our generated data, we expect this to reduce the accuracy
of our model. We generate our response vector, y, using the equation;

y = Xβ + ϵ,

β1 = 0.5, β2 = 3, β3 = 0.

Using an NIG prior, with code 4.3.1 Stan, with β
iid∼ N(0, σ2/λ), for now using λ = 1,

and σ2 ∼ IG(0.5, 2), we generate the following results;

Coefficient Mean Std. Dev. 2.5% 97.5% 25% 75% True

β1 0.40 0.27 -0.11 0.92 0.23 0.58 0.50
β2 2.00 0.29 1.42 2.58 1.80 2.20 2.00
β3 0.18 0.25 -0.32 0.68 0.01 0.35 0.00

Table 4.2: The percentages are to be interpreted as the probability that our given coeffi-
cient is less than the value listed. For example P(β1 ≤ −0.11) = 2.5%. Hence, the 95%
credible interval for β1 will be [−0.11, 0.92]. This means that P(−0.11 ≤ β1 ≤ 0.92) = 0.95.

The table above highlights the caution we must exercise when performing inference
around our estimated parameters. If we solely used 95% credible intervals to determine
which coefficients were significant we would say that both β1 and β3 are insignificant. This
would be incorrect as β1 = 0.5 ̸= 0. However, if we decided that 95% credible intervals
were too large and switched to 90% intervals we would run into the opposite problem. We
would correctly identify that β1 is significant, however, we would also conclude that β3 is
significant. In a model with these specifications, it is generally safer to keep parameters
we are uncertain about within our model.

CHAPTER 4. BAYESIAN LINEAR REGRESSION 21

Before we examine more penalising prior distributions and their various features, we
shall consider hierarchical models. The ideas of hierarchical models are necessary in de-
riving more complicated prior distributions, and often form intuitive relationships with
common frequentist models through marginalisation.

Chapter 5

General Bayesian Shrinkage Priors

5.1 Hierarchies in Bayesian Penalised Regression

Definition 5.1.1. A hierarchical model is a statistical model in which we tune our
model using parameters which share dependencies with other parameters based upon a
group which they belong to, where we have more than one group.

Many Bayesian shrinkage priors rely on hierarchies in their specifications and or deriva-
tions. These hierarchical representations of shrinkage priors are used to relate the minimi-
sation solutions of frequentist penalisation methods to Bayesian shrinkage prior MAPs.
However, if it is possible, we generally prefer to model using a non-hierarchical specification
of a model as hierarchies decrease the efficiency of our sampling algorithms. Introducing
hierarchies to our prior specifications can often lead to differing penalisation. Consider
the following hierarchical model, using a normal prior, and using the full-Bayes method
of λ estimation. We specify our full model, [20] (assuming α flat prior):

y|β, σ2 ∼ Nn(α1+Xβ, σ2In)

βj |σ2, τ2j ∼ N(0, σ2τ2j)

τ2j |ν, λ ∼ IG(
ν

2
,
ν

2λ
)

σ2 ∼ IG(
1

2
, 2)

λ ∼ half-Cauchy(0, 1).

(1 is the n× 1 vector of ones, 1 = (1, ... , 1)T), and α represents the intercept term). We
find that if we marginalise out τ2j we find that βj |ν, λ, σ2 ∼ Student-t(ν, 0, σ2λ−1), with
this being the local student’s t distribution, another commonly used prior distribution for
our coefficients, [20]. With the introduction of the hierarchical term τj , we have changed
the shrinkage of our coefficients. Before, we had ridge shrinkage, but now, βj are shrunk
in accordance to the student-t distribution. The performance of the above hierarchical
model is identical to the performance of the marginalised version of the model:

y|β, σ2 ∼ Nn(α1+Xβ, σ2In)

βj |σ2 ∼ Student-t(ν, 0, σ2/λ)

σ2 ∼ IG(
1

2
, 2)

λ ∼ half-Cauchy(0, 1).

This marginalised version is preferable in practice as we do not have to estimate the ad-
ditional τj , j ∈ {1, ... , p} terms. In this case the hierarchy simply provides an interesting
link between the ridge prior and the student-t prior, but the hierarchical model itself is
impractical. The parameter ν coincides with the degrees of freedom of the t distribution

22

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 23

and larger values for ν result in a more concentrated peak at 0, with lighter tails. The
lowest value of ν, ν = 1, coincides with a Cauchy prior for βj . As ν increases, the Student-t
distribution resembles the normal distribution more and more, with ν → ∞ making the
distribution asymptotically normal N(0, σ2/λ). The Cauchy prior is considered to have
heavy tails. Practically, in regression this increases the chance that βj can take a large
value with less penalisation, if the data gives rise to a likelihood which suggests βj is large.
The Cauchy distribution’s tails are proportional to 1/β2

j , which leads to much slower prob-
ability decay for large |βj | than the normal distributions tails which are proportional to
exp (−β2

j).

Example 5.1.2. We wish to compare the effectiveness of our hierarchical model above
and a standard Bayesian ridge regression. We use the data from A.3, but with n = 10
training observations, so that the prior has a larger influence on posterior distributions.
We employ the full-Bayes method of calculating λ for both the hierarchical model, and in
the standard Bayesian ridge regression (which involves treating λ as a random variable
to be estimated alongside other parameters, discussed in more detail later), and use an
inverse gamma prior for σ2. We will use ν = 1. As the hierarchical model, with stan code
at A.11, is estimating a new vector of values τ , it takes longer to sample from, averaging
10 seconds to achieve 4000 samples over 10 runs, while the non-hierarchical alternative
averaged a mere 3 seconds. The non-hierarchical model is approximately ×3 faster. We
plot our posterior densities for both models in figure A.15, alongside 90% credible intervals
and mean point estimates.

The posterior densities for our coefficients in this case appear very similar, but we do
see slightly heavier tails in the posteriors of the hierarchical model. This could be due to
the link between our hierarchical model and the Cauchy distribution. When we marginalise
over τ2j in our prior specification we end up with βj ∼ Student-t(ν = 1, 0, σ2/λ), which is
equivalent to βj being Cauchy distributed. This results in heavier tails for βj.

The drawback of hierarchical representations of models is the increased number of
parameters our sampler has to estimate. We acquire samples using advanced Gibbs sam-
pling MCMC, [8], techniques which are implemented in Stan, [22], and these sampling
techniques take longer and are less efficient when we have to estimate many parameters.
Hierarchies by nature introduce many parameters which require estimation, which results
in greater sampling time.

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 24

5.2 Bayesian Lasso and Elastic Net

The ridge prior is merely one example of a shrinkage prior specification for β̂. A shrinkage
(or penalised) prior is any prior specification for β which is symmetrical and centered
on zero1, and so there are theoretically infinitely many possible penalised priors. The
ridge priors’ normality makes it a great introduction to these priors since it allows for a
conjugate posterior distribution, due to the likelihood, f(y|β, σ2), also being a normal
distribution. Many popular shrinkage priors result in penalisation equivalent to popular
frequentist methods. Another popular example of this is the Bayesian lasso.

5.2.1 Bayesian Lasso

The Bayesian lasso uses the shrinkage prior, p(βj |σ2, λ) = λ

2
√
σ2

exp (−
√
σ−2λ|βj |). This is

equivalent to proposing βj ∼ Laplace(0, σ/λ). This prior results in shrinkage equivalent to
that of the frequentist loss function minimisation, (3.7). Figure 5.2.1 shows the probability
density of the Bayesian lasso prior, with varying values of λ. Notice the much sharper

Figure 5.1: Plot to show how a lasso prior for βj varies with different λ values.

peak at β = 0 compared to peak in the ridge prior graph, 4.3. This difference in densities
results in different posterior coefficient distributions. In practice, this difference in prior
shape results in the Bayesian lasso pulling less significant parameters closer to zero as λ
increases faster than ridge regression, [17]. While this property can be useful, it is not
as powerful as the variable selection provided by frequentist lasso. This variable selection
feature is what lead to the original lasso’s prevalence. Although the traditional lasso is a
very popular method of penalisation, it has several shortcomings, these include (list from
[20]):

• In situations with p > n, with high multi-collinearity, the ridge estimator often
outperforms the lasso

• Dealing poorly with collinearity, when multiple predictors have a collinear relation-
ship the lasso often picks one predictor and sets the others to zero, which can neg-

1Centering our prior on zero is consistent with the frequentist ideas of hypothesis testing, where the
null hypothesis often coincides with βj = 0. Essentially, it can be thought that we are giving some ’weight’
to the frequentist null beliefs.

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 25

atively impact interpretability (a penalising method which effectively deals with
collinearity is said to exhibit grouping)

• It can over-shrink large coefficients

These are issues with the frequentist lasso, but because the Bayesian lasso’s MAP estimate
of βj coincides with the frequentist Lasso’s β̂j minimisation of the loss function, we expect
that the issues associated with the frequentist case are also issues with the Bayesian
case. These problems are well encapsulated by the scenario in which we are using the
presence of certain genes to infer something about a patient. We often will have many
predictor variables, as there are so many genes, and not many observations because it
can be difficult/expensive to detect genes (p ≫ n). Furthermore, many genes will have
high correlations between them as several different genes may be related through similar
biological ’pathways’, [29]. We say these related genes form a group. Ideally we wish
to know which genes are insignificant, and which genes belong to significant groups. We
hope for grouped predictors to have similar coefficients, and in the scenario where several
predictors are identical, their coefficients should also be identical.

These faults in traditional lasso penalisation are remedied by variations of lasso penali-
sation, and these variations of the frequentist lasso also have their own Bayesian shrinkage
prior equivalents. The Bayesian lasso can be represented hierarchically using the following
specification:

yi|β, σ2 ∼ N(xT
i β, σ

2)

βj |σ2, τ2j ∼ N(0, σ2τ2j)

τ2j |λ ∼ Exponential(λ2/2)

Where σ2 and λ also have to be determined, but there are many possibilities for them in
this case. It is possible to show that when we marginalise the parameter τ2j out of the

expression for our joint prior distribution, p(βj , τ
2
j |σ2, λ) = p(βj |τ2j , σ2)p(τ2j |λ), we find,

p(βj |σ2, λ) =

∫ ∞

0
p(βj |τ2j , σ2)p(τ2j |λ)dτ2j ,

=
λ

2σ
exp (−|βj |

λ

σ
),

=⇒ βj ∼ Laplace(0,
σ

λ
). [16] (p.31).

The fact that we can represent the Bayesian lasso in a hierarchical form allows us to use
popular generalisations of the lasso. These generalisations exist to combat the lasso’s
problems. Using this hierarchical structure we can intuitively introduce several of the
frequentist generalisations to the Bayesian paradigm. The first generalisation we mention
is also the most popular, and is called the elastic net.

5.2.2 The Elastic Net

The elastic net penalisation technique seeks to be a compromise between ridge regression
and lasso regression. This is clearly observable from its loss function:

Definition 5.2.1. The elastic net loss function is given by the following expression
[29](p.3):

LEN (β;λ1, λ2) = ∥Y −Xβ∥22 + λ1∥β∥1 + λ2∥β∥22, (5.1)

with the estimates of β whichever values for the components of β will minimises this loss
function,

β̂EN = argmin
β

∥Y −Xβ∥22 + λ1∥β∥1 + λ2∥β∥22. (5.2)

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 26

In the extreme case where λ1 = 0, β̂EN ≡ β̂ridge. Similarly, if λ2 = 0, β̂EN ≡ β̂lasso.
The addition of the ridge penalty term, λ2∥β∥22, gives the elastic net performance which
is superior to the lasso in situations with p > n and high multicollinearity, where ridge
regression usually outperforms the lasso. This is due to its ability to perform grouping.
Furthermore, in situations where many predictors are insignificant, it can behave similarly
to lasso regression and set coefficients to zero. Because of these factors, the elastic net
can be seen as a best-of-both-worlds approach to penalisation, with the disadvantage of
needing to account for two penalising parameters, rather than the usual one. This is
more computationally expensive, and when using cross-validation often results in over-
shrinkage, [20]. This problem can be solved using Bayesian regression. The elastic net
can be translated into the Bayesian paradigm using the following hierarchical specification
[20],

yi|β, σ2 ∼ N(xT
i β, σ

2)

βj |σ2, τ2j , λ1, λ2 ∼ N

(
0,

(
λ2

σ2

τj
τj − 1

)−1
)

τ2j |λ1, λ2, σ
2 ∼ Truncated-Gamma

(
1

2
,
8λ2σ

2

λ2
1

)
, τ2j ∈ (1,∞).

Where σ2, λ1 and λ2 also have to be determined, but there are many possibilities for them
in this case. When we marginalise our prior distribution p(βj |σ2, τ2j , λ1, λ2) over all the

possible values of τ2j , we get the resulting density for βj ;

p(βj |σ2, λ1, λ2) = C(σ2, λ1, λ2) exp

(
− 1

2σ2
(λ1|βj |+ λ2β

2
j)

)
,

for j = 1, 2, ... , p, where C(σ2, λ1, λ2) is the normalising constant. This marginal prior
for βj is where we can gain an intuition for how the values of λ1 and λ2 impact our elastic
net regression. We notice that, similar to the frequentist case, a relatively large value of
λ1 results in increased lasso characteristics, while λ2 is related to the ridge characteristics.
We expect while using highly grouped datasets with high collinearity between predictor
variables, that we will have more ridge characteristics, as this is the scenario in which
ridge regression generally outperforms the lasso. Likewise, if we have a sparse dataset,
with many insignificant predictors, we would expect λ1 to be larger, to perform better
variable selection.

Example 5.2.2. (Data generation scheme found in appendix A.16). We wish to compare
different frequentist and Bayesian shrinkage regression techniques to test their efficacy in
dealing with grouped data. To do this we simulate a dataset with the following specifications
(the specifications of this simulation were inspired by [20](p.41)). We simulate Zk ∼
N(0, 1) for k ∈ {1, ... , 4} and group our data based on these Zk. We also simulate some
noise for each individual data point in our design matrix X, given by ωj ∼ N(0, 0.12) for
j ∈ {1, ... , 50}, with:

• Xj = Z1 + ωj, for j ∈ {1, ... , 10}

• Xj = Z2 + ωj, for j ∈ {11, ... , 20}

• Xj = Z3 + ωj, for j ∈ {21, ... , 30}

• Xj = Z4 + ωj, for j ∈ {31, ... , 40}

• Xj ∼ N(0, 1), for j ∈ {41, ... , 50}

• β = (10, ... , 10︸ ︷︷ ︸
20 times

, −10, ... ,−10︸ ︷︷ ︸
20 times

, 0, ... , 0︸ ︷︷ ︸
10 times

)T

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 27

• ϵi ∼ N(0, 102)

• Y = Xβ + ϵ

This specification describes the entry for one row of our design matrix, X. For every row
we re-simulate all of the elements above. Applying our regression methods and plotting
their β̂ estimates for n = 300 observations (rows) gives figure2 5.2.

Figure 5.2: The 50 estimates of the 50 beta, provided by each regression method for
n = 300 observations. The true values of beta are displayed in pink on the right-most
section of the graph.

To aid in the comparison of each regression method’s ability to estimate β, we introduce
a new quantity, beta distance, which we define as:

Beta Distance :=
1

p

p∑
j=1

|β̂j − βj |.

The beta distance is the average distance of our estimated value of the coefficient, β̂j, and
the true value of βj. We only know the true value of βj in simulations studies such as this.
A model having a low beta distance implies that coefficients are estimated accurately, and
so, we can make more accurate inferences about the true values of βj based on the values

of our estimated β̂j. The simulations carried out in this example provide the following
table of beta distances 5.1. Table 5.1 effectively highlights the ability of these regression
techniques in dealing with grouped data. The clear winner in terms of ability to predict the
true values of β in this example is ridge regression, which has a significantly lower beta
distance than all the other shrinkage regressions tested. We can also observe its superiority
in this category of data by looking at 5.2. It is clear that the ridge regression estimates β̂
are closest to the true values of β. The elastic net appears to be second best at handling this
type of data. The Bayesian techniques all dealt with the data fairly similarly, outperforming

2We plot mean samples as our estimates of β for the Bayesian regressions. For the frequentist elastic
net a value of α = 0.5 was selected.

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 28

Observations Bayes’ Ridge Bayes’ Lasso Bayes’ Elastic Net Ridge Lasso Elastic Net

n = 300 3.149 3.578 3.138 0.333 4.297 1.959
n = 100 3.949 4.642 4.381 0.545 7.486 3.010
n = 50 4.806 5.342 4.836 3.330 9.346 4.514

Table 5.1: The respective beta distances for each type of regression.

the frequentist lasso, but not being as powerful as the frequentist elastic net. However, it
would appear from this example simulation that of these Bayesian regression methods, the
Bayesian lasso performed the weakest. This is what we expected as the Bayesian lasso’s
MAP estimates are identical to the lasso’s loss function minimisation estimates, and the
lasso performs the worst of all tested regressions on this grouped data. Although, it should
be noted that this example is not exhaustive, and many more tests should be run on different
variations of grouped datasets to test the notion that the Bayesian lasso does not perform
as well as other Bayesian regressions on grouped data as is done in [20](p.42).

As well as the Bayesian elastic net, there are many more variations of the Bayesian
lasso, which correspond to frequentist variations of the lasso. While these variations
effectively deal with problems the lasso’s problems in the frequentist paradigm, we found
it hard to motivate pursuing many more variations of the lasso translated into the Bayesian
paradigm. While methods exist to employ the group lasso and adaptive lasso (known as
hyperlasso in Bayesian regression) into the Bayesian counterparts, we found that the issues
which these methods attempt to fix in the frequentist setting do not necessarily transfer
perfectly over to Bayesian regression. We can see from example 5.2.2 that when dealing
with grouped predictors the 3 different Bayesian methods we employed all lead to fairly
similar results in terms of coefficient estimation, even though there were stark differences
between their frequentist equivalents. This was also observed when using the Bayesian
hyperlasso and Bayesian group lasso, and so we leave them out of this project. Generally,
with grouped data, it is difficult to say whether any one is better than another, and
the simulation data from [20](p.42) confirms this suspicion. Particularly, they find that
with various examples of generated grouped data, the Bayesian grouped lasso performs
extremely similarly to the standard Bayesian lasso! And so, out of the problems with the
lasso listed in (5.2.1), we conclude that they do not necessarily apply in the Bayesian case,
in spite of the relationship between the frequentist and Bayesian lasso.

5.3 Determining Optimal Penalisation Parameters

In this section we explore the different methods of estimating our penalising parameter/s.
There are 3 main approaches to this problem,

• The full-Bayes approach. This involves treating λ as a random variable to be es-
timated alongside other parameters through posterior sampling, such as β and σ2,
and involves specifying a prior distribution for λ

• The empirical-Bayes approach. Using the marginal likelihood given by,

f(y|λ) =
∫ ∞

0

∫
Rp

f(y|β, σ2)p(β|σ2, λ)p(σ2)dβdσ2.

We estimate λEB = argmaxλ f(y|λ)

• Cross-validation is another approach. This is the method used in frequentist penal-
isation techniques and involves splitting our data into training and testing subsets,
and using the value for λ which provides the best accuracy at predicting the testing
subsets, using their respective training subsets

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 29

5.3.1 Full-Bayes

The full-Bayes approach to penalisation is very easy to implement and consistent with
the Bayesian methodology used thus far. It involves specifying a prior distribution for
λ. Since the idea of a penalising parameter is abstract and hard to make any inference
on based on a dataset, people typically use the half-Cauchy distribution for λ. This idea
originates from [9]. This prior distribution is an example of a weakly informative prior.
Although most of its probability density is concentrated close to zero, its large tails allow
for potential extreme values of λ to be chosen. These extreme values will be taken when
the likelihood of our data suggests that extreme penalisation is necessary.

Definition 5.3.1. The half-Cauchy distribution is such that λ ∼ half-Cauchy(a, b)
implies,

p(λ) =
2

πb

1 +(λ− a

b

)2
, a ≥ 0, b > 0, λ ∈ [0,∞), (5.3)

This distribution is counted as weakly informative as p(λ) ∝ λ−2. This proportionality
results in much heavier tails than other potential distributions with λ > 0. For example,
the half-normal distribution (where p(λ) ∝ exp (−λ2)) has tails which decay exponentially,
which leads to much lower probability density around extreme values. The half-Cauchy

Figure 5.3: A plot of half-Cauchy prior densities with varying parameters.

prior for λ is typically chosen such that λ ∼ half-Cauchy(0, 1), with a pdf, p(λ) which
peaks at λ = 0 and has heavy tails. This is a practical choice of prior distribution as we
typically find that λ is quite small, however occasionally λ takes larger values, and the
half-Cauchy allows for this. A half-Normal distribution would potentially assign too low
probabilities for extreme values of λ. To aid our understanding of this distribution we

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 30

calculate the mean and median quantities of the λ ∼ half-Cauchy(0, 1).

E(λ) =
∫ ∞

0
λp(λ)dλ,

=
2

π

∫ ∞

0

λ

1 + λ2
,

=
2

π

[
1

2
log (1 + λ2)

]λ=∞

λ=0

.

Hence, E(λ) = undefined. Intuitively, this is a result of the tails of our distribution being
very large. When we try and calculate an empirical estimate of λ̂ = 1

n

∑n
i=1 pi(λ) ≈ E(λ),

we find that λ̂ never converges as a result of so many outliers being predicted. An intuitive
explanation of this is that no matter how many samples we take from the half-Cauchy
distribution, our empirical estimate of the mean never gets more accurate. We can also
calculate the median, using the substitution s = tanu as follows:

2

π

∫ λmed

0

1

1 + s2
ds =

1

2
,

2

π

∫ arctan (λmed)

0
cos2(u) sec2(u)du =

1

2
,

2

π
[u]

u=arctan (λmed)
u=0 =

1

2
,

arctan (λmed) =
π

4
,

λmed = 1.

This tells us that half of our prior density for P(λ ≤ 1) = 0.5. This shows that there is
a significant probability density around small values of λ, which is helpful as we usually
expect λ to be relatively small. The heavy tails are useful as they allow our posterior
estimate to be greatly impacted based upon our likelihood, making the half-Cauchy a
flexible prior distribution for λ.

5.3.2 Empirical-Bayes

The empirical-Bayes method of calculating λ involves the following equation,

λEB = argmax
λ

f(y|λ) = argmax
λ

∫ ∞

0

∫
Rp

f(y|β, σ2)p(β|σ2, λ)p(σ2)dβdσ2.

The calculation of the marginal likelihood, f(y|λ), involves the above integral which is
often very impractical or impossible to calculate analytically. Because of this, in practice
we will use our posterior samples to estimate λEB. The empirical Bayes approach to
selecting λ is a compromise between Bayesian and frequentist reasoning. Of course we
are applying Bayesian methodology to obtain samples and assign parameters probability
density functions, however, in the empirical Bayes case we are treating λ as a constant to
be estimated, as a frequentist would. In the estimation of λEB we must first estimate it
in a preliminary sampling step, because of this we are required to assign λ a prior. Due
to the nature of this approach, the obvious choice would be a flat prior where p(λ) ∝ 1
for λ ∈ (0,∞), but this approach can often result in issues with sample convergence, [20].
This is a result of the flat prior not being a proper density. As such, [20] proposes an
ad-hoc solution to this issue. If we use a prior for λ which is approximately constant
along λ ∈ (0,∞) we could then keep the spirit of using a constant and uninformative prior
while having a valid posterior distribution. Hence, we use λ ∼ half-Cauchy(0, 100000).
As the shape parameter is so large, it is effectively non-informative as it is so flat. Using
this prior density, we simulate from our posterior distribution as we usually would in the

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 31

full-Bayes approach, however, after retrieving these samples, we calculate the posterior
mode of λ. This is an estimate of λ̂MAP , which itself is an estimate of λEB. Once we
obtain this estimate of λEB, we rerun the model, but now treating λ as a constant term,
not to be estimated. Hence, we no longer have a prior for λ and we see it as a frequentist
would. This technique offers fair predictive performance, and can be computationally
more efficient than full-Bayes if we are fitting a complicated model multiple times. In the
full-Bayes approach every time we fit a model our sampler must calculate new values of
λ, but using empirical-Bayes, it only has to run these calculations once.

Example 5.3.2. We once again consider the data simulated in A.3. We wish to estimate
the empirical-Bayes value of λ, using the NIG model, (4.5). As such we use RStan to
simulate from the posterior with the given data, and priors from the NIG model, with the
exception of using the (extremely) weakly informative half-Cauchy(0, 100000) prior for λ.
Upon receiving the samples of λ, we can use functions to plot an approximate density of
our marginal posterior for λ, p(λ|y). The mode represents our estimate of λEB and is

Figure 5.4: A plot of the posterior density of λ using the weakly informative
half-Cauchy(0, 100000) prior.

shown in 5.4 by the vertical red line. This is the λ estimate we will use in our model.
We also mark the mean as it may be of interest to compare the model’s performance with
the modal estimate of λ against the performance with the mean estimate of λ. The mean
captures some of the right-skew of our distribution, while the mode just selects the point of
highest density. Using the estimate λEB = 2.02 in a model which treats λ as a constant,
with no prior or posterior, will result in a model which has been determined using the
empirical-Bayes method. This model is the one which we will use for predictions and
estimation.

5.3.3 Cross-Validation

Cross-validation (CV) is the method of calculating λ which is used in frequentist methods,
typically, using a process called K-fold CV. This involves partitioning the subset of data
used to train the model into K segments. We denote the kth segment of data yk, for
k = 1, ... , K. After this partition, we fit k different models using the data y−k to train the
models, and testing the predictive performance by using each model to predict the values
of yk. The predictive performance can measured through multiple different methods.
One such method is that of the predictive mean-squared-error, PMSE (3.2.2). We will
then analyse which training model gives us the lowest value of PMSE and select that
model as our best3. This works well in the frequentist setting as fitting models is often

3In this case of CV we are searching for the model we believe will have the greatest predictive accuracy.
The model which provides the lowest PMSE, when predicting the data yk is likely to have the ’best’
predictive accuracy. However, as a point of nuance, there are different measures of predictive accuracy,
which may provide evidence for a different model having superior predictive accuracy to the model with
the lowest PMSE.

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 32

very computationally efficient and predictions are simple to make. In the context of the
Bayesian linear model we run into some issues, including that:

• It is computationally costly to create so many models, as Bayesian sampling schemes
take significantly longer to run than their frequentist counterparts

• It is not obvious what the best method of prediction is for a Bayesian model. We
believe that each parameter has it’s own probability density and we can simulate
draws from these densities, however, there are many possible choices of β̂ which we
could hypothetically use to generate predictions. For instance, we could take the
mean of all our samples for each parameter and use those values for prediction, or
take the mode (βMAP estimates) or even just use a random draw from our joint
posterior distribution. We also have the option of treating our new predictions as
random variables with their own densities, this method is perhaps the most conducive
to the Bayesian paradigm, but still leaves us with the problem of being unsure which
value to report as our prediction if we are using a predictive metric such as PMSE

Due to these issues, it is ineffective to use K-fold validation for Bayesian modelling, because
of this, we must look to more nuanced methods if we still wish to use CV. An example of
a CV method applicable to Bayesian models is the leave-one-out (LOO) CV.

LOO CV

This subsection about LOO CV is a summary of the paper written by the people respon-
sible for the ’loo’ package in R, the original paper is found here, [1]. LOO is the case of
K-fold CV where K = N . This means that we only ’leave out’ one data observation in the
training of our model. We say the data which does not include observation k is the set
of y−k observations. And, instead of using a frequentist metric such as PMSE, which has
problems in a Bayesian context, we calculate the expected log pointwise predictive density
(ELPD).

ELPD :=
N∑
i=1

∫
pt(y

∗
i) log f(y

∗
i |y,β, σ2, λ)dy∗i ,

in which pt(y
∗
i) is the theoretical true data generation process which y∗i is an observation

from and p(y∗i |y,β, σ2, λ) is our predictive density.

p(y∗i |y) =
∫∫∫

f(y∗i |β, σ2, λ)p(β, σ2, λ|y)dβdσ2dλ,

Of course, in practice (unless we are using a simulation study) we never know what the
true data generating process pt(y

∗
i) is, and so we must estimate the ELPD. We can do this

with ELPDloo,

ˆELPDloo =

n∑
i=1

log p(y∗i |y−i),

where p(y∗i |y−i) =
∫∫∫

p(y∗i |β, σ2, λ)p(β, σ2, λ|y−i)dβdσ
2dλ. We can estimate the value

of p(y∗i |y−i) using importance sampling, which uses all of our samples from our joint
posterior distribution, (β(s), σ2(s), λ(s)). If we are using stan to simulate from our posterior
distribution we by default obtain 4000 draws, so s ∈ {1, ... , 4000}. Firstly, we consider
importance ratios, rsi ,

rsi =
1

f(yi|β(s), σ2(s), λ(s))
∝

p(β(s), σ2(s), λ(s)|y−i)

p(β(s), σ2(s), λ(s))|y)
,

which we use to approximate:

p(y∗i |y−i) ≈
∑4000

s=1 rsi f(y
∗
i |β(s), σ2(s), λ(s))∑4000
s=1 rsi

,

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 33

and applying this formula to LOO gives,

p(yi|y−i) ≈
1

1
4000

∑4000
s=1

1
f(yi|β(s),σ2(s),λ(s))

.

This means that if we know the log likelihood for each of our s ∈ {1, ... , 4000} posterior
samples, we can estimate our predictive accuracy. Using this we can compare the predic-
tive accuracy of models and choose models which have the highest ˆELPDloo. The key
reason why LOO CV is so convenient for comparing Bayesian models is because of the
approximation that p(yi|y−i) ≈ p(yi|y), which is used by the LOO-package in RStudio.
This approximation practically means that we do not ’leave one [observation] out’ when
calculating this predictive probability. The computation time saved using this approxima-
tion is huge, as we no longer need to fit n different models to compare predictive accuracy,
as we would otherwise need to calculate p(yi|y−i), rather, we can fit one model and use
the values of p(yi|y) for each i ∈ {1, ... , n} to estimate predictive accuracy. The larger
the training data set, the stronger this approximation is.

We can use these ELPD values to estimate model weights for different values of λp,
with p ∈ {1, ... , P} as follows:

wx ≈
exp

[∑i=n
i=1 (p(yi|y−i, λx))

]
∑p=P

p=1 exp
[∑i=n

i=1 (p(yi|y−i, λp))
]. (5.4)

The value of wx is useful as we can interpret it as the probability that the model which
uses λ = λx is the ’best’ predictive model, and so wx ≈ 1 implies the chance that using
λx gives us our optimal predictive model4 is very high. If we are comparing P values of
λ, we will need to compare the predictive accuracy of the model with each λp, and the
one which has the greatest weight, wp, is the model which is most likely to be our best in
terms of prediction.

Furthermore, the model weights wx which we can calculate from ˆELPD values can be
used to compare the weights of completely different Bayesian models. For instance, we
could calculate the ˆELPD of a model which uses a ridge prior, ˆELPD1 = p(y∗i |y−i,Ridge),
and the ˆELPD of a lasso prior model, ˆELPD2 = p(y∗i |y−i,Lasso). Using these ˆELPD
values we can approximately estimate which model is preferable in terms of prediction,
using the same methodology as in (5.4), but instead of comparing models with varying λ
values, we compare completely independent models acting on the data,

w1 =
exp

[∑i=n
i=1 (p(yi|y−i,Ridge))

]
exp

[∑i=n
i=1 (p(yi|y−i,Ridge))

]
+ exp

[∑i=n
i=1 (p(yi|y−i,Lasso))

].
Example 5.3.3. We wish to obtain a value for λ using LOO-CV, using the data from
4.3.1. Employing general purpose optimisation functions we can find the λ values which
minimise LOO-CV error and, for comparison, a measure of PMSE. The RStudio code
can be found here, 5.3.3 A. Note that the Stan model must report the log likelihood with
each iteration, in order to calculate the LOO estimate of predictive accuracy. We find that
when trying to optimise both LOO and PMSE, when our number of training observations
is high, the optimising functions do not converge. This is to be expected as the penalising
parameter λ is used by the model exclusively in the prior specification of β. As such,
when n is large, the value of λ does not significantly impact predictive performance, as
our data is much more influential on our posterior density than our prior, making this
form of CV an impossible tool to meaningfully use. However, when n is small, the use
of cross-validation in tuning the penalising parameter, λ, is an interesting alternative to
full-Bayes and empirical-Bayes. When we change the number of observations to n = 10

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 34

Figure 5.5: A box plot of λ values which are selected while trying to optimise LOO values
(in red) and PMSE values (in blue).

LOO-CV PMSE-CV

0.0001 10.00
10.00 0.0001
9.53 0.0001
11.41 0.0001
10.62 0.0001
10.12 10.11
14.09 10.11
10.77 0.0001
10.11 10.04
23.90 10.47

Table 5.2: The table of the λ values obtained when optimising LOO values and PMSE
values.

from n = 100, and box plot our estimated λCV values for both methods of cross-validation
we obtain figure 5.5 and table 5.2. Notice from box plot 5.5 that PMSE, has a very large
spread, as the λ value changes between λ ≈ 10 and λ = 0.0001. LOO-CV shows potential
convergence around λCV ≈ 10.50, although it does also have a few outlying observations.
Table 5.2 shows the data used in plotting the above box plot. Notice that for PMSE-CV
half of the λCV estimates are at λCV = 0.0001. This is because we took 0.0001 as the
lower limit as we cannot use 05. The estimate being λCV = 0.0001 suggests that the
optimising function is trying to get λ extremely low. This could mean that to optimise
PMSE, we potentially want to have a flat prior for our coefficients, because as λ → 0 the
prior variance of our coefficients is increasing, suggesting minimal shrinkage is necessary.
However, we should be skeptical of this notion as although around half of our estimates
of λ when optimising PMSE are near zero, the other half are around 10, which is a large
difference. Moreover, we would not expect λ ≈ 0 to be optimal due to the true values of
the β coefficients being relatively close to zero, β = (0.5, 2, 0)T . These factors make the
value of λ = 10 seem more appropriate. The wild performance of the PMSE-CV is partly
why it is not optimal in the Bayesian setting for model optimisation. Although, when it
does converge to a sensible value, it is fairly consistent with the value of the loo estimate,
and from looking at this data, it seems that λCV ≈ 10.50 would be a sensible choice for the
penalising parameter.

4’Best’ compared to the other models which are accounted for in the calculation, not necessarily the
best model which is theoretically possible.

5As the prior coefficient variance is undefined at λ = 0

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 35

5.4 Variable Selection

Variable selection involves setting coefficients which relate to predictor variables which
are deemed to be weakly related (insignificant) to the response variable to zero. Variable
selection is very desirable for aiding the interpretability and parsimony of our model,
and can also improve predictive accuracy if we adjust our model after determining some
coefficients to be insignificant. The ordinary least squares (OLS) model, ridge regression
and all Bayesian linear regression methods do not perform variable selection.

Example 5.4.1. We again consider the data from 4.3.1. Recall the true coefficients are
β = (0.5, 2, 0)T . We fit the frequentist models using n = 40 observations of training
data and without intercepts. We notice from the table above that lasso regression can

Coefficient OLS Ridge Lasso TRUE

β1 0.26 0.06 0.00 0.5
β2 2.11 0.45 0.99 2.0
β3 0.16 -0.20 0 .00 0.0

perform variable selection, although it of course is not perfect. Assigning the β3 coefficient
a non-zero value can be seen as a form of overfitting, as the 3rd predictor variable will
unnecessarily influence predicted values.

Having to select relevant variables is a very common issue, especially when dealing
with a model which has a high number of predictor variables (p large). An example of
a case where variable selection must be performed is when considering how the presence
of genes can influence blood-pressure. We would have potentially several thousand genes,
and most of them will most likely be unrelated to blood-pressure, but a naive model such
as OLS will account for these insignificant genes, decreasing our predictive accuracy and
inferential ability. The inferential ability is very important in many cases including this
one, as if we know the presence of a gene is correlated to extreme blood-pressure, it can
be tested for and then further action can be taken. We call a model which performs
variable selection ”sparse”, and Bayesian linear models are not automatically sparse. In
the Bayesian paradigm, even if there is a supposedly true βj = 0, we will be able to observe
that βj ̸= 0 infinitely many times. Further, as a result of the continuous nature of it’s
probability density function we have that P(βj = 0) = 0. We can attempt to counteract
this shortfall of Bayesian linear models by checking whether or not zero lies within a
sensibly sized credible interval of our posterior coefficient density. If it does, then we
have the (non-rigorous but practical) option of manually removing the predictor from our
model to increase parsimony. However, even with this method of inducing manual model
sparsity, we find in practice that for this proposed method of Bayesian variable selection we
need a large proportion of the posterior coefficient density of insignificant coefficients to be
concentrated around zero. If a prior is capable of concentrating posterior density around
zero then we say that the model induces sparsity, in spite of it not performing automatic
variable selection in the traditional sense. The ridge prior struggles with concentrating
enough posterior density of insignificant predictors around zero [5] for credible intervals
to reliably identify insignificant coefficients.

5.4.1 Lack of Sparsity Inducing Power of the Ridge Prior

To motivate our pursuit of a sparsity inducing model, we first discuss why standard
Bayesian ridge regression prior does not effectively concentrate enough posterior coefficient
density around zero for insignificant coefficients. The posterior distribution of a coefficient,
βj , can be seen as a compromise between the information contained within its prior dis-

tribution and its likelihood. Using the ridge prior we have that all βj
iid∼ N(0, σ2λ−1),

and we struggle to greatly reduce the size of our insignificant coefficients while not overly

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 36

penalising significant coefficients, [6](2.1). This is a result of all prior variances for βj
being identical. To fix this we must find a way to shrink potentially insignificant coeffi-
cients more than significant coefficients. Furthermore, the normal distribution itself does
not have a sharp-peak at zero or any particularly large density around zero, leading to
coefficients being penalised similarly regardless of their significance. Moreover, due to the
conjugacy of the ridge prior with the normal likelihood which we have in the context of
linear regression, our posterior distribution for βj will always also be a normal distribution.
This is a nice property for calculations and inference, however, in the case that a coeffi-
cient is insignificant the probability density is often too spread out to allow for variable
selection. Because of this, to encourage sparsity6 and close to zero posterior draws, we
wish to concentrate posterior probability density around zero for potentially insignificant
variables. One way of doing this is by using spike-and-slab priors.

5.4.2 Spike-And-Slab

Spike-and-slab models use spike-and-slab priors. These priors are hierarchical. The prior
specification we analyse first seeks to increase the number of observations of βj = 0 by
setting P(βj = 0) ̸= 0 as follows [11];

yi|β, σ2 ∼ N(xT
i β, σ

2)

βj |zj , σ2 ∼ N(0,
σ2

λ
· zj)

zj ∼ Bernoulli(θ).

This prior specification means that βj assumes the usual value it would have without being
conditioned on zj with probability θ, and is zero with probability 1−θ. Or, P(βj ̸= 0) = θ
and P(βj = 0) = 1 − θ. This is because when we are using a penalising prior, the mean
of our distribution will be zero, and if we have a variance of zero, this means that all
of our probability density (both prior and posterior) will be concentrated solely at zero.
The case in which zj = 0 results in a ”spike” in probability at βj = 0. With this prior
specification, the spike can be represented as p(βj |zj = 0) = δ(βj), where δ(·) is the Dirac
delta function. The case with zj = 1 is when we have our ”slab” of probability density for
βj , where our βj behaves as usual. We plot the two cases of zj = 0 and zj = 1 in figure
5.6. While this model is simple and easy to understand, it is computationally unpleasant

Figure 5.6: A graph to highlight the different prior densities. β ∼ N(0, z · σ2/λ), with
z = 1 resulting in the slab and z = 0 resulting in the spike.

to deal with. The spike density being infinitesimally thin and infinitely tall introduces
issues with sampling, and Stan does not allow zj ∼ bernoulli(θ) as estimated parameters

6Sparsity in the sense that a credible interval for an insignificant coefficient’s posterior density will likely
include zero.

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 37

cannot be integers under its coding framework. Furthermore, it is not very cohesive with
Bayesian methods to have p(βj |zj = 0) = δ(βj), as it is odd to conclude that we are so
sure about the value of βj being exactly equal to zero before accounting for observations,
even if it only occurs with probability θ. As such we formulate a compromise with the
following prior specification, for the continuous spike-and-slab model [6](2.2.1);

yi|β, σ2 ∼ N(xT
i β, σ

2)

βj |θj , σ2, λ ∼
[
θjN(0,

σ2

λ
) + (1− θj)N(0, ϵ2)

]
, ϵ2 ≪ σ2

λ
(5.5)

θj ∼ Beta(a, b).

This prior specification7 avoids the computational difficulties and Bayesian inferential
issues which plagued the previously considered spike-and-slab model, however due to it’s
hierarchical nature it can encounter effective sample size difficulties. As such it is useful
to marginalise θj out of our model, as follows,

p(βj |λ, σ2, a, b) =

∫ 1

0
p(βj , θj |λ, σ2, a, b)dθj ,

=

∫ 1

0
p(βj |θj , λ, σ2, a, b)︸ ︷︷ ︸

Mixture of normal densities

p(θj |a, b)︸ ︷︷ ︸
Beta(a,b)

dθj ,

=

[∫ 1

0
θjBeta(θj |a, b)dθj

]
N(βj |0, σ2λ−1)+[∫ 1

0
(1− θj)Beta(θj |a, b)dθj

]
N(βj |0, τ2),∫ 1

0
θjBeta(θj |a, b)dθj = E(θj) =

a

a+ b
,

=⇒ p(βj |λ, σ2, a, b) =
a

a+ b
N(βj |0,

σ2

λ
) +

b

a+ b
N(βj |0, τ2), [6] (2.2.1).

Figure 5.7: A plot continuous spike-and-slab’s prior density (which is a mixture of two
normal distributions).

When applying this prior specification we are effectively assuming that the probability
density function of our βj coefficients lie somewhere in between the slab and spike normal

7θj does not necessarily have to be Beta distributed, any distribution can work as long as the support
is [0,1]

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 38

distributions, graphed in figure 5.7. This is useful as when we are dealing with a sparse
dataset we know that some of our coefficients will be close to zero, and this specification
allows for that while at the same time allowing for much larger coefficients, which are
more closely aligned with the slab prior distribution. Furthermore, the large coefficients
will still be penalised under the slab prior, which we have chosen to have the same variance
and distribution as a ridge prior.

Example 5.4.2. We wish to compare the prior specification of the continuous spike-and-
slab model (5.5), found in A.7, against a base model in terms of sparsity. We will take
τ2 = 0.01. The base model we will use is the NIG model A.4. We will also briefly compare
the variable selection with that of the frequentist lasso. Our data is simulated such that we
use n = 80 observations to train where Xij ∼ N(5, 32) and Y = Xβ + ϵ. β is made up
of a sequence between 5 → 10 of length 25, and a sequence between −5 → −10 of length

25, and 50 zeroes. ϵ
iid∼ N(0, 32). Note that this is a challenging dataset, as p > n and

so models can find it difficult to select relevant coefficients. In fact, if we try and use the
normal equation (2.1) and calculate the maximum likelihood estimate β̂ we are stopped
as we have collinear columns and so we cannot calculate (XTX)−1, hence if we wish to
compare a Bayesian model with a frequentist model here, the frequentist model must be
penalised. We found that for this simulation study, the 95% equal-tailed credible intervals
were too wide to be useful, this is a result of the low sample size relative to the number of
predictors. This low sample size means that the likelihood of the data is less influential in
determining the form of the posterior than if we were to have more samples. The impact
of this diffuse likelihood is that we have lots of posterior parameter uncertainty, and so we
used the 90% intervals instead. Table 5.3 shows the power of the continuous spike-and-slab

Regression β̂j |(βj = 0) = 0 β̂j |(βj ̸= 0) = 0

Lasso 96% 44%
NIG 62% 4%
Continuous Spike-Slab 100% 2%

Table 5.3: A table comparing the sparsity inducing power of the continuous spike-and-slab
model against a NIG model and a frequentist lasso model.

prior in linear regression problems8 in which we have many insignificant coefficients. It
also shows that frequentist lasso regression can recklessly set significant values to zero. In
this example, we shall consider the following βj with true values: β1 = 5, β50 = −10 and
β97 = 0. We plot the respective posterior densities of these coefficients for both Bayesian
models tested in figure 5.8. We can see the spike of our prior in the spike-and-slab model
greatly influencing our posterior distributions when considering β1 and β97. Our posterior
for β1 is an interesting case in which we can see clearly the bi-modality of our posterior
distribution. When our data suggests a parameter is insignificant, the spike distribution
will have a great influence on our posterior due to its high concentration of density about
zero. This spike combines with the density suggested by our likelihood from our observed
data. The likelihood suggests a modal value of around five which is deemed to be near
enough to zero for our spike density to be preferred over our slab density. This results
in the prior spike giving us a mode at β1 = 0, and so we have bi-modality. This bi-
modality leads to excessive penalisation and results in E(β1|λ, a, b, σ2,y) = 2.6 < 5.0.
This bi-modality disappears for our posterior distribution of β50 as the likelihood function
provides strong enough evidence for β50 ̸= 0 that the spike density becomes insignificant.
We can see the spike-and-slab prior working as intended on β97, which is an insignificant
coefficient, and our model correctly notices this, by showing a large spike in posterior
density at β97 = 0. We notice that the posterior densities using the standard ridge prior

8Again, note that the lasso is the only regression to automatically perform variable selection, and for
true sparsity in the Bayesian models we would need to remove insignificant predictors manually.

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 39

Figure 5.8: Graphs showing the posterior density of three βj coefficients. The top graph
shows posterior densities of the ridge prior, while the bottom shows the posterior densities
resulting from the spike-and-slab prior.

are much vaguer and more spread out in comparison. This is a result of the model being
trained on so few pieces of data, and so the likelihood does not give us much certainty in
the value of our coefficients. Hence, we are provided with reasonable, yet vague posterior
densities. This vagueness results in many insignificant coefficients (38% of them) being
incorrectly identified as significant using our 50% equal tailed credible intervals, with one
of these misidentified coefficients being β97.

In spite of the excellent variable selection shown by the spike-and-slab model, it is not
perfect. Our choice of ϵ has a large impact on the posterior distribution in spite of it
being fairly arbitrary. And, the bi-modality of small yet significant coefficients does not
make interpretative sense. If we are to believe that each βj has it’s own true probability
distribution, we would most likely not expect it to be bi-modal in most cases, especially
with simulated data which perfectly abides by the assumptions of the linear model. As
such, we wish to consider other prior specifications which serve to induce sparsity. In
the following subsection we consider prior specifications which induce sparsity without
specifying our βj prior as a discrete mixture of two normal distributions as we have done
so far.

5.4.3 Continuous Sparse Priors

Generally, continuous sparse priors seek to have more probability density close to zero
which allows for variable selection, and at the same time have heavy tails which results
in the larger valued βj not being overly penalised. This contrasts with the spike-and-slab
prior which resulted in bi-modal priors causing extreme shrinkage to smaller values of βj ,
even when they were significant. An example of one of the continuous sparse priors is the
horseshoe prior which is specified as follows;

yi|β, σ2 ∼ N(xT
i β, σ

2)

βj |λj ∼ N(0, λj)

λj |τ ∼ half-Cauchy(0, τ) (5.6)

τ |σ ∼ half-Cauchy(0, σ).

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 40

[19](p.4)9. The intuition behind this prior specification is that we obtain a small value
of τ , which results in a strongly penalising model for all coefficients, but the parameter
λj is considered for each coefficient and has the ability to potentially counteract this
penalisation, as it determines how much penalisation our posterior distributions of βj will
experience. The half-Cauchy prior for λj places half of its prior probability density below
τ , but the heavy tails of the half-Cauchy result in fair probability that λj is large. This
is desirable as it theoretically has the potential to penalise insignificant coefficients much
greater than it penalises significant coefficients. Most λj ≈ 1, which will result in heavy
penalisation in sparse populations, however, large valued λj allow for lower penalisation
in certain scenarios. We can analyse the horseshoe prior density using figure 5.9. The red
dashed line represents a vertical asymptote of the horseshoe prior at zero, resulting in the
top of the density being cutoff. This extreme density near βj = 0 (theoretically) results
in harsh penalisation of insignificant coefficients. Also, note that the jaggedness of the
density is a result of there being no tractable analytic expression for the marginal density
of βj with the horseshoe prior. Because of this, the plot was done using MCMC samples to
estimate the shape of the density. We also would expect medium-small coefficients to be
more penalised (compared to the ridge prior) as the horseshoe density could be described
as a ”pinched” version of the normal density. This means that medium-small values
are less likely according to the horseshoe prior. Figure 5.10 shows that the horseshoe

Figure 5.9: The horseshoe prior density (red) compared to the ridge prior density (black).

Figure 5.10: The horseshoe density (estimated by sampler) compared to the ridge prior
density in (part of) the tail of the distributions, βj ∈ [5, 10].

prior density’s tail dominates the ridge prior’s tail. This makes a big difference in posterior
results because the ridge prior decays much more severely for large values of βj . Intuitively,
the horseshoe prior will have less of an impact on our posterior distribution of βj when

9The horseshoe prior explicitly places a prior distribution onto λj , our penalising parameter, and so we
are effectively limited to the full-Bayes approach when using the horseshoe prior, [20](p.37).

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 41

βj is large, and much more of an impact when the coefficient is near zero, theoretically
inducing sparsity without over penalisation.

Just as we had to pick ϵ for our prior in the continuous spike-and-slab prior, (5.5),
we must pick τ in the horseshoe prior. We call λj our local shrinkage terms, as they are
unique for each βj and we call τ our global shrinkage term as it is accounted for in every
βj . We define the shrinkage coefficient as,

κj :=
1

1 + λ2
j

,

and κj represents a way to visualise how our prior penalises based on the value of λj . This
is because we can estimate the posterior mean under the horseshoe model as (assuming
σ2 = τ = 1),

E[βj |y] =
∫ 1

0
(1− κj)yip(κj |y)dκj = {1− E[κi|y]}yi,

where we interpret E[κi|y] as the amount of shrinkage of βj towards zero, [7](p.1). Using
this we observe that small values of κj ≈ 0 result in negligible shrinkage, but larger
values of κj where κj ≈ 1 result in extreme shrinkage towards zero. We now calculate
the prior probability density function of κj , p(κj), up to a positive constant by doing a
transformation of variables using p(λj) (where λj ∼ half-Cauchy(0, τ = 1), specified in
5.6),

p(κj) = p(λj)

∣∣∣∣dλj

dκj

∣∣∣∣,
p(λj) ∝ (1 + λ2

j)
−1 = κj ,

λj = (1− κj)
1
2κ

− 1
2

j ,∣∣∣∣dλj

dκj

∣∣∣∣ ∝ (1− κj)
− 1

2κ
− 1

2
j + (1− κj)

1
2κ

− 3
2

j ,

= (1− κj)
− 1

2κ
− 3

2
j ,

p(κj) = p(λj)(1− κj)
− 1

2κ
− 3

2
j ,

∝ (1− κj)
− 1

2κ
− 1

2
j .

This expression for the probability density function p(κj) is the expression which gives the
horseshoe its name. This expression is identical to that of the kernel of a Beta(0.5, 0.5)
distribution, graphed in figure 5.11. This figure shows us the characteristic horseshoe
shape, implying a high amount of penalisation when κj is near zero and near one. This
means that our posterior mean estimate of βj will be near zero when κj takes these values.
The vertical asymptotes of p(κj) at κj = 1 and κj = 0 is a reflection of the probability
density’s singularities at these points. The density towards κj = 0 impacts the robustness
of the tail of our prior [7](p.486), which influences the ability of our prior to give us
posterior distributions for βj that go against our prior assumption that βj is distributed
around zero. In other words, limκj→0 p(κj) = ∞ implies that our prior does not penalise
significant βj much at all. While this is useful for identifying significant βj , we often would
prefer some penalisation on significant βj , to combat overfitting and collinearity’s inflating
effects. This is the problem which lead to the creation of the Finnish horseshoe, discussed
later in 5.4.4. The density towards κj = 1 has influence over our prior’s ability to reduce
the unnecessary noise created by insignificant βj .

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 42

Figure 5.11: A plot of p(κj) against κj for the horseshoe distribution.

To compare and contrast this graph with another sparsity inducing prior we consider
the Strawderman-Berger prior specification for βj , graphed in 5.12, and specified with
respect to κj for convenience, [4];

yi|β, σ2 ∼ N(xT
i β, σ

2)

βj |κj ∼ N(0, κ−1
j − 1) [N(0, κ−1

j − 1) ≡ N(0, λj)]

κj ∼ Beta(1/2, 1), and so, p(κj) ∝ κ
− 1

2
j

From figure 5.12, we again observe a vertical asymptote at κj = 0, meaning that the

Figure 5.12: A plot of p(κj) against κj for the Strawderman-Berger distribution.

Strawderman-Berger prior is capable of accounting for large values of βj , however as
κ → 1 we observe that p(κ) → 0.5 which suggests that it is inferior to the horseshoe prior
with respect to noise reduction of insignificant βj .

Example 5.4.3. We wish to compare the effectiveness of our discussed continuous sparse
priors against several other models. Using the same data as 5.4.2, we briefly assess the
sparsity generated by the horseshoe and Strawderman-Berger priors. Code for these spec-
ifications can be found in the appendix, A.8 and A.9. We append the table from 5.4.2,
and using the same data, we also measure the PMSE and we measure and report the beta
distance. The beta distance column in our table suggests that in terms of inferential abil-
ity, the NIG prior offers the most accurate values of the βj coefficients, however, for the
purposes of variable selection it is lacking. Table 5.4 shows us that the horseshoe and

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 43

Regression β̂j |(βj = 0) = 0 β̂j |(βj ̸= 0) = 0 PMSE Beta Distance

Lasso 96% 44% 4538.0 3.25
NIG 62% 4% 1414.5 1.78
Continuous Spike-Slab 100% 2% 1261.6 2.25
Horseshoe 90% 12% 2999.9 2.12
Strawderman-Berger 84% 30% 3435.6 2.44

Table 5.4: Table comparing different regression types based on their ability to identify the
significance/insignificance of coefficients, their PMSE values and their beta distances.

Strawderman-Berger priors result in stronger identification of insignificant βj than the
NIG prior, but weaker than the continuous spike-and-slab. Their identification of signifi-
cant βj as insignificant is between the very impressive continuous spike-and-slab and the
frequentist lasso. The lasso’s desirable trait is automatic variable selection. To achieve a
similar result using Bayesian methods we must manually remove the data corresponding
to the insignificant βj coefficients. This is a time consuming and non-rigorous practice,
but can potentially lead to improvements in predictive accuracy, for example upon carrying
out manual variable selection for the horseshoe model by removing the covariates which
have coefficients which have 0 contained within their 25% and 75% credible intervals, and
then entering this new dataset into the model offers an incredible decrease in PMSE, go-
ing from 2999.9 → 54.19. This stark difference in predictive accuracy is a result of the
reduction in random noise caused by removing the coefficients deemed irrelevant. The re-
moval of insignificant coefficients also results in the model requiring less observations to
learn more about the values of the remaining coefficients as it has less of them to esti-
mate. Using this, when removing insignificant coefficients manually, it may be practical
to remove the least significant coefficients (with the most posterior density concentrated
around zero) first. After doing this we can rerun the regression, and as we are estimating
fewer parameters we may be able to identify other insignificant predictors more accurately,
leading to a powerful iterative approach to Bayesian variable selection. Because of the
Bayesian framework, even coefficients we can identify as insignificant can potentially have
large cumulative impacts on our predictive performance due to insignificant coefficients
not being assigned an exact zero value (if they are not removed manually). Our Bayesian
model is therefore accounting for the random noise generated by this irrelevant data, es-
sentially our model is initially overfitted, and we can remedy this by removing the data
which does not impact our response variable. From the figures in 5.13, we notice that the
Strawderman-Berger prior results in posterior modes at zero in all coefficients plotted, even
the significant β50 = −10. Compared to the horseshoe prior, it too greatly penalised signif-
icant coefficients. This is to be expected as it lacks the same asymptote at κj = 1 which is
possessed by the horseshoe prior. The asymptote manifests itself in allowing larger values
of βj to go unpenalised. This characteristic leads to better variable selection using the 50%
credible intervals. This is visible in the interval for β1, which the Strawderman-Berger
posterior deems insignificant, while the horseshoe posterior does not.

While the horseshoe prior seems to offer fair variable selection, it still exhibits large
flaws, [19](p.1). Namely that horseshoe penalisation does not penalise significant coef-
ficients effectively, as indicated by the κj graph, 5.11. While this is useful for inferring
coefficient significance, it also has undesirable impacts on predictive performance, because
significant coefficients are inflated due to collinearity and overfitting. An improvement
upon the horseshoe could account for this problem. Furthermore, it would be useful if
we could incorporate prior information about how sparse our model is. For example, let’s
consider the problem of determining what impacts human blood pressure. In this prob-
lem we may be dealing with thousands of insignificant predictor variables (as there are
so many genes/life style choices which could possible impact it) and maybe only tens of
significant predictors, which is vastly different to the data considered in 5.4.3, where 50%

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 44

Figure 5.13: A plot of the posterior coefficient densities of β1, β50, β97 arising from the
horseshoe prior model (top) and from the Strawderman-Berger model (bottom).

of predictor variables were significant. If we could inform our model about the amount of
sparsity we expect to observe, it could perform better. Furthermore, the Cauchy priors
used in the horseshoe (5.6), can result in an unstable MCMC sampler, [20](p.7). To tackle
these issues, we introduce the Finnish horseshoe prior specification (also known as the
regularised horseshoe), which was proposed in 2017 [19].

5.4.4 The Finnish Horseshoe

We introduce the Finnish horseshoe by drawing a comparison between the normal horse-
shoe, (5.6), and the spike-and-slab, (5.5) [5]. The spike-and-slab model uses a mixture of
two normal distributions, one with low variance, the spike, and one with higher variance,
the slab. Part of the power of the spike-and-slab is that even if the data indicates that the
slab prior is more appropriate for a specific coefficient, it will still be penalised according
to the normal prior specification we assign to the slab. This can be a ridge prior as we
used, or any other possible value we could use as the variance term. This means that
it is sparsity inducing and it also executes shrinkage of significant parameters, which is
desirable as linear regression tends to obtain inflated values of β̂. The normal horseshoe
is sparse, as it strongly penalises insignificant coefficients, however, it often lacks predic-
tive power due to its inflation of significant coefficients. This issue is what the Finnish
horseshoe attempts to solve. We specify;

y|β, σ2 ∼ Nn(α1+Xβ, σ2In)

βj |τ, λ̃j ∼ N(0, τ2λ̃2
j)

λ̃j =
c2λ2

j

c2 + τ2λ2
j

λ ∼ half-Cauchy(0, 1)

c2 ∼ p(·)
τ ∼ p(·).

This prior is given by [19]p.6. We have used p(·) to denote that there are many possible
prior distributions for τ and c2. The intuition for our newly introduced parameter c2 is

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 45

that when c2 ≫ τ2λ2
j , we have that λ̃ → λj . This case is equivalent to that of the normal

horseshoe, and we expect this when a parameter is insignificant. However, this prior differs

to the normal horseshoe when c2 ≪ τ2λ2
j , where we find that λ̃2

j → c2τ−2. Plugging this

into our conditional prior for βj gives us βj |τ, λ̃j ∼ N(0, c2). This situation can be viewed
as equivalent to the slab prior part of the spike-and-slab, where for c2 we can pick many
different choices. In [19] they suggest the following prior specification for c2,

c2 ∼ IG
(ν
2
,
ν

2
s2
)
.

If we marginalise out c2 with this proposed prior, we obtain the marginal conditional
prior of βj to be βj ∼ Student-tν(0, s

2). This prior for βj is a good choice for shrinkage
in general. Furthermore, the inverse-gamma specification results in a heavy right-tail,
allowing for the normal horseshoe properties to take over in sparse situations, as this prior
specification is not averse to selecting large values of c2. We select the hyper-parameters,
ν and s2 according to how much penalisation of larger coefficients we believe we will need,
higher ν implies that c2 will be lower and therefore our prior will act like the slab more
readily. Higher values of s2 imply that c2 will be more varied and have higher values
generally.

We must also specify a prior distribution for τ . A powerful suggestion by Michael
Betancourt, [5], is the following;

τ ∼ half-Cauchy(0, τ0),

τ0 =
m0

p−m0

σ
√
n
,

with m0 being the number of βj we expect to be significant, p as our number of coefficients,
σ is the standard deviation of ϵi and n is our number of observations. Note that if m0 = p,
ie, we expect all of our coefficients to be significant we cannot use this prior due to τ0
being a singularity. To understand this choice of prior, we must recall the meaning of τ .
τ represents our beliefs about how spread out our significant coefficients are, in terms of
standard deviation around 0. If we have no significant slopes, m0 = 0, then τ0 = 0, and
so τ ∼ half-Cauchy(0, 0) = 0 every time. This makes sense as then our βj ∼ N(0, 0) = 0,
which is what we would want if we knew all coefficients were insignificant. Hence, a low
m0 tells our model to penalise more. Similarly, a low value of observations, n, suggests
we are less certain about our coefficient values, hence we should have a higher variance
for βj . This prior is powerful as it allows us to incorporate more prior knowledge into our
model to improve its performance. If we have no idea of m0, we can set m0 = p/2 to have
this disappear from our prior.

Example 5.4.4. We investigate the difference in results of the Finnish horseshoe and the
normal horseshoe. The stan code for the Finnish Horseshoe is found here, A.10. Using
the same data as in 5.4.2, we obtain table 5.5;

Regression β̂j |(βj = 0) = 0 β̂j |(βj ̸= 0) = 0 PMSE Beta Distance

Finnish Horseshoe 86% 16% 1254.7 3.78
Horseshoe 90% 12% 2999.9 2.12

Table 5.5: A table to compare the variable selection and predictive performance of the
Finnish horseshoe prior against the horseshoe prior. Obtained using data from 5.4.2.

We observe very similar performance with respect to variable selection in this example,
we could theoretically improve the identification of insignificant βj by decreasing our value
of m0. For this simulation, we used m0 = 50. A more thorough simulation study would
be required to properly compare the two models, with multiple runs of the simulation with

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 46

multiple different varied datasets. This example is merely here to highlight the main, and
most apparent advantages/disadvantages for each prior specification. The main differ-
ence we find in our results is the huge difference in PMSE. The Finnish horseshoe has a
PMSE less than half that of the horseshoe. This highlights the importance of penalising
significant coefficients. Particularly, when comparing the mean values of various coef-
ficients, we find that the horseshoe often overestimates significant coefficients by a fair
margin. For example, (with true values β24 = 9.792 and β48 = −9.583) the horseshoe
estimated E(β24) = 15.78 and E(β48) = −14.18, while the Finnish horseshoe estimated
E(β24) = 11.90 and E(β48) = −10.88. The Finnish horseshoe has still overestimated these
values, as the data will be suggesting that these two coefficients are larger than they ac-
tually are (which is not unlikely given n = 80 and p = 100), but it recognised that they
were potentially inflated and penalised them accordingly. The horseshoe lacks this ability.
Figure 5.14 shows another potential benefit of this shrinkage prior is that it appears to
have lessened the amount of bi-modality present in the low but significant coefficients, like
β1 = 5. This results in small coefficients experiencing less extreme penalisation then, for
example, the continuous spike-and-slab prior, as seen in figure 5.8. This lack of bi-modality
is also good for interpretability.

Figure 5.14: A plot of the Finnish horseshoe posterior densities of coefficients β1, β50 and
β97.

There exist disadvantages to the Finnish horseshoe prior. The most significant being
related to our specification of priors for the parameters c2 and τ . Our choices of m0, ν and
s2 have a large influence over the performance of our model, and if chosen poorly can lead
to less useful models. However, the tunability of this model can also be seen as a part of
its power. When used well, it executes desirable variable selection while not compromising
on predictive accuracy.

5.5 Specifying a Custom Prior

In this section we devise our own penalising prior specification, which has certain desirable
theoretical properties. We want our prior to be sparse and penalising, similar to the
Finnish horseshoe. We use a similar ”skeleton” as the Finnish horseshoe so we can use a

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 47

similar interpretation of our parameters. This goes as follows,

y|β, σ2 ∼ Nn(α1+Xβ, σ2In)

βj |τ, λj ∼ distribution with zero mean, and standard deviation given by τλj

λj ∼ distribution with desirable properties

τ ∼ half-Cauchy

(
0,

m0

p−m0

σ
√
n

)
.

We start by choosing how we wish our graph of κj to appear, as this gives us a
visualisation of how our prior will penalise. We wish for limκj→0 p(κj) = 0. This is
because κj → 0 =⇒ λj → ∞, which means that κj = 0 suggests that our significant
βj will go unpenalised. This is undesirable and so we want the chances of this happening
to be low, hence limκj→0 p(κj) = 0. Similarly, we want limκj→1 p(κj) = ∞. Because, in
the case that κj → 1 (=⇒ λj → 0), we wish to see extreme penalisation of insignificant
parameters. Essentially, we want a high chance of κj being large so that insignificant
coefficients can be penalised to a greater extent.

These conditions lead to our proposed prior for κj , p(κj) ∝ −κj log (1− κj). We can
convert this prior into a prior for λj using the equation κj = (1 + λ2

j)
−1, as follows;

p(λj) = p(κj)

∣∣∣∣∣dκjdλj

∣∣∣∣∣ ,∣∣∣∣∣dκjdλj

∣∣∣∣∣ =
∣∣∣∣∣ 2λj

(1 + λ2
j)

2

∣∣∣∣∣ ,
p(κj) ∝ −

1

1 + λ2
j

log

(
1−

1

1 + λ2
j

)
,

= −
1

1 + λ2
j

log

(
λ2
j

1 + λ2
j

)
,

p(λj) ∝ −
2λj

(1 + λ2
j)

3
log

(
λ2
j

1 + λ2
j

)
,

To check the properness (and to find the normalising constant) of p(λj) we wish to inte-
grate,

I =

∫ ∞

0
−

2λj

(1 + λ2
j)

3
log

(
λ2
j

1 + λ2
j

)
,

=
3

4
(using numerical methods),

=⇒ p(λj) = −
8λj

3(1 + λ2
j)

3
log

(
λ2
j

1 + λ2
j

)
.

We further increase the sparsity of our model by using a double-exponential prior for
βj . This distributions sharp peak results in increased sparsity compared to a normal prior.
As such we have our completed prior specification (which we dub the ’Burn prior’) given

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 48

by,

y|β, σ2 ∼ Nn(α1+Xβ, σ2In)

βj |τ, λj ∼ Laplace(0, τλj)

λj ∼ p(·),where p(λ) = −
8λj

3(1 + λ2
j)

3
log

(
λ2
j

1 + λ2
j

)

τ ∼ half-Cauchy

(
0,

m0

p−m0

σ
√
n

)
.

The graphs in figure 5.15 and figure 5.16 aid in the visualisation of what we expect this
prior specification to do. We observe from figure 5.15 that our proposed prior has a sharper
peak and looks again like it is a pinched version of the ridge prior (similar to the horseshoe
prior), this should increase sparsity. Figure 5.16 helps us visualise the penalising effects
our prior distribution will have, we expect it to penalise significant coefficients greatly, as
limκj→0 p(κj) = 0 and insignificant coefficients also greatly as limκj→1 p(κj) → ∞.

Figure 5.15: This graph shows the difference between our proposed prior (the Burn prior)
and a standard ridge prior.

Figure 5.16: A plot of p(κj) against κj for our proposed prior distribution.

Regression β̂j |(βj = 0) = 0 β̂j |(βj ̸= 0) = 0 PMSE Beta Distance

Finnish Horseshoe 86% 16% 1254.7 3.78
Horseshoe 90% 12% 2999.9 2.12
Burn Prior 84% 8% 2304.2 2.05

Table 5.6: The table obtained using data from 5.4.2. We have extended table 5.5 to include
our proposed Burn prior.

CHAPTER 5. GENERAL BAYESIAN SHRINKAGE PRIORS 49

We apply our proposed prior to data generated in 5.4.2 and create table 5.6. Our
proposed prior seems to be competitive with the horseshoe and Finnish horseshoe pri-
ors, with it generally appearing as a compromise between the two in terms of predictive
accuracy and competitive variable selection. As we expected, it is good at identifying
and applying extreme shrinkage to many insignificant coefficients. However, investigating
deeper shows that, in spite of overall fair variable selection, many of the estimates of the
zero coefficients, βj for j ∈ {51, ... , 100}, are quite large. This may be a consequence
of the shape of our prior distribution. If we refer to the Burn prior distribution, 5.15,
we notice that we have a large amount of probability density in the region β = [−2, 2].
In other words, our prior looks like a spike as the others do, but the base of the spike
is potentially too wide to allow for proper penalisation of many insignificant coefficients.
This results in βj being underpenalised if the training data suggests that they are near
the edges of this region. The horseshoe and Finnish horseshoe are superior in this regard
as their prior distributions have thinner spikes. This diffuse base may be a result of our
original specification for p(κj). Although it has an asymptote at κj = 1, it is a log(·)
asmyptote, meaning that the slope as κj → 1 is potentially not steep enough to execute
great penalisation of insignificant coefficients.

5.6 Comparing Variable Selection Schemes

In the Bayesian paradigm, we lack the luxury afforded to frequentists of automatic variable
selection, which occurs in many of frequentist penalisation techniques (such as the lasso).
As such we must consider our own way to judge which variables should be included.
In previous examples we selected an equal tailed credible interval, and if this interval
contained zero we considered the variable insignificant. Recall, a (1− α)% EQT credible
interval for a random variable X implies that P(X ≤ l) = (α/2)% and P(X ≥ u) = (α/2)%
implies that the (1 − α)% EQT interval for X is given by [l, u]. Our choice for the
percentage, (1 − α), of our equal tailed interval was arbitrary. In this brief section we
determine a fair, standardised way to select variables using Bayesian regression. This is
so that in our following simulations, we can compare the variable selection methods of the
different penalising priors. We say that the optimal EQT interval minimises the distance
criterion, which was proposed here [18] and used in the simulation study given here [20].

The distance criterion :=
√

(1− correct inclusion rate)2 − (false inclusion rate)2.

Once we find the optimal EQT percentage according to the distance criterion of our model
given our data, we wish to have an empirical method of comparing the variable selection
ability. For this task, we employ Matthew’s correlation coefficient (MCC). MCC was
proposed by B.W Matthews in [15].

MCC :=
TP × TN − FP × FN√

(TP + FP)× (TP + FN)× (TN + FP)× (TN + FN)
.

• TP refers to the sum of true positives. We have a true positive when our model
correctly believes a coefficient to be significant. FP is the number of times our
model believes an insignificant predictor to be significant.

• TN refers to the sum of true negatives, which refers to the number of times our
model correctly identifies a coefficient as insignificant. FN is the number of times
we falsely identify a significant predictor is insignificant.10

In the appendix we list the functions written to assess these values using RStan’s posterior
samples, (A.12).

10The distance criterion and MCC both require knowledge of the true values of β. This makes them
unusable on real datasets, however, with simulation studies, we control the value of β and so they are
useful tools for assessing variable selection.

Chapter 6

Simulation Study

In this chapter we will compare the performance of different Bayesian shrinkage priors
and frequentist methods. We will use the full-Bayes method while fitting models, and
we will report statistics for comparison for each of them. We will be simulating each
model on each of simulated dataset 20 times. For variable selection comparison we will
employ algorithms which determine the EQT which minimises the distance criterion, and
then report the MCC of the model using the optimal EQT. We determine a variable to
be insignificant if zero lies within its optimal EQT. We shall consider 6 cases of data
generation.

1. We consider Ntrain = 300, Ntest = 300, β = (−5, 5)T , σ2 = 16 and Xij
iid∼ N(0, 1).

2. We consider Ntrain = 50, Ntest = 100 and β is given by a sequence between −20
and −10 of length 25 and a sequence between 10 and 20 of length 25 (giving 50

predictors in total). We again choose σ2 = 16 and Xij
iid∼ N(0, 1).

3. We consider Ntrain = 200, Ntest = 200 and β is a sequence between −10 → −5 of
length 10 and a sequence of 5 → 10 of length 10, with βj = 0 for j ∈ {31, ... , 50}.
We will take σ2 = 9 and Xij

iid∼ N(0, 1).

4. We consider Ntrain = 30, Ntest = 200 and β is a sequence between −10 → −5 of
length 10 and a sequence of 5 → 10 of length 10, with βj = 0 for j ∈ {31, ... , 50}.
We will take σ2 = 9 and Xij

iid∼ N(0, 1)

5. We consider Ntrain = 30, Ntest = 200 and β is a sequence between 10 → 15 of length
10 and a sequence of −15 → −10 of length 10, with βj = 0 for j ∈ {31, ... , 50}.
We will take σ2 = 1 and Xi ∼ MVN(050,Σ), where Σ is the covariance ma-
trix describing Var(Xij) = 9 (for i = j) and covariances (with j ̸= k) given by
Cov(Xij ,Xik) = 5 for j, k ∈ {1, ... , 5}, Cov(Xij ,Xik) = 8 for j, k ∈ {6, ... , 15},
Cov(Xij ,Xik) = 9 (super-collinearity) for j, k ∈ {16, ... , 20} and Cov(Xij ,Xik) = 0
for j, k ∈ {21, ... , 50}.

6. We consider Ntrain = 30, Ntest = 200 and β is a sequence between 10 → 15 of
length 10 and a sequence of −15 → −10 of length 10. We will take σ2 = 1 and
Xi ∼ MVN(050,Σ), where Σ is the covariance matrix describing Var(Xij) = 9 (for
i = j) and covariances (with j ̸= k) given by Cov(Xij ,Xik) = 5 for j, k ∈ {1, ... , 5},
Cov(Xij ,Xik) = 8 for j, k ∈ {6, ... , 15} and Cov(Xij ,Xik) = 9 (super-collinearity)
for j, k ∈ {16, ... , 20}

Case 1 serves as a way to compare our regression methods in an ideal setting in which
all the assumptions of the linear model are met nicely with plenty of training data. In
this case we may expect the OLS regression to be the superior method. Case 2 will show
us how the different regressions interact with significant predictors, but in a low data

50

CHAPTER 6. SIMULATION STUDY 51

environment. Case 3 should give us information on how the relevant regression methods
produce sparsity in a high data environment, while case 4 does the same in a low data
environment. Case 5 also checks sparsity, with the difference of highly collinear significant
predictors. Case 6 checks performance with highly collinear, but not sparse, data.

The simulation code can be found in the appendix, with the sourced functions here
A.13 and the file which carries out the simulations for each case here A.14. We summarise
the results by taking means of the 20 reported values for each cell in each of the one
through to six cases respectively in the tables 6.1, table 6.2, table 6.3, table 6.5, table 6.6
and table 6.7. Results from each of the 20 simulations done for each regression method
for each case can be found at this link simulation case data. For clarity, results in the
table which use Bayesian methods have a ’b’ prefix, and we give frequentist methods a ’f’
prefix. We summarise our main findings for each case in the following list,

1. All Bayesian regressions offer near identical results with the exception of computa-
tion time, this is due to the influence of the likelihood on our posterior distribution
being much greater than the influence of our prior, because of the large amount of
data we have to train each model. Because there is plenty of data for our number
of predictor variables we expect OLS regression to be optimum. From our simula-
tions we find that the PMSE of OLS and the Bayesian techniques are identical. The
frequentist penalisation techniques offer slightly higher PMSEs, potentially due to
their bias in coefficient estimation, which does not disappear even when we observe
lots of training data.

Regression PMSE ELPD σ2 Time/s

bRidge 16.4 -840 15.8 8.86
bLasso 16.4 -840 15.7 12.3
bNet 16.4 -840 15.8 12.6
bSpikeSlab 16.4 -840 15.7 9.11
bHorseshoe 16.4 -840 15.7 9.39
bFinnishHorse. 16.4 -840 15.8 11.0
bUninformative 16.4 -840 15.9 8.81

fRidge 17.9 0.07
fLasso 17.7 0.053
fNet 17.7 0.062
fOLS 16.4 0.002

Table 6.1: Table of results for case 1.

2. We see that OLS and the uninformative prior Bayesian model both exhibit huge
PMSEs, indicating terrible predictive accuracy in small data training sets. Bayesian
ridge regression offers the lowest average PMSE and ELPD values suggesting that
this model is optimal for prediction. Also, notice that the ”worst” Bayesian regres-
sion for this case (excluding the uninformative model) is that of spike-and-slab. This
is due to the assumption of the data being generated either from the spike or the
slab distribution is dubious, due to the lack of sparsity in this dataset. In spite of
this, it offers better PMSE than the ”best” frequentist method for this data, the
elastic net. We also observe that the estimates of σ2 are massively increased when
compared to case 1, indicating that our Bayesian models greatly overestimate σ2 in
small training datasets. A potential improvement to our Bayesian models would use
a prior to shrink the posterior estimates of σ2, to combat the huge inflation of its
estimate in low data scenarios.

https://github.com/SparsePriors69/Simulation-Data-Full

CHAPTER 6. SIMULATION STUDY 52

Regression PMSE ELPD σ2 Time/s

bRidge 632 -199 70.3 39.8
bLasso 2150 -226 242 18.6
bNet 972 -206 292 1315
bSpikeSlab 1097 -219 470 246
bHorseshoe 4545 -262 1089 48.7
bFinnishHorse. 1052 -212 440 1449
bUninformative 1.04e8 -463 4.6e6 96.9

fRidge 9641 0.121
fLasso 5429 0.136
fNet 4817 0.127
fOLS 63636 0.001

Table 6.2: Table of results for case 2.

3. Case 3’s large and sparse training datasets seem to provide the perfect environment
for the spike-and-slab model, which has the best predictive performance for this
case. All Bayesian regressions impressively exhibited flawless variable selection in
all 20 simulations under this case. Furthermore, they all offered good estimates for
σ2. In contrast, the frequentist lasso and elastic net consistently identified some
insignificant predictors as significant. This worse variable selection is captured by
their lower MCC scores.

Regression PMSE ELPD MCC Cor. Inc. False Inc. Opt. EQT σ2 Time/s

bRidge 12.2 -535 1 1 0 0.985 9.36 9
bLasso 12.1 -533 1 1 0 0.983 9.21 11.8
bNet 12.1 -534 1 1 0 0.980 9.37 57.6
bSpikeSlab 10.5 -518 1 1 0 0.742 9.01 14.9
bHorseshoe 11.4 -526 1 1 0 0.958 8.92 25.4
bFinnishHorse. 11.4 -526 1 1 0 0.950 8.98 37.9
bUninformative 12.3 -535 1 1 0 0.983 9.43 9.22

fRidge 16.1 1 1 0.134
fLasso 12.3 0.74 1 0.253 0.081
fNet 12.4 0.674 1 0.330 0.0725
fOLS 12.3 1 1 0.0015

Table 6.3: Table of results for case 3

4. This case had sparse data with a small training dataset, which is a difficult combi-
nation for linear regression to deal with in general. Because of this, we see that the
PMSEs are about ×40 larger than in case 3. We find the σ2 estimates to be gravely
inflated as in case 2. We again notice that the ”worst” Bayesian method (excluding
the uninformative prior), the horseshoe, offers better predictive performance than
the best frequentist method, the elastic net. The Bayesian ridge offered the lowest
average PMSE, and the highest MCC, leading us to believe it is potentially opti-
mal for this data environment. This could be due to the more diffuse normal prior
distribution better representing our uncertainty in our beliefs about the coefficients
with small training datasets. Meanwhile, priors with sharper peaks suppose we have
more prior certainty about the value of the coefficients which can be a detrimental
assumption. However, the ELPD suggests that the Bayesian lasso edges out the
Bayesian ridge. We calculate using pseudo-Bayesian weights that the Bayesian lasso
is the ’most likely’ model, which we can interpret as the model which offers optimal
Bayesian predictive performance. These weights are shown in table 6.4 below,

CHAPTER 6. SIMULATION STUDY 53

Regression (Case 4) Pseudo-Weights

bRidge 0.258
bLasso 0.702
bNet 0.000
bSpikeSlab 0.035
bHorseshoe 0.005
bFinnishHorseshoe 0.000
bUninformative 0.000

Table 6.4: Pseudo-Bayesian model weights for case 4.

Regression PMSE ELPD MCC Cor. Inc. False Inc. Opt. EQT σ2 Time/s

bRidge 478 -108 0.611 0.77 0.16 0.65 31.7 48.7
bLasso 489 -107 0.579 0.79 0.21 0.52 37.2 24.9
bNet 543 -121 0.510 0.75 0.25 0.51 140 301
bSpikeSlab 473 -110 0.593 0.80 0.20 0.49 45.1 152
bHorseshoe 580 -112 0.504 0.73 0.23 0.42 81.8 92
bFinnishHorse. 507 -117 0.585 0.80 0.21 0.47 83.0 126
bUninformative 9.7e10 -274 0.090 0.57 0.483 0.29 2.6e6 140

fRidge 1148 1 1 0.127
fLasso 785 0.465 0.138 0.103
fNet 746 0.517 0.167 0.104
fOLS

Table 6.5: Table of results for case 4.

5. Case 5 investigates model performance under a small training dataset with sparse
predictors and collinear data. We notice that with this data the Bayesian ridge
struggled significantly compared to the other cases, with a high PMSE. Interestingly,
it has the best ELPD, and so cross-validation suggests that it is the best Bayesian
regression method, which contradicts what the PMSE value is telling us. We also
see that the Bayesian elastic net has very poor average performance, most likely as
a result of divergent MCMC chains, although even when it did not diverge it offered
a lowest PMSE of 6279, which is not very impressive. Divergence of MCMC chains
can usually be diagnosed by inspecting the time taken of the MCMC sampler; in
the case of divergence, it will be very slow. The spike-and-slab model offers the best
variable selection for this dataset, in spite of a poor ELPD. σ2 estimates are very
inflated. The frequentist ridge suffered greatly, having an even higher PMSE than
the divergent Bayesian elastic net. The other frequentist methods seem to have out
performed the Bayesian ridge regression, but not performed as well as any of the
other Bayesian methods1

1The Bayesian elastic net had divergent MCMC chains, resulting in poor performance. Some chains
did not diverge though, and offered similar performance to the other Bayesian techniques.

CHAPTER 6. SIMULATION STUDY 54

Regression PMSE ELPD MCC Cor. Inc. False Inc. Opt. EQT σ2 Time/s

bRidge 4879 -125 0.410 0.60 0.20 0.68 103 126
bLasso 2980 -127 0.435 0.68 0.24 0.58 129 78.5
bNet* 36340 -58226 0.156 0.58 0.42 0.46 8732 569
bSpikeSlab 2313 -154 0.786 0.89 0.097 0.22 1938 240
bHorseshoe 2316 -128 0.281 0.58 0.31 0.47 171 188
bFinnishHorse. 2396 -130 0.304 0.66 0.36 0.41 171 276
bUninformative 1.6e5 -206 0.0567 0.542 0.487 0.342 4.6e4 131

fRidge 52903 1 1 0.158
fLasso 3575 0.419 0.50 0.12 0.127
fNet 3444 0.505 0.62 0.14 0.158
fOLS

Table 6.6: Table of results for case 5.

6. This case offers the largest contrast between the frequentist and Bayesian models.
The non-sparse data alongside a low true σ2 = 1 has allowed the (non-divergent)
Bayesian models to have an extremely small PMSE of around ≈ 2.5. We also see
that the removal of sparsity from case 5 has lead to much better estimates of σ2. The
colossal difference in predictive performance of the Bayesian and frequentist models
here provide great motivation for the study of Bayesian linear regression2.

Regression PMSE ELPD σ2 Time/s

bRidge 2.52 -53.6 1.68 92.7
bLasso 2.45 -55.6 1.8 85.1
bNet* 9907 -108758 3527 261
bSpikeSlab* 710 -126 1271 134
bHorseshoe 2.41 -53 1.49 112
bFinnishHorse. 2.44 -52.5 1.45 145
bUninformative 2260 -159 2860 95.6

fRidge 1084 0.116
fLasso 616 0.113
fNet 694 0.136
fOLS

Table 6.7: Table of results for case 6.

2The Bayesian elastic net and Bayesian spike-and-slab suffered from divergent MCMC chains, causing
poor average performance for both models in this case.

Chapter 7

Conclusion

This project aimed to motivate and explain the use of frequentist penalisation techniques
as well as Bayesian shrinkage priors. Our main findings were that the Bayesian shrinkage
priors were often superior in terms of predictive performance, and very competitive with
regards to inducing sparsity, even if true variable selection requires manual removal of
predictors, when compared to their equivalent frequentist penalisation methods. We also
saw that, in spite of having MAP estimates which coincided with frequentist loss function
minimisation problems, it was hard to definitively relate the practical results given by
Bayesian shrinkage priors with their frequentist namesakes. Furthermore, our simulation
study provides a useful method of comparing the performance of different types of re-
gression when provided with different datasets. Case 1 in our simulation study showed
that the Bayesian techniques offer near identical results to OLS in the ideal case of lin-
ear regression where n ≫ p and all other assumptions were met, while the frequentist
penalisation methods kept their theoretical biases even when the data provided conclu-
sive evidence against it. The flexible Bayesian relationship between the posterior and its
prior and likelihood result in powerful linear regressions which can be used effectively on
many datasets. Adapting our prior choice depending on the data we are modelling can
greatly improve predictive and inferential performance. For instance, concerning case 3 of
our simulation study, the spike-and-slab prior roughly matched the situation in which the
coefficients were selected, ie, from two distributions with one tightly centered about zero
and one distribution more spread out from zero. This fact gave it superior performance,
in spite of the large sample size which usually would give all Bayesian methods very sim-
ilar results. However, it should be noted that if our β prior is at odds with the ’true’
coefficient values, it could weaken the inferential and predictive power of the model, and
so, in general it is good to use multiple models for real datasets. The frequentist methods
tested also exhibit benefits and drawbacks. The automatic variable selection performed
by the lasso and elastic net are valuable inferential tools. Although they generally did
not perform as well as the Bayesian methods in our simulations, it must be acknowledged
that the Bayesian methods were in an ideal (and rare) scenario in which we knew the
true β values, which gave us the means to adapt and refine our inferences on dataset
sparsity. Because of this, and their accessibility alongside their low computation times,
they make for highly practical regression methods in realistic scenarios for making infer-
ences about predictors and responses. An ideal dataset analysis would use a multitude
of different models from both paradigms to obtain a fair and complete view of any given
linear relationship between some data and a response.

55

Bibliography

[1] A. G. Aki Vehtari and J. Gabry. Practical bayesian model evaluation using leave-one-
out cross-validation and waic. pages 1–5, 2017.

[2] Q. G. Angelika Stefab, Dimitris Katsimpokis and E.-J. Wagenmakers. Expert agree-
ment in prior elicitation and its effects of bayesian inference. 2022.

[3] S. Banerjee. Bayesian linear model: Gory details. pages 2, 3, 8.

[4] J. Berger. A robust generalized bayes estimator and confidence region for a multi-
variate normal mean. pages 716–761, 1980.

[5] M. Betancourt. Bayes sparse regression. 2018.

[6] M. Betancourt. Sparsity blues. 2021.

[7] C. Carvalho and N. Polson. The horseshoe estimator for sparse signals. page 3, 2010.

[8] A. Gelfand. Gibbs sampling. pages 1–2, 2000.

[9] A. Gelman. Prior distributions for variance parameters in hierarchical models. page
522, 2006.

[10] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthog-
onal problems. page 1, 1970.

[11] B. Jiang and Q. Sun. Bayesian high-dimensional linear regression with generic spike-
and-slab priors. 2019.

[12] I. Jolliffe and J. Cadima. Principal component analysis: a review and recent devel-
opments. pages 1–4, 2016.

[13] K. M. I. Katharine M. Banner and T. J. Rodhouse. The use of bayesian priors in
ecology: The good, the bad and the not great. 2019.

[14] T. Lewis and B. Carlin. Bayesian methods for data analysis. 2008.

[15] B. Matthews. Comparison of the predicted and observed secondary structure of t4
phage lysozyme. pages 442–451, 1975.

[16] M. G. Minjung Kyung, Jeff Gill and G. Casella. Penalized regression, standard errors,
and bayesian lassos. page 31, 2010.

[17] T. Park and G. Casella. Bayesian lasso. Journal of the American Statistical Associ-
ation, page 1, 2008.

[18] N. J. Perkins and E. F. Schisterman. The inconsistency of “optimal” cutpoints ob-
tained using two criteria based on the receiver operating characteristic curve. Amer-
ican Journal of Epidemiology, pages 670–675, 2006.

56

BIBLIOGRAPHY 57

[19] J. Piironen and A. Vehtari. Sparsity information and regularization in the horseshoe
and other shrinkage priors. pages 1,4, 2017.

[20] J. M. Sara van Erp, Daniel L. Oberski. Shrinkage priors for bayesian penalized
regression. Journal of Mathematical Psychology, page 35, 2019.

[21] T. H. Stephen Bates and R. Tibshirani. Cross-validation: what does it estimate and
how well does it do it? 2022.

[22] S. D. Team. Rstan: the r interface to stan. 2024. URL https://mc-stan.org/.

[23] R. Tibshirani. Regression shrinkage and selection via the lasso. 1996.

[24] R. T. Trevor Hastie and J. Friedman. The elements of statistical learning. 2001.

[25] R. T. Trevor Hastie and B. Narasimhan. The relaxed lasso. 2023.

[26] A. Tsun. 7. statistical estimation, chapter 7.5, maximum a posteriori estimation.
page 4.

[27] W. N. van Wieringen. Lecture notes on ridge regression. pages 5–12, 2023.

[28] J. R. Veerman. Estimating error and prior variance in a high-dimensional ridge
regression models. page 11, 2018.

[29] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal
of the Royal Statistical Society Series B: Statistical Methodology, page 1, 2005.

https://mc-stan.org/

Appendices

58

Appendix A

Appendices

A.1 Example 2.2.2

(2.2.2)

Example 2.2.2 Simulated Collinearity

library(MASS) ## Required for the mvrnorm function

set.seed(42) ## For reproducibility

variance <- matrix(c(1, 0, 0,

0, 1, 0.9,

0, 0.9, 1), nrow = 3, byrow = TRUE)

The variance matrix for our data generation.

Notice the high covariance between the

Second and Third parameters.

n <- 10 ## Number of rows of our design matrix.

mu <- c(0, 0, 0) ## The mean values of our predictors

\boldsymbol{X} <- mvrnorm(n, mu, variance)

beta <- c(5, 5, 5) ## The true values of our beta's with respect

to the predictor variables

Y <- \boldsymbol{X} %*% beta + rnorm(n, mean = 0, sd = 1)

summary(lm(Y ~ \boldsymbol{X}))

A.2 Example 3.2.3

3.2.3

PMSE example 3.2.3

library(faraway) ## Imports interesting data sets

set.seed(42) ## For reproducibility

?worldcup ## Tells us about the data set we are interested in

data("worldcup")

head(worldcup)

We wish to understand how Time Played, Saves and Tackles predicts

number of shots taken by each player in the 2010 world cup.

We want to compare two models and see which is most effective,

will it be the ridge model or the least squares model?

training.rows <- sample(1:nrow(worldcup), floor(0.8*nrow(worldcup)))

59

APPENDIX A. APPENDICES 60

scale our covariates and separate training/testing rows

worldcupRAW <- worldcup[,c(3,4,6,7)]

worldcup <- scale(worldcupRAW)

training.set <- data.frame(worldcup[training.rows,])

testing.set <- data.frame(worldcup[-training.rows,])

ridge.modelMat.train <- model.matrix(Shots ~ Time + Tackles + Saves,

data = training.set)

ridge.modelMat.test <- model.matrix(Shots ~ Time + Tackles + Saves,

data = testing.set)

worldcup.ls <- lm(Shots ~ Time + Tackles + Saves,

data = training.set)

library(glmnet) ## Allows us to use ridge regression

Picks an appropriate lambda value and fits a ridge regression to the data

worldcup.ridge <- cv.glmnet(ridge.modelMat.train, training.set$Shots, alpha = 0)

pred.ls <- predict(worldcup.ls, newdata = testing.set)

pred.ridge <- predict(worldcup.ridge, ridge.modelMat.test)

PMSE = E[(y_hat - y)^2], where y and y_hat are obtained from the test sets.

y_hat (= pred.ls, pred.ridge) represents the predicted response given the x.test predict

put predictions back on original scale

pred.ls <- pred.ls*sd(worldcupRAW$Shots)+mean(worldcupRAW$Shots)

pred.ridge <- pred.ridge*sd(worldcupRAW$Shots)+mean(worldcupRAW$Shots)

PMSE.ls <- mean((pred.ls - testing.set$Shots)^2)

PMSE.ridge <- mean((pred.ridge - testing.set$Shots)^2)

A.3 Data Generation (parameters tuned for 4.3.1)

4.3.1

Data Simulation for Model Testing

library(MASS)

Parameter Definitions

set.seed(42) ## for reproducibility

N <- 100 ## number of observations

total.p <- 3 ## number of predictor variables

real.p <- 2 ## number of non-zero predictor variables

x.sd <- 0

mu <- rnorm(total.p, 0, x.sd) ## means for values of generated data

data.cov <- 0 ##covariance between x-data obs when generated by mvrnorm

variance <- 1 ##variance along diagonal of generated x data

varmat <- matrix(rep(data.cov, total.p*total.p), nrow = total.p)

diag(varmat) <- variance

beta <- c(0.5, 2,

rep(0, total.p - real.p)) ## true beta values

y.sd <- 3 ## sigma

for loop eliminates covariance between real and fake predictors

for(i in (real.p+1):total.p){

for(j in 1:total.p){

if(i !=j){

APPENDIX A. APPENDICES 61

varmat[i,j] <- 0

varmat[j,i] <- 0

}

}

}

##

Data Generation Functions

gen_x.norm <- function(N, total.p,

mu, varmat){

return(mvrnorm(N, mu, varmat))

}

gen_y.data <- function(beta, x, sd){

return(x%*%beta + rnorm(nrow(x), 0, sd))

}

##

x <- gen_x.norm(N, total.p, mu, varmat)

y <- gen_y.data(beta, x, y.sd)

beta # true beta values

let's set up penalised regression:

using 80% of simulations to train the model and 20% to test

training.rows <- sample(1:N, floor(0.8*N))

x.train <- x[training.rows,]

y.train <- y[training.rows]

x.test <- x[-training.rows,]

y.test <- y[-training.rows]

#####

A.4 Stan NIG prior

4.3.1

data {

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

real<lower=0>lambda;

}

parameters {

vector[K] beta;

real<lower=0> sigma2;

// with alpha intercept (we include/exclude alpha in all our stan models depending on need for intercept for

// each specific problem)

real alpha;

}

model {

sigma2 ~ inv_gamma(0.5, 2); // a reasonable prior spec

beta ~ normal(0, sqrt(sigma2/lambda));

y ~ normal(x*beta + alpha, sqrt(sigma2));

APPENDIX A. APPENDICES 62

}

A.5 LOO-CV in RStudio

5.3.3

###CROSS VALIDATION

normal-inverse-gamma model, which reports the log likelihood

model <- stan_model('NIGLOO.stan')

A function to calculate the PMSE (for comparison with LOO)

f.PMSE <- function(lambda){

data = list(N = nrow(x.train),

K = ncol(x.train),

x = x.train,

y = y.train,

lambda = lambda,

x_new = x.test,

N_new = nrow(x.test))

y.new <- extract(sampling(model,data,chains = 1), pars = 'y_new')$y_new

return(PMSEcalc(colMeans(y.new), y.test))

}

f.loo <- function(lambda){

data = list(N = nrow(x.train),

K = ncol(x.train),

x = x.train,

y = y.train,

lambda = lambda,

x_new = x.test,

N_new = nrow(x.test))

optim seeks to minimise a function,

hence we take the negative of the ELPD,

as usually we prefer to maximise it

return(-loo(sampling(model, data,

chains = 1),

pars = 'log_lik')$ELPD)

}

optimal.lambda.loo <- optim(lambda, f.loo, method = 'L-BFGS-B', lower = 0.0001, upper = 100)

optimal.lambda.PMSE <- optim(lambda, f.PMSE, method = 'L-BFGS-B', lower = 0.0001, upper = 100)

data.loo <-list(N = nrow(x.train),

K = ncol(x.train),

x = x.train,

y = y.train,

lambda = optimal.lambda.loo$par,

x_new = x.test,

N_new = nrow(x.test))

data.PMSE <-list(N = nrow(x.train),

K = ncol(x.train),

x = x.train,

y = y.train,

lambda = optimal.lambda.PMSE$par,

APPENDIX A. APPENDICES 63

x_new = x.test,

N_new = nrow(x.test))

fit.loo <- sampling(model, data.loo)

fit.PMSE <- sampling(model, data.PMSE)

A.6 Normal-Inverse-Gamma Prior Ready for LOO

data {

// 'NIGLOO.stan'

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

real<lower=0>lambda;

int<lower=0> N_new; // prediction stuff

matrix[N_new, K] x_new;

}

parameters {

//real alpha;

vector[K] beta;

real<lower=0> sigma2;

vector[N_new] y_new;

}

model {

sigma2 ~ inv_gamma(0.5, 2);

beta ~ normal(0, sigma2/lambda);

y ~ normal(x*beta, sigma2);

y_new ~ normal(x_new *beta, sigma2);

}

generated quantities {

vector[N] log_lik;

for (n in 1:N)

log_lik[n] = normal_lpdf(y[n] |x[n,]*beta, sigma2);

}

A.7 Spike and Slab Stan

6.5.2

data {

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

//real<lower=0> lambda;

int<lower=0> N_new; // prediction stuff

matrix[N_new, K] x_new;

real<lower=0> tau2; // variance of spike normal

}

parameters {

APPENDIX A. APPENDICES 64

//real alpha;

vector[K] beta;

real<lower=0,upper=1> theta; // our slab parameter

real<lower=0> sigma2;

vector[N_new] y_new;

real<lower=0>lambda;

}

model {

theta ~ beta(3,1);

lambda ~ cauchy(0, 1);

sigma2 ~ inv_gamma(0.5, 2);

//beta ~ normal(0, sqrt(sigma2*z/lambda));

for (k in 1:K)

target += log_mix(theta,

normal_lpdf(beta[k] | 0, sqrt(sigma2/lambda)),

normal_lpdf(beta[k] | 0, sqrt(tau2)));

//y ~ normal(x*beta + alpha, sqrt(sigma2));

y ~ normal(x*beta, sqrt(sigma2));

// y_new ~ normal(x_new*beta + alpha, sqrt(sigma2));

y_new ~ normal(x_new*beta, sqrt(sigma2));

}

generated quantities {

vector[N] log_lik;

for (n in 1:N)

log_lik[n] = normal_lpdf(y[n] |x[n,]*beta, sqrt(sigma2));

}

A.8 Horseshoe Prior Stan

6.3.3

data {

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

//real<lower=0> lambda;

//int<lower=0> N_new; // prediction stuff

//matrix[N_new, K] x_new;

}

parameters {

//real alpha;

vector[K] beta;

real<lower=0> sigma2;

// vector[N_new] y_new;

vector<lower=0>[K]lambda;

real<lower=0> tau;

}

model {

APPENDIX A. APPENDICES 65

sigma2 ~ inv_gamma(0.5, 2);

tau ~ cauchy(0, sigma2^(0.5));

lambda ~ cauchy(0, tau);

beta ~ normal(0, sqrt(lambda));

//y ~ normal(x*beta + alpha, sqrt(sigma2));

y ~ normal(x*beta, sqrt(sigma2));

// y_new ~ normal(x_new*beta + alpha, sqrt(sigma2));

// y_new ~ normal(x_new*beta, sqrt(sigma2));

}

A.9 Strawderman-Berger Prior Stan

6.3.3

data {

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

//real<lower=0> lambda;

// int<lower=0> N_new; // prediction stuff

// matrix[N_new, K] x_new;

}

parameters {

//real alpha;

vector[K] beta;

real<lower=0> sigma2;

// vector[N_new] y_new;

vector<lower=0, upper=1>[K]kappa;

}

model {

sigma2 ~ inv_gamma(0.5, 2);

kappa ~ beta(0.5,1);

beta ~ normal(0, sqrt(kappa^(-1)-1));

//y ~ normal(x*beta + alpha, sqrt(sigma2));

y ~ normal(x*beta, sqrt(sigma2));

// y_new ~ normal(x_new*beta + alpha, sqrt(sigma2));

// y_new ~ normal(x_new*beta, sqrt(sigma2));

}

A.10 Finnish Horseshoe Prior Stan

6.3.4

data{

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

// prediction data

int<lower=0> N_new;

matrix[N_new, K] x_new;

}

APPENDIX A. APPENDICES 66

transformed data{

// could be wise to move this into the input data section of the model

// if you want to edit the values alot, as recompiling to change them is slow

real m0 = 50; // prior belief of number of significant beta_j

int nu = 1; // degrees of student-t dist obtained when marginalising c2, 1==cauchy

real s2 = 56.25; // impacts tail size of c2 inverse gamma. large implies less certain

}

parameters{

vector[K] beta;

real<lower=0> tau;

vector<lower=0>[K] lambda;

real<lower=0> c2;

real<lower=0> sigma2;

vector[N_new] y_new;

}

// avoid using fractions as it can upset stan

transformed parameters{

vector<lower=0>[K] lambda_tilde;

{

for (j in 1:K)

{

lambda_tilde[j] = sqrt((c2*square(lambda[j]))*(c2+square(tau*lambda[j]))^(-1));

}

}

}

model{

sigma2 ~ inv_gamma(0.5, 2);

c2 ~ inv_gamma(nu*0.5, nu*0.5*s2);

lambda ~ cauchy(0, 1);

tau ~ cauchy(0, m0*(K-m0)^(-1)*sqrt(sigma2)*sqrt(N)^(-1)); // shape = t0

beta ~ normal(0, tau*lambda_tilde);

y ~ normal(x*beta, sqrt(sigma2));

y_new ~ normal(x_new*beta, sqrt(sigma2));

}

A.11 Hierarchical NIG Prior Stan

Hierarchical Comparison

data {

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

int<lower=0>nu;

//real<lower=0> lambda;

int<lower=0> N_new; // prediction stuff

matrix[N_new, K] x_new;

}

parameters {

//real alpha;

vector[K] beta;

APPENDIX A. APPENDICES 67

vector<lower=0>[K] tau2;

real<lower=0> sigma2;

vector[N_new] y_new;

real<lower=0>lambda;

}

model {

lambda ~ cauchy(0, 1);

sigma2 ~ inv_gamma(0.5, 2);

for(j in 1:K){

tau2[j] ~ inv_gamma(nu*0.5, nu*0.5*lambda^-1);

beta[j] ~ normal(0, sqrt(sigma2*tau2[j]));

}

// tau2 ~ inv_gamma(nu*0.5, nu*0.5*lambda^-1);

// beta ~ normal(0, sigma2*tau2);

//

//y ~ normal(x*beta + alpha, sigma2);

y ~ normal(x*beta, sqrt(sigma2));

// y_new ~ normal(x_new*beta + alpha, sigma2);

y_new ~ normal(x_new*beta, sqrt(sigma2));

}

generated quantities {

// generate values of the log-likelihood for the purpose of using LOO.

vector[N] log_lik;

for (n in 1:N)

log_lik[n] = normal_lpdf(y[n] |x[n,]*beta, sqrt(sigma2));

}

A.12 Variable Selection Functions

Variable Selection Functions

library(rstan)

we wish to make a function which takes a given quantile and checks whether

each coefficient has 0 within that quantile, if it does we can

compare our new idea of beta with the true beta to assess variable

selection accuracy.

coeff.selector <- function(beta.samps, EQTpercent){

beta.samps = extract(modelSamps, pars = 'beta')£beta

EQTpercent = size of eqt credible interval we want to select variables

based upon, 95% is large, 50% is quite reasonable

if (EQTpercent>1){

if EQTpercentage is above 1, make it a percentage by dividing

by a hundred (error proofing)

EQTpercent <- EQTpercent/100

}

a vector with beta.included_i = 1 implying beta_i is included

and beta.included_i = 0 implying beta_i is not included

beta.included <- rep(1, ncol(beta.samps))

for(j in 1:ncol(beta.samps)){

for each beta_j we estimate the desired percentile eqt from

our beta_j samples.

APPENDIX A. APPENDICES 68

percentiles <- quantile(beta.samps[,j],

probs = c((1-EQTpercent)/2,(1+EQTpercent)/2))

if(percentiles[1]<=0 & 0<=percentiles[2]){

check whether zero lies within the percentile

and indicate that it shouldn't be included if it does

beta.included[j] <- 0

}

}

return(beta.included)

}

now we want a function which compares our selected coefficient vector

returned by coeff.selector with the true beta coefficients

true beta coefficients are stored in 'beta'

select.comparison <- function(beta.included, beta){

correct inclusion rate = sum(both!=0)/sum(beta==1)

false inclusion rate = sum(beta.inc==1 & beta==0)/sum(beta==0).

we catch potential singularities using these if statements

if(sum(beta==0)==0){

return(list(correct.inclu.rate =

sum((beta.included!=0)&(beta!=0))/sum(beta!=0),

false.inclu.rate =

sum((beta.included==1)&(beta==0))/1))}

if(sum(beta!=0)==0){

return(list(correct.inclu.rate =

sum((beta.included!=0)&(beta!=0))/1,

false.inclu.rate =

sum((beta.included==1)&(beta==0))/sum(beta==0)))

}

return(list(correct.inclu.rate =

sum((beta.included!=0)&(beta!=0))/sum(beta!=0),

false.inclu.rate =

sum((beta.included==1)&(beta==0))/sum(beta==0)))

}

and finally, we want a function which uses the above two to iteratively

test different EQT percentiles, to minimise the distance criterion

Distance Criterion = sqrt((1-correct.inc.rate)^2-false.inc.rate^2)

distance.criterion <- function(beta.samps, beta, EQTpercent){

return(sqrt((1-select.comparison(coeff.selecter(beta.samps,EQTpercent),

beta)$correct.inclu.rate)^2 +

select.comparison(coeff.selecter(beta.samps,EQTpercent),

beta)$false.inclu.rate^2))

}

optimal.EQT <- function(beta.samps, beta){

want to check 50,55,60,65,70,75,80,85,90,95 EQTpercentiles

first value of distance is the current distance associated with

the EQTpercent, and second value is the EQTpercent which gave

rise to that distance

distance <- c(1,0)

for(i in 1:20){

EQTpercent <- (5*i)/100

current.distance <- distance.criterion(beta.samps,beta,EQTpercent)

APPENDIX A. APPENDICES 69

if(current.distance<distance[1]){

distance <- c(current.distance, EQTpercent)

}

}

return(distance[2])} ## returns optimal EQT percentage

MCC.calc <- function(optimalSelection, beta){

optimal selection is the selection of variables leading to

lowest possible distance criterion

TN <- sum((optimalSelection==0)&(beta==0)) ## true zeroes

TP <- sum((optimalSelection!=0)&(beta!=0)) ## true significant coefficients

FN <- sum((optimalSelection==0)&(beta!=0)) ## falsely insignificant

FP <- sum((optimalSelection!=0)&(beta==0)) ## falsely significant

return((TN*TP-FN*FP)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)))

}

example of use

data <- list(N=nrow(x.train),

K=ncol(x.train),

x=x.train,

y=y.train,

x_new=x.test,

N_new=nrow(x.test),

tau2 = 0.01,

m0 = 5)

spikeslabModel <- stan_model('Spiked+Slabbed.stan') ## A stan model

spikeSamps <- sampling(spikeslabModel, data)

spikeBetaSamps <- extract(spikeSamps, pars = 'beta')$'beta'

optim.Selection <- coeff.selector(spikeBetaSamps,

optimal.EQT(spikeBetaSamps, beta))

MCC varies between -1 and +1, +1 is perfect selection

, -1 is worst selection

MCC.calc(optim.Selection, beta)

A.13 Simulation Master (functions)

Back to text

PMSEcalc <- function(predict, y.test){

return(mean((predict-y.test)^2))}

gen_x.norm <- function(N, total.p,

mu, varmat){

return(mvrnorm(N, mu, varmat))

}

gen_y.data <- function(beta, x, sd){

return(x%*%beta + rnorm(nrow(x), 0, sd))

}

instant_data <- function(Ntrain, Ntest, total.p, mu, varmat, beta, y.sd){

x <- gen_x.norm(Ntrain+Ntest, total.p, mu, varmat)

y <- gen_y.data(beta, x, y.sd)

for some low observation data we may want to increase sample size N,

but decrease training.rows, so we still have a fair amount of testing

data

APPENDIX A. APPENDICES 70

training.rows <- sample(1:(Ntrain+Ntest), floor(Ntrain))

x.train <- x[training.rows,]

y.train <- y[training.rows]

x.test <- x[-training.rows,]

y.test <- y[-training.rows]

return(list(x.train = x.train,

y.train = y.train,

x.test = x.test,

y.test = y.test))

}

data.list <- function(x.train, x.test, y.train, y.test, tau2 = 0.01,

m0 = floor(ncol(x.train)/2)){

return(list(N = nrow(x.train),

K = ncol(x.train),

x = x.train,

y = y.train,

x_new = x.test,

N_new = nrow(x.test),

tau2 = tau2,

m0 = m0,

y.test = y.test))

}

##BAYESIAN:

bayesSim <- function(model, data, y.test, beta, i = 1){

sampling + time taken to sample

tic('sleeping')

samps <- sampling(model, data, seed = pi * i,

show_message = FALSE, verbose = FALSE, refresh = 0)

time <- toc(log = TRUE)

time.taken <- as.numeric(time$toc-time$tic)

predictive performance

PMSE <- PMSEcalc(colMeans(extract(samps, pars = 'y_new')$y_new), y.test)

ELPD <- loo(samps)$estimates[1,1]

sigma2 <- mean(extract(samps, pars = 'sigma2')$'sigma2')

variable selection

beta.samps <- extract(samps, pars = 'beta')$'beta'

optEQT <- optimal.EQT(beta.samps, beta)

opt.selection <- coeff.selector(beta.samps, optEQT)

correct.inc.rate <- select.comparison(opt.selection,

beta)$correct.inclu.rate

false.inc.rate <- select.comparison(opt.selection,

beta)$false.inclu.rate

MCC <- MCC.calc(opt.selection, beta)

return(list(PMSE = PMSE,

ELPD = ELPD,

MCC = MCC,

correct.inc.rate = correct.inc.rate,

false.inc.rate = false.inc.rate,

OptEQT = optEQT,

sigma2 = sigma2,

APPENDIX A. APPENDICES 71

time = time.taken))

}

#example use

data <- data.list(x.train, x.test, y.train, y.test)

bRidgeObs1 <- bayesSim(bRidge, data, y.test, beta)

results£BaysRidge£PMSE[1] <- bRidgeObs1£PMSE

bayesian list updater function:

b.results.update <- function(results, j, obs, i){

j varies through the different models,

j = 1 implies bRidge, j = 2 implies bLasso, ... ,

j = 7 implies bUninformative

results[[j]]$PMSE[i] <- obs$PMSE

results[[j]]$ELPD[i] <- obs$ELPD

results[[j]]$correct.inc.rate[i] <- obs$correct.inc.rate

results[[j]]$false.inc.rate[i] <- obs$false.inc.rate

results[[j]]$OptEQT[i] <- obs$OptEQT

results[[j]]$MCC[i] <- obs$MCC

results[[j]]$sigma2[i] <- obs$sigma2

results[[j]]$time[i] <- obs$time

return(results)

}

FREQUENTIST:

freqSim <- function(alpha.sel, data.gen, beta, i = 1){

set.seed(pi * i)

ridge regression:

tic('sleeping')

fReg == frequentist regression method

fReg <- cv.glmnet(data.gen$x.train, data.gen$y.train, alpha = alpha.sel,

type = 'mse', intercept = FALSE)

time <- toc(log = TRUE)

time.taken <- as.numeric(time$toc-time$tic)

beta.hat <- coef(fReg)[-1]

PMSE <-PMSEcalc(predict(fReg, newx = data.gen$x.test),data.gen$y.test)

opt.selection <- as.numeric(beta.hat!=0)

correct.inc.rate <- select.comparison(opt.selection,

beta)$correct.inclu.rate

false.inc.rate <- select.comparison(opt.selection,

beta)$false.inclu.rate

MCC <- MCC.calc(opt.selection, beta)

return(list(PMSE = PMSE,

MCC = MCC,

correct.inc.rate = correct.inc.rate,

false.inc.rate = false.inc.rate,

time = time.taken))

}

f.results.update <- function(results, j, obs, i){

j varies through the different models,

j = 8 implies fRidge, j = 9 implies fLasso,

j = 10 implies fElasticNetAlpha=0.5

results[[j]]$PMSE[i] <- obs$PMSE

APPENDIX A. APPENDICES 72

results[[j]]$correct.inc.rate[i] <- obs$correct.inc.rate

results[[j]]$false.inc.rate[i] <- obs$false.inc.rate

results[[j]]$false.inc.rate[i] <- obs$false.inc.rate

results[[j]]$MCC[i] <- obs$MCC

results[[j]]$time[i] <- obs$time

return(results)

}

coeff.selector <- function(beta.samps, EQTpercent){

beta.samps = extract(modelSamps, pars = 'beta')£beta

EQTpercent = size of eqt credible interval we want to select variables

based upon, 95% is large, 50% is quite reasonable

if (EQTpercent>1){

if EQTpercentage is above 1, make it a percentage by dividing

by a hundred (error proofing)

EQTpercent <- EQTpercent/100

}

a vector with beta.included_i = 1 implying beta_i is included

and beta.included_i = 0 implying beta_i is not included

beta.included <- rep(1, ncol(beta.samps))

for(j in 1:ncol(beta.samps)){

for each beta_j we estimate the desired percentile eqt from

our beta_j samples.

percentiles <- quantile(beta.samps[,j],

probs = c((1-EQTpercent)/2,(1+EQTpercent)/2))

if(percentiles[1]<=0 & 0<=percentiles[2]){

check whether zero lies within the percentile

and indicate that it shouldn't be included if it does

beta.included[j] <- 0

}

}

return(beta.included)

}

OLSsim <- function(data.gen){

tic('sleeping')

fit.lm <- lm(data.gen$y.train ~ data.gen$x.train+0)

time <- toc(log = TRUE)

time.taken <- as.numeric(time$toc-time$tic)

beta.hat <- coef(fit.lm)

PMSE <-PMSEcalc(data.gen$x.test%*%beta.hat,data.gen$y.test)

opt.selection <- as.numeric(beta.hat!=0)

correct.inc.rate <- select.comparison(opt.selection,

beta)$correct.inclu.rate

false.inc.rate <- select.comparison(opt.selection,

beta)$false.inclu.rate

MCC <- MCC.calc(opt.selection, beta)

return(list(PMSE = PMSE,

MCC = MCC,

correct.inc.rate = correct.inc.rate,

false.inc.rate = false.inc.rate,

time = time.taken))

}

VARIABLE SELECTION

APPENDIX A. APPENDICES 73

select.comparison <- function(beta.included, beta){

correct inclusion rate = sum(both!=0)/sum(beta==1)

false inclusion rate = sum(beta.inc==1 & beta==0)/sum(beta==0).

we catch potential singularities using these if statements

if(sum(beta==0)==0){

return(list(correct.inclu.rate =

sum((beta.included!=0)&(beta!=0))/sum(beta!=0),

false.inclu.rate =

sum((beta.included==1)&(beta==0))/1))}

if(sum(beta!=0)==0){

return(list(correct.inclu.rate =

sum((beta.included!=0)&(beta!=0))/1,

false.inclu.rate =

sum((beta.included==1)&(beta==0))/sum(beta==0)))

}

return(list(correct.inclu.rate =

sum((beta.included!=0)&(beta!=0))/sum(beta!=0),

false.inclu.rate =

sum((beta.included==1)&(beta==0))/sum(beta==0)))

}

distance.criterion <- function(beta.samps, beta, EQTpercent){

return(sqrt((1-select.comparison(coeff.selector(beta.samps,EQTpercent),

beta)$correct.inclu.rate)^2 +

select.comparison(coeff.selector(beta.samps,EQTpercent),

beta)$false.inclu.rate^2))

}

optimal.EQT <- function(beta.samps, beta){

want to check 50,55,60,65,70,75,80,85,90,95 EQTpercentiles

first value of distance is the current distance associated with

the EQTpercent, and second value is the EQTpercent which gave

rise to that distance

distance <- c(1,0)

for(i in 1:20){

EQTpercent <- (5*i)/100

current.distance <- distance.criterion(beta.samps,beta,EQTpercent)

if(current.distance<distance[1]){

distance <- c(current.distance, EQTpercent)

}

}

return(distance[2])} ## returns optimal EQT percentage

MCC.calc <- function(optimalSelection, beta){

optimal selection is the selection of variables leading to

lowest possible distance criterion

TN <- sum((optimalSelection==0)&(beta==0)) ## true zeroes

TP <- sum((optimalSelection!=0)&(beta!=0)) ## true significant coefficients

FN <- sum((optimalSelection==0)&(beta!=0)) ## falsely insignificant

FP <- sum((optimalSelection!=0)&(beta==0)) ## falsely significant

return((TN*TP-FN*FP)/sqrt((TP+FP)*(TP+FN)*(TN+FP)*(TN+FN)))

}

APPENDIX A. APPENDICES 74

A.14 Simulation Study (Running)

Study

SIMULATION STUDY

Remember to set seeds for reproducibility during iterations

to be used with 'variableSelectionDistanceFunctions.R'

data conditions generated by 'data-gen.R'

simulations generated by 'SimGenerator.R'

source('simulationMaster.R') ## stores all functions we need

compile the Bayesian Models we will use

library(MASS)

library(rstan)

library(glmnet) # for fitting penalised frequentist models

library(tictoc) # for measuring run time

total.sims <- 20

results <- list('BaysRidge'= list(PMSE = rep(0,total.sims),

ELPD = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

OptEQT = rep(0,total.sims),

sigma2 = rep(0,total.sims),

time = rep(0,total.sims)),

'BaysLasso' = list(PMSE = rep(0,total.sims),

ELPD = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

OptEQT = rep(0,total.sims),

sigma2 = rep(0,total.sims),

time = rep(0,total.sims)),

'BaysNet' = list(PMSE = rep(0,total.sims),

ELPD = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

OptEQT = rep(0,total.sims),

sigma2 = rep(0,total.sims),

time = rep(0,total.sims)),

'SpikeSlab' = list(PMSE = rep(0,total.sims),

ELPD = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

OptEQT = rep(0,total.sims),

sigma2 = rep(0,total.sims),

time = rep(0,total.sims)),

'Horseshoe' = list(PMSE = rep(0,total.sims),

ELPD = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

OptEQT = rep(0,total.sims),

APPENDIX A. APPENDICES 75

sigma2 = rep(0,total.sims),

time = rep(0,total.sims)),

'Finnish Horseshoe' = list(PMSE = rep(0,total.sims),

ELPD = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

OptEQT = rep(0,total.sims),

sigma2 = rep(0,total.sims),

time = rep(0,total.sims)),

'Uninformative' = list(PMSE = rep(0,total.sims),

ELPD = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

OptEQT = rep(0,total.sims),

sigma2 = rep(0,total.sims),

time = rep(0,total.sims)),

'FreqRidge' = list(PMSE = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

time = rep(0,total.sims)),

'FreqLasso' = list(PMSE = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

time = rep(0,total.sims)),

'FreqENalpha0.5' = list(PMSE = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

time = rep(0,total.sims)),

'OLS' = list(PMSE = rep(0,total.sims),

MCC = rep(0,total.sims),

correct.inc.rate = rep(0,total.sims),

false.inc.rate = rep(0,total.sims),

time = rep(0,total.sims)))

COMPILE BAYESIAN MODELS

'b' prefix implies Bayesian

bRidge <- stan_model('NIGpredict.stan')

bLasso <- stan_model('lassoModel.stan')

bElasticNet <- stan_model('ElasticNet.stan')

bSpikeSlab <- stan_model('Spiked+Slabbed.stan') ## requires tau2 spec in data

bHorseshoe <- stan_model('HorseShoe.stan')

bFinnishHorseshoe <- stan_model('MyfinnishHorse.stan') ## requires m0 spec in data

bUninformative <- stan_model('WeaklyInformativeLM.stan')

for(i in 1:total.sims){

set.seed(pi * i)

data.gen <- instant_data(N.train, N.test , total.p, mu, varmat, beta, y.sd)

(data == the data to be fed into stan models)

data <- data.list(data.gen$x.train, data.gen$x.test, data.gen$y.train, data.gen$y.test,

APPENDIX A. APPENDICES 76

m0 = max(sum(beta==0),1))

unfortunately rstan does not allow lists of models, so we

must manually run through each model sampler to obtain results

b.results.update function stored in "SimGenerator.R"

BAYESIAN MODEL UPDATE

results <- b.results.update(results, 1,

bayesSim(bRidge, data, data.gen$y.test

, beta, i), i)

print(paste(i - 6/7, "iterations complete"))

results <- b.results.update(results, 2,

bayesSim(bLasso, data, data.gen$y.test

, beta, i), i)

print(paste(i - 5/7, "iterations complete"))

results <- b.results.update(results, 3,

bayesSim(bElasticNet, data, data.gen$y.test

, beta, i), i)

print(paste(i - 4/7, "iterations complete"))

results <- b.results.update(results, 4,

bayesSim(bSpikeSlab, data, data.gen$y.test

, beta, i), i)

print(paste(i - 3/7, "iterations complete"))

results <- b.results.update(results, 5,

bayesSim(bHorseshoe, data, data.gen$y.test

, beta, i), i)

print(paste(i - 2/7, "iterations complete"))

results <- b.results.update(results, 6,

bayesSim(bFinnishHorseshoe, data, data.gen$y.test

, beta, i), i)

print(paste(i - 1/7, "iterations complete"))

results <- b.results.update(results, 7,

bayesSim(bUninformative, data, data.gen$y.test

, beta, i), i)

print("iteration = ", i)

####### END OF BAYESIAN MODEL UPDATE ###################################

####### FREQUENTIST MODEL UPDATE ###################################

results <- f.results.update(results, 8,

freqSim(0, data.gen, beta, i),

i)

results <- f.results.update(results, 9,

freqSim(1, data.gen, beta, i),

i)

results <- f.results.update(results, 10,

freqSim(0.5, data.gen, beta, i),

i)

results <- f.results.update(results, 11,

OLSsim(data.gen), i)

####### END OF FREQUENTIST MODEL UPDATE ###################################

}

permanently save the results:

saveRDS(results, file="ResultsCase6.RData")

read the results:

results6 <- readRDS("ResultsCase6.RData")

APPENDIX A. APPENDICES 77

View(results)

Different Cases:

########CASE1###########

Easy Regression

N.train <- 300

N.test <- 300

beta <- c(-5, 5)

y.sd <- 4

\boldsymbol{X}_ij ~ N(0,1)

mu <- c(0, 0)

varmat <- matrix(c(1,0,0,1), nrow = 2)

########CASE2#########

Very Significant Predictors and Low Sample Size

N.train <- 50

N.test <- 100

beta <- c(seq(-20, -10, length.out = 25), seq(10, 20, length.out = 25))

y.sd <- 4

\boldsymbol{X}_ij ~ N(0,1)

mu <- rep(0, length(beta))

varmat <- matrix(rep(0, length(beta)^2), nrow = length(beta))

diag(varmat) <- 1

########CASE3########

Sparse High Sample Size

N.train <- 200

N.test <- 200

beta <- c(seq(5, 10, length.out = 10), seq(-5, -10, length.out = 10),

rep(0, 30))

y.sd <- 3

\boldsymbol{X}_ij ~ N(0, 1)

mu <- rep(0, length(beta))

varmat <- matrix(rep(0, length(beta)^2), nrow = length(beta))

diag(varmat) <- 1

#######CASE4########

Sparse Low Sample Size

N.train <- 30

N.test <- 200

beta <- c(seq(5, 10, length.out = 10), seq(-5, -10, length.out = 10),

rep(0, 30))

y.sd <- 3

\boldsymbol{X}_ij ~ N(0, 1)

mu <- rep(0, length(beta))

varmat <- matrix(rep(0, length(beta)^2), nrow = length(beta))

diag(varmat) <- 1

#######CASE5#####

Sparse Low Sample Size and High Correlation in data

N.train <- 30

N.test <- 200

beta <- c(seq(10, 15, length.out = 10), seq(-10, -15, length.out = 10),rep(0, 30))

y.sd <- 1

APPENDIX A. APPENDICES 78

mu <- rep(10, length(beta))

varmat <- matrix(rep(0, length(beta)^2), nrow = length(beta))

insignifcant predictors cant have a covariance with significant predictors

1:5 covariance of 5 with each other

6:15 covariance of 8 with each other

16:20 covariance of 9 with each other

All data has a variance of 9

varmat[1:5, 1:5] <- 5

varmat[6:15, 6:15] <- 8

varmat[16:20, 16:20] <- 9

diag(varmat) <- 9

#######CASE6#######

Non-sparse Collinear data

N.train <- 30

N.test <- 200

beta <- c(seq(10, 15, length.out = 10), seq(-10, -15, length.out = 10))

y.sd <- 1

mu <- rep(10, length(beta))

varmat <- matrix(rep(0, length(beta)^2), nrow = length(beta))

1:5 covariance of 5 with each other

6:15 covariance of 8 with each other

16:20 covariance of 9 with each other

All data has a variance of 9

varmat[1:5, 1:5] <- 5

varmat[6:15, 6:15] <- 8

varmat[16:20, 16:20] <- 9

diag(varmat) <- 9

APPENDIX A. APPENDICES 79

A.15 Figures

Click to go back to text

Figure A.1: Plots of posterior coefficient densities. The hierarchical model relates to the
student-t prior and the non-hierarchical model relates to the ridge prior.

A.16 Example 5.2.2.

Grouped data sims

GROUPED DATA STUDY 5.2.2.

library(glmnet)

library(rstan)

x has 50 columns

200 training rows

100 testing rows

n <- 100

x <- matrix(rep(0,n*50), nrow = n)

set.seed(42*pi)

APPENDIX A. APPENDICES 80

for(i in 1:n){

z1 <- rnorm(1)

z2 <- rnorm(1)

z3 <- rnorm(1)

z4 <- rnorm(1)

for(j in 1:10){

x[i,j] <- z1 + rnorm(1, 0, 0.1)

}

for(j in 11:20){

x[i,j] <- z2 + rnorm(1,0 , 0.1)

}

for(j in 21:30){

x[i,j] <- z3 + rnorm(1, 0, 0.1)

}

for(j in 31:40){

x[i,j] <- z4 + rnorm(1, 0, 0.1)

}

for(j in 41:50){

x[i,j] <- rnorm(1)

}

}

beta <- c(rep(10, 20), c(rep(-10, 20)), rep(0, 10))

epsilon <- rnorm(n, 0, 10)

y <- x%*%beta +epsilon

NIGpredict <- stan_model('NIGpredict.stan')

Blasso <- stan_model('lassoModel.stan')

Benet <- stan_model('ElasticNet.stan')

NIGsamps <- sampling(NIGpredict, data = list(N = nrow(x),

K = ncol(x),

x = x,

y = as.vector(y)))

BlassoSamps <- sampling(Blasso, data = list(N = nrow(x),

K = ncol(x),

x = x,

y = as.vector(y)))

BenetSamps <- sampling(Benet, data = list(N = nrow(x),

K = ncol(x),

x = x,

y = as.vector(y)))

fLasso <- cv.glmnet(x, y, alpha = 1, type.measure = 'mse')

fRidge <- cv.glmnet(x, y, alpha = 0, type.measure = 'mse')

fEnet <- cv.glmnet(x, y, alpha = 0.5, type.measure ='mse')

c.fLasso <- coef(fLasso)

c.fRidge <- coef(fRidge)

c.fEnet <- coef(fEnet)

c.NIG <- colMeans(extract(NIGsamps, pars = 'beta')$'beta')

c.Blasso <- colMeans(extract(BlassoSamps, pars = 'beta')$'beta')

c.Benet <- colMeans(extract(BenetSamps, pars = 'beta')$'beta')

mean(abs(c.NIG- beta))

APPENDIX A. APPENDICES 81

mean(abs(c.Blasso - beta))

mean(abs(c.Benet - beta))

mean(abs(c.fRidge[-1] - beta))

mean(abs(c.fLasso[-1] - beta))

mean(abs(c.fEnet[-1] - beta))

A.17 Bayesian Lasso Stan

data {

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

//int<lower=0> N_new; // prediction stuff

//matrix[N_new, K] x_new;

}

parameters {

real alpha;

vector[K] beta;

real<lower=0> sigma2;

//vector[N_new] y_new;

real<lower=0>lambda;

}

model {

lambda ~ cauchy(0, 1);

sigma2 ~ inv_gamma(0.5, 2);

beta ~ double_exponential(0, sqrt(sigma2)/lambda);

y ~ normal(x*beta + alpha, sqrt(sigma2));

//y_new ~ normal(x_new*beta + alpha, sigma2);

}

generated quantities {

vector[N] log_lik;

for (n in 1:N)

log_lik[n] = normal_lpdf(y[n] |x[n,]*beta, sqrt(sigma2));

}

A.18 Elastic Net Stan

data {

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

//int<lower=0> N_new; // prediction stuff

//matrix[N_new, K] x_new;

}

parameters {

real alpha;

vector[K] beta;

real<lower=0> sigma2;

APPENDIX A. APPENDICES 82

//vector[N_new] y_new;

real<lower=0>lambda1;

real<lower=0>lambda2;

vector<lower=1>[K]tau;

}

model {

lambda1 ~ cauchy(0, 1);

lambda2 ~ cauchy(0, 1);

target += -log(sigma2);

for (j in 1:K){

tau[j] ~ gamma(0.5, 8*lambda2*sigma2*lambda1^(-2)) T[1,];

beta[j] ~ normal(0, sqrt(sigma2*(tau[j]-1)*(tau[j]*lambda2)^(-1)));

}

y ~ normal(x*beta + alpha, sqrt(sigma2));

// y_new ~ normal(x_new*beta, sqrt(sigma2));

}

generated quantities {

vector[N] log_lik;

for (n in 1:N)

log_lik[n] = normal_lpdf(y[n] |x[n,]*beta, sqrt(sigma2));

}

A.19 Burn (custom) Prior Stan

data {

int<lower=0> N;

int<lower=0> K;

matrix[N, K] x;

vector[N] y;

//real<lower=0> lambda;

int<lower=0> N_new; // prediction stuff

matrix[N_new, K] x_new;

// special global scale parameters

int<lower=0, upper=(K-1)> m0;

}

parameters {

//real alpha;

vector[K] beta;

real<lower=0> sigma2;

vector[N_new] y_new;

vector<lower=0, upper = 1>[K] kappa;

real<lower=0> tau;

}

transformed parameters{

vector<lower = 0>[K] lambda;{

for (j in 1:K){

APPENDIX A. APPENDICES 83

lambda[j] = sqrt((1-kappa[j])*kappa[j]^(-1));

}

}

}

model {

// custom "altBurn" prior for lambda

for (j in 1:K){

target += log(-(1-kappa[j])*log(kappa[j]));

};

sigma2 ~ inv_gamma(0.5, 2);

tau ~ cauchy(0, m0*(K-m0)^(-1)*sqrt(sigma2)*N^(-0.5));

beta ~ double_exponential(0, tau * lambda);

//y ~ normal(x*beta + alpha, sigma2);

y ~ normal(x*beta, sqrt(sigma2));

// y_new ~ normal(x_new*beta + alpha, sigma2);

y_new ~ normal(x_new*beta, sqrt(sigma2));

}

generated quantities {

vector[N] log_lik;

for (n in 1:N)

log_lik[n] = normal_lpdf(y[n] |x[n,]*beta, sqrt(sigma2));

}

	Preface
	Introduction
	Linear Regression
	Ordinary Least Squares Regression
	Collinearity in Least Squares Regression
	Overfitting

	Ridge and Lasso Regression
	Ridge Regression
	The Bias-Variance Trade off
	Lasso Regression

	Bayesian Linear Regression
	Bayesian Methodology
	Choosing Priors
	Bayesian Ridge
	Dealing with 2
	The Normal-Inverse-Gamma (NIG) Prior

	General Bayesian Shrinkage Priors
	Hierarchies in Bayesian Penalised Regression
	Bayesian Lasso and Elastic Net
	Bayesian Lasso
	The Elastic Net

	Determining Optimal Penalisation Parameters
	Full-Bayes
	Empirical-Bayes
	Cross-Validation

	Variable Selection
	Lack of Sparsity Inducing Power of the Ridge Prior
	Spike-And-Slab
	Continuous Sparse Priors
	The Finnish Horseshoe

	Specifying a Custom Prior
	Comparing Variable Selection Schemes

	Simulation Study
	Conclusion
	Appendices
	Appendices
	Example 2.2.2
	Example 3.2.3
	Data Generation (parameters tuned for 4.3.1)
	Stan NIG prior
	LOO-CV in RStudio
	Normal-Inverse-Gamma Prior Ready for LOO
	Spike and Slab Stan
	Horseshoe Prior Stan
	Strawderman-Berger Prior Stan
	Finnish Horseshoe Prior Stan
	Hierarchical NIG Prior Stan
	Variable Selection Functions
	Simulation Master (functions)
	Simulation Study (Running)
	Figures
	Example 5.2.2.
	Bayesian Lasso Stan
	Elastic Net Stan
	Burn (custom) Prior Stan

