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Chapter 1

Introduction

In the past century, the study of genes has been a thriving area of research, giving major con-
tributions to a wide range of fields in medicine and biotechnology [1]. During the 1990s, key
inventions were made in microarray technology, such as, complementary DNA microarrays [2],
nylon microarrays [3] and oligonucleotide chips [4]. These quantified the expression levels of cer-
tain genes through measurements of varying fluorescence intensities and allowed researchers to
study multiple genes at once. A gene expression matrix could then be formulated through the
compilation of several microarrays from samples under different conditions [5].

We consider two genomic applications using microarray data. Firstly, we wish to identify candi-
date genetic biomarkers for specific types of cancers, based on whether the sample is from a tumour
or non-tumour tissue. Secondly, we aim to investigate the relation between any known/candidate
genetic biomarkers with other genes in the dataset. Our simulation data is based on the colon
dataset from the R package bigLasso [6]. Our real life data is taken from the Gene Expression
Omnibus (GEO) database [7] and queried via the R package GEOquery [8]. The queries are:
GDS4102 [9], GDS4336 [10], GDS4103 [11], and all concern pancreatic cancer data.

Mathematically, we approach these applications by fitting a penalised regression model with our
response being respectively either Logistic or Gaussian. Recent literature for genomic biomarker
identification commonly includes methods such as the Lasso [12] [13] [14] [15] and its variants
such as the Adaptive Lasso [16]. However, despite its popular use, the Lasso has many theoretical
shortcomings. Firstly, as Zou noted, it does not satisfy the oracle properties as it over-penalises
large coefficients [17]. Therefore, Zou proposed the Adaptive Lasso but this only satisfied the
properties, given some regularity conditions, which most high dimensional estimators violate.
Similarly, Fan and Li proposed SCAD to reduce this excessive bias problem [18]. Secondly, as
Zhao and Yu proved, the Lasso is model selection inconsistent unless the irrepresentable conditions
are satisfied [19]. Since genes contributing to the same biological process depend on each other,
our data will exhibit strong multicollinearity, so the conditions will be violated. Addressing this,
Zhang developed the Minimax Concave Penalty (MCP) which can be model selection consistent
even if the irrepresentable condition is not satisfied [20]. Furthermore, Zou and Hastie showed
that the Lasso selects collinear predictors randomly, hence proposing the Elastic Net [17].

The rest of this report is organised as follows. In chapter 2 we review linear regression and
explore its limitations to motivate penalised linear regression. In chapter 3 we present the theory
for 6 penalised regression methods: Ridge, Lasso, Adaptive Lasso, Elastic Net, SCAD, and MCP.
Then, in chapter 4, we explore the computational aspects of the model fitting process. After
that, in chapter 5, we compare our methods empirically with simulations. Finally, in chapter 6,
we apply our methods on real life data and conclude with a discussion in chapter 7.
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Chapter 2

Basics of Regression Modelling

In this chapter we provide an overview of classical linear regression, generalised linear models
and common variable selection methods. We then explore their limitations in order to motivate
penalised regression.

2.1 The Linear Model

Definition 2.1.1 (The Linear Model [21]). We denote n as our total sample size and p as our
total number of parameters. Recall the linear model in matrix form.

y = Xβ + ϵ (2.1)

where y ∈ Rn represents our response variable, X ∈ Rn×p is our data matrix, β ∈ Rp is a list of
regression coefficients and ϵ ∈ Rn are our errors.

We have the following assumptions:

• A1. Linearity E(ϵi) = 0

• A2. Homoscedasticity V ar(ϵi) = σ2

• A3. Independence Cov(ϵi, ϵj) = 0

• A4. Large Sample size n > p

• A5. ϵi ∼ N(0, σ2)

From these assumptions, we can calculate the distribution of our response. Since ϵ is the only
random variable,

E(y) = Xβ + E(ϵ) = Xβ

V ar(y) = 0 + V ar(ϵ) = σ2I

Hence, y ∼ N (Xβ, σ2I). Often, if the response y is continuous but not normal, we can perform
a Box-Cox transformation. Note that this transformation is monotonic.

Definition 2.1.2 (Box-Cox Transformation, pg 214 [22]). For i = 1, ..., n,

yi =

{
yλi −1
λ if λ ̸= 0

log(yi) if λ = 0
(2.2)

λ is typically estimated using profile likelihood methods.
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Definition 2.1.3 (Ordinary Least Squares (OLS) [21]). Recall that one can estimate β by min-
imizing the residual sum of squares. We obtain:

β̂ = argmin
β∈Rp

∥y −Xβ∥22 (2.3)

= (XTX)−1XT y (2.4)

Note that since E(β̂) = β, β̂ is an unbiased estimator.

2.2 Generalised Linear Models

In many gene expression data sets for cancer the response variable is often binary. Namely, it is
made up of 1’s and 0’s to represent whether a patient has a tumour or not respectively. Hence, the
continuous response y ∼ N (Xβ, σ2I) is no longer suitable. Therefore, we present an extension of
the linear model.

Definition 2.2.1 (Generalised linear model (GLM) [23]). Let xi ∈ Rp represent an arbitrary row
(observation) of X. The generalised linear model is specified through the following components.
1. A linear predictor.

η = βTxi (2.5)

2. An injective response function h.

µ = E(y|xi, β) = h(η) (2.6)

Or equivalently,
g(µ) = βTxi (2.7)

where g = h−1 is the link function.
3. A distributional assumption which is described by an exponential dispersion family (EDF)
with parameters θ and ϕ depending on xi and β.

P (y|xi, β) = P (y|θ(xi, β), ϕ(xi, β)) = exp

(
yθ − b(θ)

ϕ
+ c(y, ϕ)

)
(2.8)

Intuitively, we can think of the link function as a map between the responses generated from the
linear model and a GLM, which is under a different distribution, as specified by the distributional
assumption. Note that the linear model itself is a GLM.

Example 2.2.1 (Gaussian GLM with identity link). Let η = βTxi be our linear predictor. We
use the identity link, which maps the linear predictor to itself h(η) = η. Let y ∼ N (µ, σ2I). We
first write the Gaussian probability density function as an EDF:

P (yi|µ, σ) =
1√
2πσ2

exp

(
− 1

2σ2
(yi − µ)2

)
(2.9)

= exp

(
− 1

2σ2
(y2i − 2yiµ+ µ2)− 1

2
log(2πσ2)

)
(2.10)

Hence, θ = µ, ϕ = σ2, and c(yi, ϕ) = −
y2i
2σ2 − 1

2 log(2πσ
2). Now, since we use the identity link,

η = θ = µ, so y ∼ N (Xβ, σ2I) and we obtain the linear model.
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Example 2.2.2 (Logistic GLM with logit link pg 35 [23]). Following the above framework, let
xi ∈ Rp be a single observation. Our linear predictor is η = βTxi. We use the logit link function

g(xi) = log

(
π(xi)

1− π(xi)

)
(2.11)

And a Bernoulli distributional assumption

P (y|π(xi)) = exp

(
y log

(
π(xi)

1− π(xi)

)
+ log(1− π(xi))

)
(2.12)

We see that by the properties of an EDF, E(Y |π(xi)) = π(xi), and hence we can write the logit
link as g(µ) = log( µ

1−µ). Its log likelihood is:

l(β) =
∑
i

yiβ
Txi − log(1 + eβ

T xi) (2.13)

Using maximum likelihood estimation, we see that the logistic score function is

S(β) =

n∑
i=1

(
yixi −

eβ
T xi

1 + eβT xi
xi

)
(2.14)

This system of equations is nonlinear and a common method to solve it is through Iterated
Re-weighted Least Squares (IRLS) [24].

2.3 Variable Selection Methods

Once we have estimated the coefficients under the Gaussian or Logistic frameworks, it is often
desirable to use some variable selection method to find a simpler model, especially if the number
of parameters is large. This suggests to us which parameters are significant in affecting the
response and improves our model interpretation. Typically, Gaussian OLS estimates have low
bias but high variance [25]. By setting some coefficients to zero, we may achieve a lower variance
and better predictive accuracy at the cost of slightly more bias. This is called the bias variance
trade-off.

Two of the most common model selection methods are best subset selection and stepwise selection.
Both differentiate models based on some criterion such as Mallows Cp [26], Bayesian Information
Criterion (BIC) [27] and Akaike Information Criterion (AIC) [28].

Definition 2.3.1 (Best Subset Selection [25]). This method fits models to every possible combi-
nation of predictors and selects the best one according to the criterion given above.

Definition 2.3.2 (Forward/Backward Stepwise Selection [21]). Forward stepwise selection starts
with the null model and adds parameters, whereas backward stepwise selection starts with the
saturated model and discards parameters. The processes stop according to the criterion given
above.

Whilst both methods are easy to implement, they have significant shortcomings. Firstly, for large
p best subset selection has infeasible computational costs, as we would have to consider all 2p

possible subset models. Secondly, both processes are discrete, which leads to high variance in
prediction [17]. Thirdly, stepwise processes may be caught up into a cycle, thereby giving a local
optimal model instead of the global optimal model [17]. In addition, stepwise selection is unstable
[29]. For example, if one carries out a backwards stepwise selection on a dataset and then on
the same dataset with one observation removed, the two selected models have different numbers
of parameters. Hence, ”small perturbations” in the data give ”drastic changes” to the selected
models. We discuss this further in Section 5.4.

4



2.4 Limitations of Classical Regression Modelling

With microarray data, we will typically encounter two statistical issues. Firstly, we have a problem
of high dimensionality, with p > n as the number of genes far exceeds the patient sample size.
For example, the colon dataset [6] we use for simulations has 2000 genes but only 62 samples.
Secondly, we have strong multicollinearity in the data, as genes contributing to the same biological
process will affect each other.

As a result, OLS cannot be calculated, since the columns of XTX will not be linearly independent
so, XTX will not be invertible. Similarly, the system of equations used to estimate β for the
logistic case will be under-determined, as we will have p − n free variables. Therefore, we will
need to introduce regularization.

We also desire some properties for our modelling methods. Firstly, the computation must be
efficient as we analyse data sets with thousands of parameters at a time Hence, selection methods
similar to best subset selection are infeasible. Secondly, we prefer no over fitting, namely, we do
not want our model to fit perfectly to the data, as it is only a small proportion of the population
due to its small sample size. Thirdly, we would like stable model selection with respect to
observation removal. Since, our sample size is small with only 50-70 samples, compared to a
parameter size of order 105, there may be missing observations. Finally, since our applications are
focused on identifying significant genes according to the response, we would like model selection
consistent methods. We also analyse the parameter estimation consistency of our methods. These
consistency properties mean that the method selects the true model and estimates the true
parameter values with probability 1 as n → ∞ respectively. They are also commonly rephrased
mathematically as the oracle properties.

2.5 Penalised Regression

Definition 2.5.1 (Penalised Regression). For Gaussian and Logistic models respectively, a pe-
nalised regression method takes the form:

β̂ = argmin
β∈Rp

∥y −Xβ∥22 + P (β; θ) (2.15)

β̂ = argmin
β∈Rp

n∑
i=1

(
−yiβTxi + log(1 + eβ

T xi)
)
+ P (β; θ) (2.16)

where the set of positive tuning parameters which control the shrinkage of the estimated coeffi-
cients is θ. For β ̸= 0, P > 0 and when β = 0, P = 0. Essentially, we add a penalty term to
the classical minimisation problems to estimate β. In the Gaussian case, the penalty is added to
the residual sum of squares. For the logistic case, we add the penalty to the negative logistic log
likelihood as we maximise the positive log likelihood to estimate β.

Remark 2.5.1. Note, that X must be standardised, (with column mean 0 and variance 1) before
the penalty is applied to ensure all the covariates are penalised equally. In many R packages,
such as, glmnet [30] and ncvreg [31], this is done automatically.

In this report, we will explore penalised regression for linear methods. A broader overview of
penalised regression for group, additive, partial linear and non-parametric models can be found
in [32].
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Chapter 3

Penalised Methods

In this chapter, we present the theoretical ideas behind six penalised methods: Ridge, Lasso,
Elastic Net, Adaptive Lasso, SCAD, and MCP. We explore their properties concerning model
selection, parameter estimation and stability.

3.1 Ridge

Definition 3.1.1 (Ridge, pg 63 [25]). First introduced in 1962, the Ridge penalty uses the L2

norm [33]. Let λ > 0. For the Gaussian and Logistic models respectively, the Ridge estimates
are:

β̂Ridge = argmin
β∈Rp

∥y −Xβ∥22 + λ∥β∥22 (3.1)

β̂Ridge = argmin
β∈Rp

n∑
i=1

(
−yiβTxi + log(1 + eβ

T xi)
)
+ λ∥β∥22 (3.2)

Alternatively, we can write our problem in terms of the classical minimisation problem under a
constraint. For some t > 0,

β̂Ridge = argmin
β∈Rp

∥y −Xβ∥22 subject to ∥β∥22 ≤ t (3.3)

β̂Ridge = argmin
β∈Rp

n∑
i=1

(
−yiβTxi + log(1 + eβ

T xi)
)

subject to ∥β∥22 ≤ t (3.4)

The tuning parameter λ has a one-to-one correspondence with t. Both act as a constraint on the
magnitude of the βj . We do not penalize the intercept, so the dimension p refers to the total
number of parameters excluding the intercept. In Figure 3.1 below, we see an example of the
quadratic shrinkage effect.

Lemma 3.1.1 (Closed form solution to Gaussian Ridge).

β̂Ridge = (XTX + λI)−1XT y (3.5)

Proof. The proof follows by differentiation and rearrangement.

Let f(β) := argmin
β∈Rp

∥y −Xβ∥22 + λ∥β∥22

f(β) = (y −Xβ)T (y −Xβ) + λβTβ
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= yT y − 2yTXβ + βTXTXβ + λβTβ

∂f

∂β
= −2XT y + 2XTX + 2λβI

∂2f

∂βT∂β
= 2XTX + 2λI

Now, note that for any vector v ∈ Rp, vTXTXv = (Xv)TXv = ∥Xv∥22 ≥ 0, so XTX is positive
semi-definite. Hence, the second derivative is positive definite, which implies we have a minimum.
Setting the first derivative to 0, we obtain,

(2XTX + 2λI)β̂ = 2XT y

So, β̂Ridge = (XTX + λI)−1XT y

The Ridge estimates add a positive constant λ to the diagonal of XTX, which allows it to be
invertible even with instances of multicollinearity and when p > n.

Figure 3.1: A plot of the Ridge estimation path using glmnet. As log(λ) increases, the |βj | become
smaller. The numbers at the top indicate how many parameters were selected per λ value. The data was:
X ∼ N (0, I), Y ∼ N (Xβ, I) There were 5 non-zero βj ∼ U(−20, 20) and 45 zero βj .

3.2 Lasso

Definition 3.2.1 (Lasso [34]). Let λ > 0. Similarly, to Ridge, the Gaussian and Logistic Lasso
estimates are defined as:

β̂Lasso = argmin
β∈Rp

∥y −Xβ∥22 + λ∥β∥1 (3.6)

β̂Lasso = argmin
β∈Rp

n∑
i=1

(−yiβTxi + log(1 + eβ
T xi)) + λ∥β∥1 (3.7)

Or Alternatively, for some t > 0,

β̂Lasso = argmin
β∈Rp

∥y −Xβ∥22 subject to ∥β∥1 ≤ t (3.8)

β̂Lasso = argmin
β∈Rp

n∑
i=1

(−yiβTxi + log(1 + eβ
T xi)) subject to ∥β∥1 ≤ t (3.9)
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Since the Lasso makes use of the L1 norm, β is not differentiable at 0 so we have no general closed
form solution. However, the idea is still similar: by adding/subtracting a constant to XTX, the
Lasso is able to give a solution in the presence of high dimensional and multicollinear data.
Additionally, an important property of the Lasso (unlike Ridge) is that it sets small coefficients
to 0, so we can perform simultaneous model selection and parameter estimation. Figure 3.2 below
shows an example of the Lasso shrinkage effect for different λ.

Figure 3.2: A plot of Lasso paths computed with the same data as in Figure 3.1.

Comparing Figures 3.1 and 3.2, we see that for the Lasso there exists values of λ for which
some coefficients are non-zero and some are zero. This is an example of the Lasso’s simultaneous
estimation and selection property. By contrast, the Ridge coefficients are non-zero for all λ.

Lemma 3.2.1 (Gaussian Lasso and Ridge solutions under orthogonal design. [25]). Assume that
the columns of X are orthonormal. Let β̂ represent the OLS estimates.

(i) β̂j
Lasso

= sign(β̂j)(|β̂j | − λ)+ (3.10)

(ii) β̂j
Ridge

=
β̂j

1 + λ
(3.11)

Where (x)+ returns the positive part of (x), which is x if x > 0 and 0 otherwise, and sign(·) gives
the sign of (·).

Proof. We base the proof of (i) on [35]. For algebraic clarity, we multiply the RSS by a constant
1
2 . This is a monotonic transformation of the objective function, so the β that minimises it will
be unaffected. We write the Gaussian Lasso as

min
β

1

2
∥y −Xβ∥22 + λ∥β∥1 = min

β

1

2
(yT y − 2yTXβ + βTXTXβ) + λ∥β∥1

= min
β
−yTXβ +

1

2
βTXTXβ + λ∥β∥1

= min
β

p∑
j=1

(
−β̂jβj +

1

2
β2
j + λ|βj |

)

since the columns of X are orthonormal, XTX = I and β̂ = XT y. We have discarded yT y since it
does not depend on β. Now our problem is the sum of p independent equations, so we minimise

8



each one individually. Let

lj = −β̂jβj +
1

2
β2
j + λ|βj |

Consider β̂j ≤ 0, then we must have βj ≤ 0, since we want −β̂jβj ≤ 0 to minimise li. Taking the
derivative,

∂lj
∂βj

= −β̂j + βj − λ = 0

Hence, β̂j
Lasso

= β̂j + λ = sign(β̂j)(|β̂j | − λ)+. Now, consider, β̂j > 0, similarly βj ≥ 0.

∂lj
∂βj

= −β̂j + βj + λ = 0

Hence, β̂j
Lasso

= (β̂j − λ)+ = sign(β̂j)(|β̂j | − λ)+. Since we get the same answer in both cases,
we are done. For (ii) recall from Lemma 3.1.1

β̂j
Ridge

= (XTX + λI)−1(XT y)

= (I + λI)−1(XT y)

=
β̂j

1 + λ

We see that Ridge estimates are shrunk linearly in proportion to the size of βj so the coefficients
will not become 0. By contrast, each Lasso estimate is truncated by a constant factor λ. Note
when βj = 0, there is no shrinkage, so on a Lasso path, a positive coefficient will not be penalised
into a negative one and vice versa. In general, however, the Lasso estimates may not retain the
same signs (positive or negative) as the least squares estimates [34]. In Figure 3.3, we see a
comparison of the Lasso and Ridge estimates against Least Squares.

Figure 3.3: Shrinkage comparisons of Lasso (left) against Ridge (right) given an orthogonal design. The
black line is the Least Squares estimate for reference. The red lines represent the Lasso and Ridge estimates
as a linear transformation of the OLS estimates. In both figures λ = 1. In this report, all of the shrinkage
graphs are plotted using ggplot2. [36]

Example 3.2.1. Let our data be X ∼ N (0, I), with n = 30 observations and p = 5 parameters.
We specify below 3 non-zero βj and 2 zero βj . Let Y = Xβ + ϵ with ϵ ∼ N (0, 1). We compare
OLS, Ridge and Lasso estimates. The models also contain the intercept, which we omit for our
comparison. We round our estimated values to 3 decimal places.
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Parameters True β OLS Ridge Lasso

β1 -2.78 -2.514 -2.350 -2.334
β2 2.99 2.985 2.564 2.587
β3 7.27 7.464 6.707 7.149
β4 0 -0.245 -0.049 0
β5 0 0.227 0.187 0.046

As an example of model selection, the Lasso estimate sets β4 to 0.

3.2.1 The Irrepresentable Conditions

We now examine model selection consistency of the Lasso from a theoretical viewpoint. Since
consistency is a limit property, we introduce new notation to describe how our variables change
dependent on the sample size n.

Definition 3.2.2 (Limit Notation, pg 2544 [19]).

• Let βn ∈ Rp and β̂n ∈ Rp be our true and estimated regression coefficients at some sample
size n, respectively.

• Let βn
(1) = {β

n
1 , ..., β

n
q }T be the vector of q true non-zero regression coefficients.

• Let βn
(2) = {β

n
q+1, ..., β

n
p }T be the vector of p− q true zero regression coefficients.

• Let Xn denote a data matrix with sample size n. Let Xn(1) and Xn(2) denote the first q
and last p− q columns of, X respectively.

• Let

Cn =
XT

nXn

n
=

(
Cn
(11) Cn

(12)

Cn
(21) Cn

(22)

)
where, Cn

(11) = 1
nXn(1)

TXn(1), Cn
(22) = 1

nXn(2)
TXn(2), Cn

(12) = 1
nXn(1)

TXn(2), and

Cn
(21) =

1
nXn(2)

TXn(1).

The matrix XTX is commonly referred to as the Gram Matrix. We can center the columns of
X by subtracting the column mean from each column value, namely, for some fixed j, x∗ij =

xij − 1
n

n∑
i=1

xij . After centering,
1

n−1X
TX is the covariance matrix, so we can think of 1

nX
T
nXn as

a matrix of scaled covariances Covsc. Hence,

Cn
(11)ij = Covsc(Xn(1)i, Xn(1)j)

Cn
(21)ij = Covsc(Xn(2)i, Xn(1)j)

where Xn(1)i represents the ith column of Xn(1). We now introduce two different definitions of
statistical consistency.

Definition 3.2.3 (Parameter Estimation Consistency pg 2543 [19]).

β̂n − β
p→ 0, as n→∞

where,
p→ means convergence in probability, more specifically, limn→∞ P(|β̂n−β| ≥ ϵ) = 0, ∀ϵ > 0.

An estimator possessing this property is normally referred to as consistent.

Definition 3.2.4 (Model Selection Consistency pg 2543 [19]).

P({i : β̂n
i ̸= 0} = {i : βn

i ̸= 0})→ 1, as n→∞

10



The above two definitions state that, as our sample size increases to infinity, we expect, with
certainty, our parameter estimates to converge to our true parameters values and to select the
parameters in the true model. Since our application is about finding relevant predictors, we are
more concerned with model selection consistency.

We now define a stronger notion of model selection consistency through sign consistency. This
means that the signs (positive, negative, zero) of the β̂j must match the true βj eventually. In
contrast, model selection consistency only requires zero and non-zero βj to match.

Definition 3.2.5 (Equal in sign, pg 2543 [19]). An estimate β̂n which is equal in sign with the
true model βn can be written as,

β̂n =s β
n

Definition 3.2.6 (Strong Sign Consistency pg 2544 [19]). An estimate is strong sign consistent,
if ∃λn = f(n), that is, a function of n and independent of the response and data such that

lim
n→∞

P(β̂n(λn) =s β
n) = 1 (3.12)

Definition 3.2.7 (General Sign Consistency pg 2544 [19]). An estimate is general sign consistent
if

lim
n→∞

P(∃λ ≥ 0, β̂n(λ) =s β
n) = 1 (3.13)

Strong sign consistency means that we can use a predefined λ as a function of n to achieve
model selection consistency, whereas general sign consistency means that during some random
realization, there exists a λ that achieves model selection consistency. Note, both definitions
imply model selection consistency.

Definition 3.2.8 (The Irrepresentable Conditions pg 2544 [19]). Assuming Cn
11 is invertible, the

(weak) irrepresentable condition is:

|Cn
21(C

n
11)

−1sign(βn
(1))| < 1 (3.14)

where 1 ∈ Rp−q is a vector of 1’s and the inequality holds element wise. Note, when the signs of
the true β are unknown, the irrepresentable conditions (weak and strong) become

|Cn
21(C

n
11)

−1| < 1− η (3.15)

for some η > 0.

In this report, we will refer to condition 3.15 as the ‘irrepresentable condition’, since, we do not
know the signs of the true β in application. Symbolically, this means that the modulus row
sums of the left side matrix must all be strictly less than 1. We can verify this by computing
∥Cn

21(C
n
11)

−1∥∞ and checking it is < 1.

Example 3.2.2. Let

Cn =


1 2 3 0.5
2 1 0 0
3 0 1 0.1
0.5 0 0.1 1

 , Cn
11 =

1 2 3
2 1 0
3 0 1

 , Cn
21 =

(
0.5 0 0.1

)
Here, we have 3 true, non-zero βj , j = {1, 2, 3}, and 1 zero β4 weakly associated to the true βj .
Assume, we do not know the signs of β.

∥Cn
21(C

n
11)

−1∥∞ =
∥∥−1

60
1
30

3
20

∥∥
∞ =

1

6
< 1

So the irrepresentable condition is satisfied.
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Example 3.2.3. Let

Cn =


1 0 0 4
0 1 0 3
0 0 1 2
4 3 2 5

 , Cn
11 =

1 0 0
0 1 0
0 0 1

 , Cn
21 =

(
4 3 2

)

We use the same β formulation as above, but now β4 strongly associated to the true βj . Assume,
we do not know the signs of β.

∥Cn
21(C

n
11)

−1∥∞ =
∥∥4 3 2

∥∥
∞ = 9 > 1

Hence, the irrepresentable condition is not satisfied.

These two examples give some intuitive insight on when the irrepresentable condition holds. It
seems that if the irrelevant predictors are too strongly associated with the relevant ones, the
condition will not hold. In fact, “the total amount of an irrelevant covariates represented by the
covariates in the model is not to reach 1, (therefore the name ‘irrepresentable’) ” [19]. We now
state the main selection consistency result without proof.

Theorem 3.2.2 (Lasso Selection Consistency [19]). Let xi represent an observed row of X. Let
p, q and βn = β be fixed. The latter means that the true β is fixed regardless of the sample size.
Under the regularity conditions:

1. Cn → C, where C is positive definite.

2. 1
nmax1≤i≤n((x

n
i )

Txni )→ 0 as n→∞, where (xni ) represents the ith sample, given a sample
size of n.

We have that, the Lasso is general sign consistent only if ∃N such that the weak irrepresentable
condition holds for all n > N .

Intuitively, the first regularity condition says that the population has a fixed covariance and that
as we increase sample size our sample covariance will tend to the population covariance. The
second regularity condition states that Covsc(Xi, Xi) = Varsc(Xi) → 0 as n → ∞. This means
that, having more data is beneficial since the uncertainty of our parameter observations tends
to 0, as n is increased. For our application, we only require general sign consistency. Note, this
theorem does not guarantee that we will select the correct λ when we fit the model, even if it
exists.

Definition 3.2.9 (Principal Components Decomposition of XTX). Let X ∈ Rn×p. Consider the
singular value decomposition of X.

X = UZP T

where, U ∈ Rp×p, P ∈ Rn×n and both matrices are orthogonal. Z ∈ Rn×p a rectangular diagonal
matrix. Note all matrices can be decomposed in this way [37]. We write the Gram Matrix as:

XTX = PZTUTUZP T

= PDP T

where D ∈ Rp×p. The values σi ≥ 0 on the diagonal of D are called the principal components.
We specify them and generate P randomly. This produces a positive semi definite matrix which
we can scale and center to get Cn and the covariance Σ. We can also set some σi to be 0 to
introduce linear dependence, hence generating multicollinearity.

12



We now present a simulation based on the algorithm below to investigate the relationship between
the irrepresentable condition and selection consistency empirically.

Algorithm 1 Irrepresentable Condition Simulation

1. Generate 50 different designs (covariance matrices) with 200 parameters using the principal
components decomposition.

2. Calculate η = 1 − ∥Cn
21(C

n
11)

−1∥∞ for each design and note the value. If η < 0 then the
irrepresentable condition is not satisfied.

3. For each design run 50 iterations of the following:
• Generate data based on the design. X ∼ N(0,Σ)
• Set the true βj as {1, 4,−6,−2, 2} for j = 1, ..., 5 and let the rest be 0.
• ϵ ∼ N (0, 1)
• Y = Xβ + ϵ

4. Record how many times the Lasso is general sign consistent by identifying if there exists a
λ in the Lasso path which gives coefficients of the right sign.

Figure 3.4: A scatter plot comparing the percentage general sign consistency on the y-axis, with how
strongly the irrepresentable condition is satisfied. If η > 0, the condition is satisfied.

Figure 3.4 shows an increasing trend of sign consistency as η increases, suggesting that the
irrepresentable condition is necessary for model selection consistency in practice as well. With
microarray data, the irrepresentable condition is often violated as the genes are strongly dependent
on each other. Hence, the Lasso may not be an ideal method for our application.

3.2.2 Identical Predictors

Below we explore a further property of the Lasso estimates under multicollinearity. In this section,
we will use a few common results from convex analysis. More details on these can be found in
Section 4.1.

Definition 3.2.10 (Grouping Effect pg 306 [38]). A regression method exhibits a grouping effect
if a group of strongly correlated variables have almost equal coefficients. In the case where we
have identical predictors, the coefficients should be (theoretically) equal.

In practice, estimated coefficients will rarely be equal due to other factors in the computation
process such as floating point errors, so we only look for predictors with similar coefficients.

13



Consider the scenario where two variables are strongly pairwise correlated. We present a result
in the case that these two variables are identical and expand on the proof given in [38].

Theorem 3.2.3 (Lasso and Identical Variables [38]). Assume we have two identical columns in
the data. I.e, let xi = xj ∈ Rn, i, j,∈ {1, ..., p}. Let β̂ represent the minimiser of our penalised
regression problem.

(i) Let P (·) be an arbitrary penalty function which is positive for β ̸= 0. If P is a strictly
convex function, then, β̂i = β̂j ,∀λ > 0.

(ii) Now, if P (·) is ∥β∥1, then β̂iβ̂j ≥ 0 and β̂∗ is another minimiser of the Lasso problem where

β̂∗
k =


β̂k if k ̸= i and k ̸= j

(β̂i + β̂j) · (s) if k = i

(β̂i + β̂j) · (1− s) if k = j

for any s ∈ [0, 1].

Proof. For part (i), fix λ > 0 and assume β̂i ̸= β̂j . Now consider, β̃ where

β̃k =

{
β̂k if k ̸= i, k ̸= j
1
2(β̂i + β̂j) if k = i or k = j

Xβ̃ =


p∑

k=1,k ̸=i,k ̸=j

(
x1kβ̂k

)
+ x1i

1
2(β̂i + β̂j) + x1j

1
2(β̂i + β̂j)

...
p∑

k=1,k ̸=i,k ̸=j

(
xnkβ̂k

)
+ xni

1
2(β̂i + β̂j) + xnj

1
2(β̂i + β̂j)

 = Xβ̂

since xi = xj . Hence, ∥y −Xβ̃∥22 = ∥y −Xβ̂∥22. Now, since P is strictly convex,

P (β̃) = P

(
1

2
(β̂1, ..., β̂i, β̂j , ..., β̂p) +

1

2
(β̂1, ..., β̂j , β̂i, ..., β̂p)

)
<

1

2
P (β̂1, ..., β̂i, β̂j , ..., β̂p) +

1

2
P (β̂1, ..., β̂j , β̂i, ..., β̂p)

= P (β̂)

Input permutations of the βj components have no effect on the penalty as every component of

the penalty Pj(·) is the same function but applied on a different βj . This implies that β̂ is not

the minimiser of our problem, so we have a contradiction. Hence β̂i = β̂j . For part (ii) assume

β̂iβ̂j < 0. Using the same β̃ as above, consider,

∥β̃∥1 =
∑

k ̸=i,k ̸=j

(
|β̂k|

)
+

1

2
|β̂i + β̂j |+

1

2
|β̂i + β̂j | <

p∑
k=1

|β̂k| = ∥β̂∥1

since, β̂i and β̂j are of different signs. But this contradicts our assumption that β̂ is the minimiser

of our Lasso problem. So, β̂iβ̂j ≥ 0. Through a similar reasoning as part (i) we see that

∥y −Xβ̂∗∥22 = ∥y −Xβ̂∥22. Hence,

∥β̂∗∥1 =
∑

k ̸=i,k ̸=j

(
|β̂k|

)
+ s|β̂i + β̂j |+ (1− s)|β̂i + β̂j | =

p∑
k=1

|β̂k| = ∥β̂∥1

So, the Lasso is not theoretically guaranteed to give equal estimates for identical predictors.
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Lemma 3.2.4. The Ridge penalty is strictly convex and hence guaranteed to have the grouping
effect when there are identical predictors.

Proof. Let P (β) = λ∥β∥22. Consider the Hessian of P

∂2P

∂βT∂β
= 2λI > 0

since λ > 0. By Lemma 4.1.2, we have strict convexity and the grouping effect follows from the
above theorem.

Example 3.2.4 (Comparison of Ridge and Lasso on Almost Equal and Equal Variables). In
this example, we compare Ridge and Lasso Estimates on 2 identical predictors and 2 heavily
correlated predictors. We generate our data as follows:

1. X ∼ N (0, I) with n = 30, p = 3

2. Let x4 = x3, and let x4near = x3 + 0.5

3. Combine X and x4 to get Xequal. Combine X and x4near to get Xnear.

Then, we let β = {1,−3, 4, 4}, ϵ ∼ N (0, 1), Y = Xβ + ϵ and apply the Lasso and Ridge on Xnear

and Xequal. We round our estimates to 3 decimal places.

β Lasso βEqual Ridge βEqual Lasso βNear Ridge βNear

1 0.932 1.140 0.905 1.152
-3 -2.715 -2.600 -2.689 -2.659
4 7.354 3.722 7.318 3.768
4 0.246 3.709 0.243 3.752

We observe that the Ridge estimates exhibit the grouping effect, as its estimates are very close.
In our application, we want to identify which genes have an effect on the response. If a group
of highly correlated genes contribute to an effect, the entire group should be selected. However,
although the Ridge method has this good property, it does not give a sparse solution. Hence, we
present the Elastic Net, which is a compromise between the Ridge and the Lasso methods and
retains the desirable properties discussed so far from both methods.

3.3 Elastic Net

We first present the Naive Elastic Net below. In some texts, this is called the ‘Elastic Net’ [25]
[39]. In this report we follow the definitions suggested by [38] and make clear the distinction
between the Naive Elastic Net and the Elastic Net.

Definition 3.3.1 (Gaussian Naive Elastic Net pg 303 [38]).

argmin
β∈Rp

∥y −Xβ∥22 + λ2|β∥22 + λ1∥β∥1 (3.16)

where λ2, λ1 > 0. The Logistic case is similar, except that the RSS is switched out for the negative
log likelihood. Let

α =
λ1

λ1 + 2λ2
, λ = λ1 + 2λ2

An alternative definition is

argmin
β∈Rp

∥y −Xβ∥22 + λ

(
1− α

2
|β∥22 + α∥β∥1

)
(3.17)
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with α ∈ [0, 1] and λ > 0. This is precisely the equation that glmnet uses for getting a Naive
Elastic Net estimate [39].

When α = 0, we obtain the Ridge method and when α = 1, we obtain the Lasso. From here
onwards, we use the glmnet formulation. Note that the penalty is strictly convex as it is the sum
of a strictly convex penalty and a convex penalty. Hence, it enjoys the grouping effect in the case
of identical predictors.

Figure 3.5: A plot of a Naive Elastic Net path computed with the same data as 3.1.

Lemma 3.3.1 (Gaussian Solution for Naive Elastic Net under Orthogonal design).

β̂j
elnet

=
sign(β̂j)(|β̂j | − αλ)+

1 + λ(1− α)
(3.18)

where, β̂j is the OLS estimate.

Proof. We start with,

lj = −β̂jβj +
1

2
β2
j +

λ(1− α)

2
β2
j + αλ|βj |

This can be found in a similar way to Lemma 3.2.1. For β̂j ≥ 0 which implies βj ≥ 0,

∂lj
∂βj

= −β̂j + βj + λ(1− α)βj + αλ

Setting the derivative to 0,

β̂j
elnet

=
(β̂j − αλ)+
1 + λ(1− α)

=
sign(β̂j)(|β̂j | − αλ)+

1 + λ(1− α)

Similarly, for β̂j ≤ 0 which implies βj ≤ 0,

∂lj
∂βj

= −β̂j + βj + λ(1− α)βj − αλ

Setting the derivative to 0,

β̂j
elnet

=
sign(β̂j)(|β̂j | − αλ)+

1 + λ(1− α)
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Definition 3.3.2 (Elastic Net pg 307 [38]).

β̂(Elastic Net) = (1 + λ2)β̂(Naive Elastic Net) (3.19)

Or alternatively,
β̂(Elastic Net) = (1 + λ(1− α)) β̂(Naive Elastic Net) (3.20)

The Elastic Net estimate is a re-scaling of the Naive estimate. The Naive method first shrinks the
coefficients via Ridge regression and then once more through the Lasso. This produces excessive
bias without much reduction in prediction variance [38]. The re-scaling undoes some of this
”double shrinkage”. Figure 3.6 shows the difference between the two versions of the Elastic Net.
The scaling does not affect the parameters selected but the estimates instead.

Figure 3.6: Shrinkage graphs for the Naive Elastic Net (left) and the Elastic Net (right) with the red
line representing each respective estimate. The black line is the OLS estimate, the blue line is the Lasso
estimate and the green line is the Ridge estimate. We take λ = 1 for all of the methods and α = 0.5.

3.4 Adaptive Lasso

Definition 3.4.1 (Adaptive Lasso [17]). Let ŵ := 1
|β̂|γ

, where β̂ is an initial estimator.

P (βj ;λ, γ) = λ

p∑
j=1

ŵj |βj | (3.21)

where λ > 0, γ > 0.

Unlike the previous methods we have presented, the Adaptive Lasso is a two-step method. The
first step consists of using an initial estimator β̂ to gain a rough estimate of the parameters. We
then use this estimator in the second stage to assign weights to the Lasso penalty. If β̂j → 0,
then wj → ∞. Therefore, if a parameter is found to be insignificant in the first step, it will be

penalised more harshly in the second step. Likewise, if β̂j → ∞ then wj → 0. γ controls how
strongly our second step penalisation depends on our initial estimator. When γ → 0 we get the
Lasso estimates. If, γ →∞ then, all coefficients with small initial estimates between 0 and 1 will
be shrunk to 0. Hence, we can calibrate the amount of shrinkage rather than uniformly penalising
the parameters as in the Lasso.

There are a few choices for β̂. Zou recommends that if p ≤ n, we use OLS, otherwise if p > n and
the parameters are strongly correlated, we use Ridge [17] . For genomic applications, Algamal
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and Lee proposed a custom initial estimator, CBPLR, dependent on pairwise correlations between
different genes [16]. In this report, we will use Ridge coefficients as our initial estimator.

Figure 3.7: Adaptive Lasso paths using Ridge coefficients as the initial estimator with different γ values.
On the left γ = 0.5 and on the right γ = 2. We use the same data as in Figure 3.2

Lemma 3.4.1 (Gaussian Adaptive Lasso solution under Orthogonal Design).

β̂j
Adap

= sign(β̂j)(|β̂j | − ŵjλ)+ (3.22)

Under a Ridge initial estimator, this is

β̂j
Adap

= sign(β̂j)

(
|β̂j | −

λ(1 + λ̃)γ

|β̂j |γ

)
+

(3.23)

where β̂j is the OLS estimate, and λ̃ is the shrinkage parameter used to find the Ridge estimate.

We omit the proof, as it follows similarly to Lemma 3.2.1. In Figure 3.8 below, we see the
shrinkage effects of the adaptive lasso using the same ridge initial estimators with varying γ.

Figure 3.8: Two shrinkage graphs for the Adaptive Lasso, represented by the red lines. The black
line represents OLS estimates, the green line represents Ridge estimates, the blue line represents Lasso
estimates. We take λ = 1 for all the methods. On the left γ = 0.5 and on the right γ = 2.
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3.4.1 Oracle Properties

Definition 3.4.2 (Convergence in distribution pg 352 [40]). We say that Xn converges to X in

distribution, Xn
d→ X if the respective cumulative functions converge to each other

lim
n→∞

Fn(x) = F (x) (3.24)

for all x ∈ Rn such that the functions are continuous.

Definition 3.4.3 (Root-n/an Consistency [17]). We say an estimator is root-n consistent if

√
n(β̂ − β) = Op(1) (3.25)

and an consistent if
an(β̂ − β) = Op(1) (3.26)

where an is a divergent sequence and Op(1) means bounded in probability.

Definition 3.4.4 (Oracle properties [17]). A procedure/method δ is an oracle procedure if the
estimates β̂(δ) satisfy:

1. Model Selection Consistency - same as Definition 3.2.4.

2. Optimal Estimation Rate.
√
n
(
β̂(δ)− β(δ)

)
d→ N (0,Σ)

where Σ is the covariance matrix of the true model.

The second property is a weaker version of the parameter estimation consistency presented in
definition 3.2.3. As n → ∞,

√
n diverges. Hence, the property is saying that the differences

between the estimates and the true values must be small enough such that they form a bell curve
around 0.

Theorem 3.4.2 (Gaussian Adaptive Lasso satisfies the Oracle Properties. pg 1420 [17]). Let
Y ∼ N (Xβ, σ2I) and assume 1

nX
TX → C. Also assume that, λn\

√
n→ 0 and λnn

(γ−1)\2 →∞.
Further, assume that the initial estimate is root-n consistent. Then, the Adaptive Lasso satisfies
the oracle properties with the second property being,

√
n
(
β̂(δ)− β(δ)

)
d→ N (0, σ2C−1

11 )

where C11 is the part of the gram matrix relating to the true model parameters.

We omit the proof as it is highly technical. The result does not require the irrepresentable
condition. The main reason why the Adaptive Lasso is an oracle procedure is due to the weights.
Since the initial estimator is assumed to be parameter estimation consistent, the weights will
become more accurate as our sample size increases. In particular, as n → ∞, ŵj → ∞ for true
βj = 0 and ŵj goes to some finite constant for true βj ̸= 0. Therefore, our second estimate will
also be gradually more accurate given more samples.

The condition for root-n consistency can be relaxed to an consistency [17]. For low dimensional
data p ≤ n, this condition is easily satisfied, as we can take the initial estimator to be OLS.
However, it is difficult to obtain an an consistent initial estimator for high dimensional data
p > n. We use Ridge for our initial estimator, but it remains to be shown that Ridge estimates
are an consistent [17]. So, we do not know if the oracle properties are satisfied for Ridge Adaptive
estimates.
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3.5 Folded Concave Penalties

In this section, we look at two penalties, SCAD and MCP. Unlike normed penalties, the penalty
functions are not convex. Instead, they are symmetrically concave for βj > 0 and βj < 0. Hence,
the name ‘folded concave’ penalties. We also define the penalty functions via a single component

βj , as P (β;λ, γ) =
p∑

j=1
P (βj ;λ, γ).

Definition 3.5.1 (Smoothly Clipped Absolute Deviation (SCAD) Penalty [18]).
Let j ∈ {1, ..., p}.

P (βj ;λ, γ) =


λ|βj | if |βj | ≤ λ
2γλ|βj |−β2

j−λ2

2(γ−1) if λ < |βj | < γλ
λ2(γ+1)

2 if |βj | ≥ γλ

(3.27)

where λ > 0, γ > 2.

For small regression coefficients, |βj | ≤ λ, the penalty is equivalent to the Lasso. Afterwards,
the penalty follows a quadratic curve, before tailing off to a constant. γ alters the concavity of
the quadratic section. Since, the Lasso penalises all the coefficients by λ equally, it often biases
large, relevant coefficients too excessively. The penalisation rate tails off for SCAD to minimise
this problem. In terms of consistency, SCAD satisfies the oracle properties [18].

Definition 3.5.2 (Minimax Concave Penalty (MCP) [20]).

P (βj ;λ, γ) =

{
λ|βj | −

β2
j

2γ if |βj | ≤ γλ
1
2γλ

2 if |βj | > γλ
(3.28)

where λ > 0, γ > 1.

MCP follows similarly to the SCAD penalty, but immediately begins with a quadratic penalisation
curve before tailing off to a constant. It is still non-differentiable at βj so a sparse solution is
guaranteed. In Section 3.2.1, the Lasso was analysed to be selection inconsistent unless the
irrepresentable condition was satisfied. MCP has been proved to be selection consistent without
the need for the irrepresentable condition [20]. Furthermore, SCAD and Lasso may also eliminate
relevant predictors with small coefficients. MCP alleviates this issue by relaxing the penalisation
rate immediately.

Below, in Figures 3.9 and 3.10, we present of example of the regularisation paths of SCAD and
MCP respectively, and a plot of the penalties in comparison to the Lasso.

Figure 3.9: Regularisation paths for SCAD (left) and MCP (right). Computed with same data as in
Figure 3.2. We use the default γ = 3.7, γ = 3 for SCAD and MCP, respectively.
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Figure 3.10: Plot of folded concave penalties against the Lasso penalty.
Black = Lasso, blue = SCAD, red = MCP. λ = 1, γ = 2.5.

Lemma 3.5.1 (Gaussian SCAD solution under orthogonal design. pg 1351 [18]). Let our data
X have orthonormal columns and let β̂j represent the OLS estimate. Then we can write

β̂SCAD
j =


sign(β̂j)( ˆ|βj | − λ)+ if |β̂j | ≤ 2λ
(γ−1)β̂j−sign(β̂j)γλ

γ−2 if 2λ < |β̂j | ≤ γλ

β̂j if |β̂j | > γλ

Proof. We prove this in a similar style to Lemma 3.2.1 but consider cases for |βj | as the penalty
is piecewise.
Case 1: If |βj | ≤ λ, then we have the Lasso problem, and our SCAD estimate is naturally the
same as the Lasso estimate. So,

β̂SCAD
j = sign(β̂j)( ˆ|βj | − λ)+

Case 2: If λ < |βj | < γλ, then we wish to minimise

lj = −β̂jβj +
1

2
β2
j +

2γλ|βj | − β2
j − λ2

2(γ − 1)

Consider β̂j ≥ 0, which implies βj ≥ 0. Taking the derivative we get,

∂lj
∂βj

= −β̂j + βj +
γλ− βj
γ − 1

= −β̂j +
γβj + γλ− 2βj

γ − 1

Setting the derivative to 0,

β̂SCAD
j =

(γ − 1)β̂j − γλ

γ − 2
=

(γ − 1)β̂j − sign(β̂j)γλ

γ − 2

Now consider β̂j ≤ 0, which implies βj ≤ 0. Similarly, we get,

∂lj
∂βj

= −β̂j +
γβj − γλ− 2βj

γ − 1
= 0
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β̂j
SCAD

=
(γ − 1)β̂j + γλ

γ − 2

=
(γ − 1)β̂j − sign(β̂j)γλ

γ − 2

which proves the second case. We note γ > 2 for the estimate to be feasible. For case 3, |β̂j | > γλ,

lj = −β̂j + βj +
λ2(γ + 1)

2

After taking derivatives and rearranging, we find that,

β̂j
SCAD

= β̂j

Now, notice we must match up the inequalities for these piece wise estimates to maintain conti-
nuity. Case 1 and Case 2 intersect at |β̂j | = 2λ. Case 2 and Case 3 intersect at |β̂j | = γλ. This

can be seen if one substitutes β̂j = 2λ, β̂j = γλ into Case 2.

Lemma 3.5.2 (Gaussian MCP solution under orthogonal design). Let X have orthonormal
columns and β̂j represent OLS estimates. Then,

β̂j
MCP

=

{
γsign(β̂j)(|β̂j |−λ)+

γ−1 if |βj | ≤ γλ

β̂j if |βj | > γλ
(3.29)

We omit the proof for this result, but it can be derived via similar means to the Lasso or SCAD
case. We see that, unless γ > 1, the first estimate won’t be feasible. In Figure 3.11 we see
shrinkage comparisons of SCAD and MCP against OLS with the same λ and γ. Note for large
|βj | both estimates become the same as OLS.

Figure 3.11: Shrinkage graphs for SCAD (left) and MCP (right). Similarly to Fig 3.3, the black line
represents the OLS estimates and the red line represents the SCAD or MCP estimates. In both cases, we
take λ = 1, γ = 2.5.
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3.6 Stability

Above, we have presented 5 penalised regression methods which give sparse solutions. However,
as we show is this section, these methods are not necessarily stable.

Definition 3.6.1 (Algorithm Output pg 2 [41]). We call the output of an algorithm fitted on
the training data L(y,X), where y is our response, and X is our data matrix.

In the case of regression, the solutions are functions of β. Now, we define what we mean by
sparsity and stability.

Definition 3.6.2 (IRF pg 3 [41]). An estimator β∗ identifies redundant features (IRF) of X if

∀i ̸= j,xi = xj =⇒ β∗
i β

∗
j = 0. (3.30)

In short, if two predictors are the same, the estimator must be 0 for one. An algorithm is IRF if
there exists a β∗ ∈ L(y,X) which is IRF. In example 3.2.4, we see that the Lasso is IRF, whereas,
Ridge is not. We say that an algorithm is sparse if it gives a model that has identified redundant
features.

Definition 3.6.3 (Uniform Stability pg 2 [41]). Let Z be the space of responses and data points.
Typically, Z ⊂ Rp+1. An algorithm has uniform stability ϵn with respect to a loss function l if
∀y ∈ Rn, ∀X ∈ Rn×p, and ∀i ∈ {1, .., n} the following holds:

max
zk∈Z

|l(L(y,X), zk)− l(L(y,X)\i, zk)| ≤ ϵn (3.31)

where zk = (yk, Xk), and Xk is the kth row of X. Note, X and y refer to the training data
whereas, zk refers to both training data and test data. For Gaussian regression,

l(L(y,X), zk) = ∥L(y,X)(Xk)− yk∥22 (3.32)

The model fitted when the ith observation is removed is L(y,X)\i. In essence, the definition gives
the maximum difference of loss functions on datasets with single differing observations. We say
that an algorithm is stable if its uniform stability ϵn → 0 as n→∞.

We now make an assumption [41]. Given some j, data (y, X) and two estimators β1 and β2, sup-
pose that β1 <(y,X) β

2 and β1
j = β2

j = 0. Namely, the algorithm outputs/prefers β2 over β1. Then,

for any, new predictor x̂j , we still have β1 <(y,X̂) β2, where X̂ = (x1, ...,xj−1, x̂j ,xj+1, ...,xp).
This means that if a parameter is set to 0 between a pair of estimators, changing the data cor-
responding to that parameter does not change the preference ordering the algorithm has on the
estimators.

Theorem 3.6.1 (Sparse Algorithms are not Stable pg 3 [41]). If an algorithm satisfies the above
assumption and is IRF, its uniform stability bound is bounded below by bn and does not go to 0
as n→∞.

We omit the proof since it is highly technical. This theorem states that all of our methods except
Ridge and Naive Elastic Net are not stable. However, it does not quantify the extent of the
instability. Therefore, we will explore the stability of our algorithms empirically in Section 5.4.
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Chapter 4

Fitting the Model

In this chapter, we explore the theory behind the estimation process of β for the methods described
in the previous chapter, and conclude with a summary on model diagnostics. We present a
brief introduction on convex analysis before looking at coordinate descent and cross validation
algorithms.

4.1 Convex Analysis

Definition 4.1.1 (Convex set pg 23 [42]). A set C is convex if for all elements x1, x2 ∈ C and
t ∈ [0, 1],

tx1 + (1− t)x2 ∈ C

Clearly, the set Rp ∀ p ∈ N is a convex set.

Definition 4.1.2 (Convex function pg 67 [42]). Let X be some convex subset of a real vector
space. A function f : X → R is convex if for all elements x1, x2 ∈ X, and t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

If we have a strict inequality, we say that the function is strictly convex. Notice that the sum of
two convex functions is convex.

Example 4.1.1 (All norms are convex). For all u, v ∈ V , where V is some vector space and for
all 0 ≤ t ≤ 1, we have

∥tu+ (1− t)v∥ ≤ ∥tu∥+ ∥(1− t)v∥ ≤ t∥u∥+ (1− t)∥v∥

where we use the norm properties, triangle inequality and multiplication by a scalar constant for
the first and second inequalities respectively.

Lemma 4.1.1 (First order convexity condition pg 69 [42]). A differentiable function f : Rn 7→ R
on some convex set is convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x) (4.1)

A proof can be found in [42]. Essentially, the condition says that all the points of the convex
function must lie above the tangent at any given point. We provide a diagram below to illustrate
this for one dimension.
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Figure 4.1: An illustration of the first order convexity condition for a univariate function.

Lemma 4.1.2 (Second-order Convexity Condition pg 71 [42]). Assume f is twice differentiable.
Then, f is convex if and only if its domain is a convex set and its Hessian is positive semi-definite.

∇2f(x) ≥ 0

If its Hessian is positive definite, then, we have strict convexity.

∇2f(x) > 0

The proof follows from the 1st order convexity condition.

Example 4.1.2 (Convexity of RSS). Let f(β) be the RSS.

f(β) = ∥y −Xβ∥22
= (y −Xβ)T (y −Xβ)

= yT y − 2yTXβ + βTXTXβ

∂2f

∂βT∂β
= 2XTX

From the proof of Lemma 3.1.1, we see that the Hessian above is positive semi-definite. Hence,
by the second-order convexity condition, the RSS is convex.

Example 4.1.3 (Convexity of Negative Logistic Log Likelihood). Let f(β) be the negative logistic
log likelihood.

f(β) =
n∑

i=1

(
−yiβTxi + log(1 + eβ

T xi)
)

∂f

∂β
=

n∑
i=1

(
−yixi +

xie
βT xi

1 + eβT xi

)
∂f

∂βT∂β
=

n∑
i=1

(
xix

T
i e

βT xix
T
i β

(1 + eβT xi)2

)
= XDXT

where Dii =
exp(βT xix

T
i β)

(1+exp(βT xi))2
≥ 0 with D ∈ Rn×n and

n∑
i=1

xix
T
i = XXT with X ∈ Rp×n. Now

consider a vector v ∈ Rp.

vTXDXT v = vTXD
1
2D

1
2XT v = (D

1
2XT v)TD

1
2XT v = ∥D

1
2XT v∥22 ≥ 0

Therefore, XDXT is positive semi-definite, so the negative logistic log likelihood is convex by the
second order convexity condition.
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For the Elastic Net, Ridge and Lasso, our optimisation problem is the sum of a convex loss
function and a convex norm penalty. Hence, the minimisation function is convex. Next, we
introduce the notion of subgradients which is a generalisation of derivatives and is useful for
optimising convex functions which are not differentiable.

Definition 4.1.3 (Subgradients pg 4 [43]). A vector g ∈ Rn is a subgradient of f : Rn 7→ R at
x ∈ dom f , that is the domain of f , if, ∀y ∈ dom f

f(y) ≥ f(x) + gT (y − x) (4.2)

There may be multiple subgradients at a point x. The set of such subgradients of f at point x is
called the subdifferential of x and is denoted ∂f(x). A function is subdifferentiable at a point if
there exists at least one subgradient at that point.

Example 4.1.4 (Subdifferential of |x| at x = 0). From the definition, we see that ∂f(x) contains
all g ∈ R such that

|y| ≥ gy

Hence, g ∈ [−1, 1].

Note, if f is convex and differentiable at x, ∂f(x) = {∇f(x)}, that is to say, its subgradient
becomes its gradient [44].

Definition 4.1.4 (Minkowski Sum pg 197 [45]). Given two sets A and B

A+B := {a+ b|a ∈ A, b ∈ B} (4.3)

Lemma 4.1.3 (Subgradients of sums [44]). Suppose f1, ..., fm are convex functions and f =
f1 + ...+ fm. Then,

∂f(x) = ∂f1(x) + ...+ ∂fm(x) (4.4)

Proof. Recall that g is a vector and m is a scalar.

∂f(x) = {g|f(z) ≥ f(x) + gT (z − x)}

= {mg

m
|f1(z) + ...+ fm(z) ≥ f1(x) + ...+ fm(x) +

mgT

m
(z − x)}

= { g
m
|f1(z) ≥ f1(x) +

gT

m
(z − x)}

+ ...+ { g
m
|fm(z) ≥ fm(x) +

gT

m
(z − x)}

= ∂f1(x) + ...+ ∂fm(x)

Example 4.1.5 (Subdifferential of the Elastic Net Penalty at βj = 0.). Let f(βj) be the penalty
function at a single component βj .

f(βj) = λ

(
1− α

2
β2
j + αβj

)
We take the derivative of the Ridge component of the function to get the subdifferential.

∂fRidge

∂βj
= λ(1− α)βj = 0

The Lasso subdifferential is {g|g ∈ [−λα, λα]} based on the above example. Hence, using Lemma
4.1.3, the subdifferential of the Naive Elastic Net penalty at βj = 0 is {g|g ∈ [−λα, λα]}.
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Lemma 4.1.4 (Minimizing non-differentiable functions, page 3 [44]). A point x is the minimiser
of a function f (not necessarily convex) if and only if f is subdifferentiable at x and 0 ∈ ∂f(x), i.e
0 is a subgradient of f(x).

Proof. Note ∀y ∈ dom f , f(y) ≥ f(x). This is equivalent to f(y) ≥ f(x) + 0T (y− x), and hence
f is subdifferentiable at x with 0 ∈ ∂f(x). Clearly, the converse is true as well.

Note, if f is convex and differentiable at x, the condition 0 ∈ ∂f(x) reduces to ∇f(x) = 0 [44].

4.2 Coordinate Descent

For the model fitting in this report, we will use the R packages glmnet [30][39] and ncvreg [31].
These packages estimate β using coordinate descent, which is a very fast algorithm [39].

Definition 4.2.1 (Coordinate-wise minimum, page 3 [46]). Let ei ∈ Rn be the ith standard basis
vector. Then the coordinate-wise minimum of f : Rn 7→ R is defined such that

∀d ∈ R and i ∈ {1, ..., n}, f(x+ dei) ≥ f(x) (4.5)

Theorem 4.2.1. If a function is the sum of a convex and differentiable function, as well as a
convex but not necessarily differentiable function, its coordinate-wise minimum is also its global
minimum.

Proof. We prove this based on [46] and give a few more analytic details. Let g(β) be the con-
vex and differentiable, and let h(β) be convex but not necessarily differentiable. Naturally, the
theorem also holds if the second part is differentiable. Let

F (β) := g(β) + h(β)

We want to find the β which minimises F . Note that for all β ∈ Rp, g is convex and differentiable
and h is convex but not differentiable.

Let β∗ be our coordinate-wise minimum. Consider, for some z ∈ Rp

F (z)− F (β∗) = g(z)− g(β∗) + h(z)− h(β∗)

≥ ∇gT (β∗)(z − β∗) + h(z)− h(β∗) as g is convex and differentiable

=

p∑
i=j

(∇jg(β
∗)(zj − β∗

j ) + h(zj)− h(β∗
j ))

(4.6)

Now, consider the problem in the view of each individual β∗
j . I.e. we optimise along one coordinate

direction.
F (β∗

j ) = g(β∗
j ) + h(β∗

j )

Our assumption was that β∗ was the coordinate wise minimum. Hence, we know that F (β∗
j ) is

minimised at β∗
j . By Lemma 4.1.3 and Lemma 4.1.4, we see that

0 ∈ ∂F (β∗
j )

0 ∈ {∇jg(β
∗)}+ ∂h(β∗

j )

Now, denoting d to be the subgradients of h(β∗
j ) and γ to be ∇jg(β

∗) , we see that

0 ∈ {d+ γ|h(zj) ≥ h(β∗
j ) + (d+ γ)T (zj − β∗

j )
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Considering the element 0, we see that d = −γ ∈ ∂h(β∗
j ) and hence by definition of a subgradient,

the following inequality must hold.

h(zj) ≥ h(β∗
j )−∇jg(β

∗)(zj − β∗
j )

After rearranging, we see that each element of the sum in Equation 4.6 is≥ 0, thus, F (z)−F (β∗) ≥
0 so β∗ is the global minimum.

This means that for the Lasso, Ridge and Elastic Net methods, the coordinate-wise minimum
is also a global minimum, as the penalties are all convex, and the RSS and Negative Logistic
Likelihood are convex and differentiable. Therefore, we can use coordinate descent to find the β
which minimise the problem for specific λ and α.

Definition 4.2.2 (Coordinate Descent [46]). Our goal is to find the β that minimises the objective
function f(·) for a fixed λ > 0. We start with some initial guess β(0). Next, on each kth iteration,
we solve the following:

βk
0 = argmin

β0

f(β0, β
k−1
1 , βk−1

2 , ..., βk−1
p )

βk
1 = argmin

β1

f(βk−1
0 , β1, β

k−1
2 , ..., βk−1

p )

...

βk
p = argmin

βp

f(βk−1
0 , βk−1

1 , βk−1
2 , ..., βp)

until the estimation difference on consecutive iterations is sufficiently small |βk − βk+1| < ϵ. In
essence, we calculate p optimisations on individual coordinates while fixing the rest. Once we
calculate a βk

i we immediately use it in finding the remaining βk
i of that iteration. I.e. we update

our βi individually instead of waiting until we have finished the whole iteration.

Example 4.2.1. As a simple example, consider a 2 parameter Gaussian Ridge problem. Our
objective function is

f(β0, β1, β2) =

n∑
i=1

(yi − β0 − xi1β1 − xi2β2)
2 + λ(β2

1 + β2
2)

where β0 is the intercept.

We generate X ∼ N (0, I), ϵ ∼ N (0, 1) and Y = Xβ + ϵ with n = 3 observations and p = 2
parameters. Our values are rounded to 2 decimal places.

y =

 0.83
1.43
−1.92

 X =

−1.60 −0.63
−0.33 0.18
0.82 −0.84

 β =

[
−1
2

]
ϵ =

0.490.74
0.58


Now, we estimate β according to the coordinate descent algorithm using the objective function
with λ = 1. We write down one iteration explicitly. Let k = 1, we set the initial estimate to be
β(0) = (0, 0, 0).

f(β0, 0, 0) =

n∑
i=1

(yi − β0)
2

∂f

∂β0
= −2

n∑
i=1

(yi − β0)

28



β
(1)
0 = 0.1133

f(0.1133, β1, 0) =
n∑

i=1

(yi − β
(1)
0 − xi1β1)

2 + β2
1

∂f

∂β1
= −2

n∑
i=1

xi1(yi − β
(1)
0 − xi1β1) + 2β1

β
(1)
1 = −0.7482

f(0.1133,−0.7482, β2) =
n∑

i=1

(yi − 0.1133 + 0.7482xi1 − β2xi2)
2 + (−0.7482)2 + β2

2

∂f

∂β2
= −2

n∑
i=1

xi2(yi − 0.1133 +−0.7482xi1 − xi2β2) + 2β2

β
(1)
2 = 0.7906

After doing a few more iterations, we see that there is a recurrence relation between the estimates
of different iterations.

β
(k+1)
0 =

1

n

n∑
i=1

(yi − xi1β
(k)
1 − xi2β

(k)
2 )

β
(k+1)
1 =

n∑
i=1

xi1(yi − β
(k+1)
0 − xi2β

(k)
2 )\

n∑
i=1

x2i1 + 1

β
(k+1)
2 =

n∑
i=1

xi2(yi − β
(k+1)
0 − xi1β

(k)
1 )\

n∑
i=1

x2i2 + 1

We run 100 iterations and observe that the algorithm converges to β̂ = (0.18,−0.71, 0.84). Note,
since the data is not standardised, the estimates will not coincide with the results of glmnet
Ridge.

For SCAD and MCP, the penalties are non-convex so, in general, the coordinate descent algorithm
will not give the global minimum. However, it is possible to constrain the values of γ and λ such
that the convexity of the Gaussian/Logistic loss functions ‘overcomes’ the concavity of the penalty.
We will not explore the specifics here, but more details can be found in [31] [20].

4.2.1 Gaussian Algorithms

Now we derive the coordinate descent algorithms for the Naive Elastic Net, SCAD and MCP.
Adaptive Lasso, Lasso, and Ridge use the same fitting process as the Naive Elastic Net but with
different α and penalty factors. Assume that the data matrix X is standardised. Assume also
that the response Y is standardised, which implies that there is no intercept. The case for which
Y is not standardised follows similarly.

n∑
i=1

xij = 0,
1

n

n∑
i=1

x2ij = 1,
n∑

i=1

yi = 0

Under these assumptions we see that the least squares solution zj ∈ R to a regression problem
with a single predictor xj ∈ Rn is

zj =
1

n
xT
j y since xT

j xj = n
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Since the univariate case is orthogonal we can write the estimates for Naive Elastic Net, MCP
and SCAD in the closed forms as presented in Section 3.

β̂j
elnet

=
sign(zj)(|zj | − αλ)+

1 + λ(1− α)

β̂j
scad

=


sign(zj)(|zj | − λ)+ if |zj | ≤ 2λ
(γ−1)zj−sign(zj)γλ

γ−2 if 2λ < |zj | ≤ γλ

zj if |zj | > γλ

β̂j
mcp

=

{
γsign(zj)(|zj |−λ)+

γ−1 if |zj | ≤ γλ

zj if |zj | > γλ

Now consider the objective function for unpenalised Gaussian regression. Note, β ∈ Rp and does
not include an intercept.

f(β) =
1

2N

n∑
i=1

(yi −
p∑

l ̸=j

xilβl − xijβj)
2

Definition 4.2.3 (Partial Residuals [31]). Let −j denote the portion of a matrix or vector that
remains after column or element j has been removed. We define the partial residuals r−j ∈ Rn of
xj as:

r−j = y −X−jβ−j (4.7)

where each individual element can be written as

ri(−j) = yi −
p∑

l ̸=j

xilβl (4.8)

Naturally, r = Y −Xβ.

Now, consider the jth step of themth iteration of the coordinate descent algorithm. Let β̃ represent

the most recently updated estimates and more specifically let β̃
(m)
j represent the current estimate

of βj obtained prior to iteration m. We wish to find β
(m+1)
j . We write the objective function in

terms of partial residuals, assuming that they have been evaluated at the current estimates β−j

and take the derivative.

f(β) =
n∑

i=1

(ri(−j) − xijβj)
2

∂f

∂βj
=

1

N

n∑
i=1

xij(ri(−j) − xijβj)

Therefore, the coordinate-wise minimiser of the unpenalised least squares is:

1

N

n∑
i=1

xijri(−j) =
1

N

n∑
i=1

x2ijzj

zj =
1

N

n∑
i=1

xijri(−j)

=
1

N

n∑
i=1

xij

(
yi −

p∑
l=1

xilβ̃l + xij β̃
m
j

)
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=
1

N
xT
j r+ β̃m

j

Then, the penalised coordinate-wise minimisers for the Naive Elastic Net, SCAD and MCP are:

β̂elnet
j (zj), β̂scad

j (zj), β̂mcp
j (zj)

Hence, the general form of the coordinate descent algorithm for Gaussian penalised regression can
be written in a few steps. Find the unpenalised coordinate wise least squares solution evaluated
at the current estimates. Penalise it using the univariate closed form solution of the corresponding
method. Update the new coefficient with this result and update the residuals so that they are
evaluated on the new current estimates. This is summarised in Algorithm 2 below.

Algorithm 2 Coordinate Descent for Gaussian Penalised Regression [31]

On iteration m:
1. Calculate zj =

1
N xT

j r+ β̃m
j

2. Update β
(m+1)
j ← β̂estimate

j (zj)

3. Update r← r− (β
(m+1)
j − β

(m)
j )xj

where β̂estimate
j is a penalised coordinate-wise minimiser.

Remark 4.2.1. Here, we have assumed that both X and y are standardised. In glmnet X is by
default standardised, however y is not [39]. For ncvreg, both X and y are by default standardised
[31]. The estimates are then unstandardised to introduce the intercept.

4.2.2 Logistic Algorithms

For Logistic regression, the response is binary so, standardising Y is no longer possible, and
therefore we will have an intercept. Note, one does not penalise the intercept. Consider the
objective function for unpenalised logistic regression:

f(β0, β) =
1

2N

N∑
i=1

yi(β0 + xTi β)− log(1 + eβ0+xT
i β)

Typically, β is estimated through maximising this function through Iteratively Reweighted Least
Squares (IRLS) [47]. On iteration m, the solution is:

βm+1 = (XTWmX)−1XTWmQm

and since we use logit link, our weights and working observations are as follows [39]:

Wm = µ(1− µ)

Qm = Xβm +D−1
m (Y − µ)

D−1
m(ii) = (h′(ηi))

−1 =
1

µi(1− µi)

where µ ∈ Rn with components µi = h(ηi). This is equivalent to minimising the weighted least
squares problem every iteration, where, qi = xTi βm +D−1

m(ii)(yi − µi) and wi = µi(1− µi)

n∑
i=1

wi(qi − xTi β)
2
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Hence, we can evaluate the weights and working observations at the current estimates and then
solve the penalised problem and using coordinate descent as above on each iteration. Specifically,
on step j of iteration, m our coordinate descent objective function is:

argmin
βj

n∑
i=1

w̃i (q̃i − β̃
(m)
0 −

p∑
l ̸=j

xilβ̃
(m)
l − xijβj)

2 + P (β̃1, ..., β̃j−1, βj , β̃j+1, ..., β̃p; θ)

We summarise the steps in Algorithm 3.

Algorithm 3 Coordinate descent for Logistic Penalised Regression [31]

On iteration m:
1. Update the unpenalised weighted least squares problem with the current estimates.
2. Run coordinate descent on the penalised weighted least squares problem.

4.3 Cross Validation (CV)

In this section, we aim to present a method to find sets of tuning parameters θ that give the
‘best’ model. We first present the definitions of two errors.

Definition 4.3.1 (Test/Generalization Error pg 220 [25]). The prediction error over an indepen-
dent test sample T is

ErrT = E[L(Y, f̂(X)|T ] (4.9)

where f̂(X) represents the fitted model, and L(·) the loss function. The loss function quantifies
how far the fitted values deviates from the true response values. Two of the most common loss
functions are the squared and absolute error functions.

Definition 4.3.2 (Expected prediction/test error pg 220 [25]).

Err = E[ErrT ] (4.10)

where, the expectation averages over any random variable including randomness in the training
set that produces the model f̂ .

When fitting the model, we must set our tuning parameters to some value to control the amount of
shrinkage of our parameters. To do this we may consider splitting our data up into 3 components:

• Training set: To fit the model based on a set of values for the tuning parameters.

• Validation set: To assess the predictive accuracy of the fitted model by estimating the
expected prediction error.

• Test set: To estimate the generalization error of the final selected model based on the
”optimal” θ. This is strictly separate from the training and validation set and only used at
the end. One can compare the predictive accuracy of different methods on this test set.

A general rule is to allocate data in proportions 50%, 25%, 25% respectively. However, with
genomic data, we often have a small sample size, e.g. < 100 observations. Setting aside 25
samples for the test set, we are left with only 75 samples, which is not enough to train and
validate over a grid of tuning values. Therefore, we introduce a resampling method.

In K-fold cross validation (CV), K groups are defined and data is randomly allocated into them
such that each group has roughly the same number of samples. Then, for k = 1, ...,K, the kth

group is taken out set to be the validation set while the model is trained on the rest of the data.
Hence, each observation is used K − 1 times in the training process and once in the validating
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process. Note, we use cross validation on our data after the test set has been removed, so that
we can compare our model with others later on.

Figure 4.2: Splitting the data into 5 folds, with the 3rd fold being the validation set.

For each kth step in the cross validation process, a slightly different model f̂ is fitted, so the loss
function values on the validation set will be different. The cross validation error, below, takes
the average of the loss function values and provides a good estimate for the prediction error of
the fitted model.

Definition 4.3.3 (Cross Validation Error, based on pg 242 [25]). The CV error at a specific set
of tuning values θ is,

CV (f̂ ; θ) =
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi; θ)) (4.11)

where xi ∈ Rn is an observation, yi ∈ R is the response, κ : {1, ..., n} 7→ {1, ...,K} is an indexing
function which outputs which fold an observation is in and f̂−k(x) is the fitted function with the
kth fold removed. The cross validation error directly estimates the expected test error Err [25].

Definition 4.3.4 (Common Loss functions pg 219 [25]).

L(Y, f̂(X)) = (Y − f̂(X))2 Squared Error (4.12)

L(Y, f̂(X)) = |Y − f̂(X)| Absolute Error (4.13)

The Mean squared error is found by dividing the squared error by the sample size n. Typically,
mean squared error is usually used to calculate the CV error, and it gives greater emphasis to
fitted values farther away from the true response values. Note that the absolute error is on the
same scale as the response. We can square root the MSE to get the root mean squared error
(RMSE) which is on the same scale as well. Note, these loss functions are commonly used for a
Gaussian response.

Definition 4.3.5 (Binomial Deviance pg 12 [23]). The binomial deviance D is defined as,

D = −2
n∑

i=1

(
yi log

(
µ̂i

yi

)
+ (1− yi) log

(
1− µ̂i

1− yi

))
. (4.14)

Or equivalently,

−2

 ∑
i:yi=0

log(1− µ̂i) +
∑
i:yi=1

log(µ̂i)

 (4.15)

where µ̂i are the fitted probabilities.

The deviance is the difference between the log likelihoods of the saturated and fitted models
multiplied by 2. We use the binomial deviance to calculate the cross validation error for Logistic
models, and the MSE for Gaussian models. Note, one could use AUROC (Definition 4.4.1) instead
of binomial deviance, but the latter is still preferable as it gives a smoother CV curve. We now
present the K-fold cross validation algorithm for the Lasso.
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Algorithm 4 K-fold CV for Lasso

1. Split the data randomly into K roughly equal partitions.
2. At the kth step, label the kth partition as a validation set and fit a model, fixing λ to some

value, with the remaining K − 1 partitions as the training set.
3. Calculate and average out the MSE/binomial deviance of the fitted model on the validation

set for k = {1, 2, ..., n} to find the CV error.
4. Repeat the above steps (except step 1) for a range of values λ.

Figure 4.3: Cross Validation for the Lasso using glmnet with the same data as in Figure 3.1. The red line
represents the CV error for each log(λ). The grey whiskers represent cover a range of one standard error
above and below the CV error estimate. The black line is lambda.min and the blue line is lambda.1se.
The left axis is the CV error, and the top axis describes how many coefficients are selected for a log(λ).

Using a built-in function from glmnet [30], we plot a cross validation curve in Figure 4.3. For
j = 1, ..., 5, βj ̸= 0 whereas the other 45 are zero. Below is a table specifying the true and
estimated β rounded to 4 decimal places.

True β lambda.min β lambda.1se β

-13.4088 -12.9693 -12.7952
-6.6541 -6.4441 -6.2946
3.1052 3.0106 2.7367
-8.9314 -8.5711 -8.3691
8.8749 8.3102 8.0817

Rest are 0.
β̂13 = −0.0019, β̂27 = 0.0617

β̂35 = 0.0278, β̂39 = −0.0019
Rest are 0.

In glmnet cross validation, lambda.min is the λ that produces the model with the smallest CV
error, and lambda.1se is the λ that produces a model that has a CV error 1 standard error greater
than the minimum CV error. lambda.1se is also greater than lambda.min, so the resulting model
is usually sparser. In our example, we see that lambda.min selects 4 irrelevant parameters, whilst
lambda.1se selects none. Hence, to ensure a parsimonious model, we will take our optimal λ to
be lambda.1se. For the Adaptive Lasso and the Naive Elastic Net, this works too but for SCAD
and MCP, the package ncvreg [31] only outputs lambda.min. However, this is not an issue as
both methods generally select few parameters.

In general, one commonly uses 5 or 10 folds for cross validation. However, since we have a small
sample size, the training and validation sets may be too small to produce meaningful results. In
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Logistic regression, the problem is greater, as some folds may have very few observations of one
binary class. An alternative method is to use Leave One Out Cross Validation.

Definition 4.3.6 (Leave One Out Cross Validation (LOOCV) [25]). The process here is equiva-
lent to K-fold CV, except that each observation is assigned to an individual fold, so the number
of folds is equivalent to the number of samples.

This method has no randomness in assigning observations to training and validation sets, and
has less bias as the training set comprises of n− 1 samples. The method can be computationally
intensive as we fit models n times. However, since our n is small, this does not matter.

All of our methods except Ridge and Lasso have 2 tuning parameters to be determined via cross
validation. Hence, we must use 2D K-fold Cross Validation for the other methods.

Definition 4.3.7 (2D K-fold Cross Validation). The process is essentially the same as the Lasso
CV, except that we must first specify which fold the observations go to. Then, we use a pre-
specified vector of α or γ values and fix them whilst validating over different values of λ as in
the Lasso. We repeat this for all the α or γ values and record the combination of α\γ and
lambda.1se\lambda.min that gives the lowest CV error.

4.4 Model Diagnostics

4.4.1 Prediction Accuracy

When comparing methods, we split our data into a training set
(
2
3

)
and a test set (13). We calibrate

our tuning parameters and fit models using each method on the training set and evaluate the
performance of the models on the test set.

For a continuous response, we use Gaussian penalised methods and compare them using the root
mean squared error (RMSE) of the fitted values and the true responses on the test set. This is
on the same scale as the response, and we call this our prediction error. During a simulation,
we will run the methods several times on different data sets to observe the variance in prediction
errors.

For a binary response, we use Logistic penalised methods. However, the resulting model gives
probabilities, P (Y = 1), so we would need to determine a cutoff threshold to get a predicted
binary response. One could use a threshold of 0.5, where if the probability is greater than 0.5, the
predicted y would be 1. We can then determine the misclassification rate between the predicted
y and true y in the test data. However, this means that the comparisons are dependent on an
arbitrary threshold. A second method would be to compute the area under the receiver operator
characteristic curve (AUROC). This measures the model’s ability to give higher probabilities to
predictions with true y = 1 than y = 0.

Definition 4.4.1 (AUROC pg 174[23]). Recall that the true positive rate (TPR) and the false
positive rate (FPR) are given by

TPR =
TP

TP + FN
, FPR =

FP

FP + TN

where, TP, FP, TN, FN mean true positive, false positive, true negative and false negative
respectively. These values are common referred to as sensitivity and 1-specificity, respectively.
The receiver operation characteristic (ROC) curve plots the TPR against the FPR for all cutoff
thresholds. The area under this curve is called AUROC and is between 0.5 and 1.
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As a rule of thumb, we use the following criteria below [23].

AUROC= 0.5 No discrimination - equivalent to a coin toss
0.5 < AUROC < 0.7 Poor discrimination - not much better than a coin toss.
0.7 ≤ AUROC < 0.8 Acceptable discrimination
0.8 ≤ AUROC < 0.9 Excellent discrimination

AUROC ≥ 0.9 Outstanding discrimination

Therefore, an AUROC of 0.5 suggests that the model isn’t useful, so we might as well toss a coin
to predict the response.

Example 4.4.1. Consider the colon cancer data set from [6] with n = 62 observations and
p = 2000 genes. We take the first 42 observations as our training set and the remaining 20 to
be our test set. Then, we fit a Logistic Lasso model to the training set and predict the response
best on data from the test set. After that, we plot the ROC curve. We calculate the AUROC to
be 0.71875, so there is acceptable discrimination.

Figure 4.4: ROC curve of the logistic Lasso on the colon cancer data set from [6].

In the simulations of the next chapter, we will consider several random realizations of training
and test sets and average the AUROC value across them.

4.4.2 Model Selection

Since, our applications depend on selecting relevant genes accurately, we will also run simulations
to investigate the selection accuracy and variability of different methods. We will use 3 metrics.

Definition 4.4.2 (Selection Accuracy). The strength of a method’s selection accuracy is deter-
mined by how many correct coefficients it includes and how often.

Definition 4.4.3 (Selection Relevance). The selection relevance of a method is determined by
the fraction of the number of correct parameters selected over the total number of parameters
selected.

Definition 4.4.4 (Selection variability). A method’s selection variability describes how many
different coefficients the model selects under similar datasets. This can be seen as an indicator of
stability.
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Chapter 5

Simulation Studies

In this chapter, we conduct several simulations involving the penalised methods covered in chapter
2 on both Gaussian and Logistic frameworks. We explore their properties involving predictive
accuracy, model selection consistency, parameter estimation and stability. Before extracting any
sample covariance matrices from microarray data, we perform a log2 transformation on the dataset
to make the data less skewed. During some Logistic simulations, we notice that the algorithms
for SCAD and MCP do not converge for small γ and λ, possibly due to non-convexity. Hence,
we do not carry out 2D cross validation for the Logistic versions of SCAD and MCP, but instead
use the default γ = 3.7 and γ = 3 respectively.

5.1 Predictive Accuracy

We simulate our data using the sample covariance matrix Σ̂ from the colon cancer data set
[6] and sample X from a multivariate normal using the R package MASS [48]. X ∼ N (0, Σ̂),
Y ∼ N (Xβ, I). We have 2000 parameters in total with five βj ∼ U(−5, 5), with j chosen
randomly, and the rest are 0. We perform 100 iterations and split our data randomly so that our
training set contains 40 observations and our test set contains 20 observations.

Figure 5.1: A comparison of predictive accuracies between a range of penalised methods. Logistic frame-
work (left), Gaussian framework (right).

The mean RMSE values are roughly the same, with the Adaptive Lasso and Elastic Net performing
slightly better. For Logistic models, we use the same data generation process with the additional
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step of using the logit link to transform the linear predictor to the response. Since some generated
Y do not have a varied number of 1’s and 0’s, we take some simulated data out, and this leaves
us with 86 iterations. This ensures we do not have too few 1’s or 0’s per fold for cross validation.
Overall, all methods have higher AUROC values than the Lasso, with SCAD scoring the highest.
The median values are 0.83, 0.87, 0.86, 0.88, 0.84 respectively. Using the criteria presented in the
previous chapter, we can see that all the methods have excellent discrimination.

5.2 Model Selection Consistency

We now consider the selection variability of the Gaussian simulation. The Naive Elastic Net
exhibited 31 instances of overfitting. Since the Naive Elastic Net is a compromise between the
Ridge and the Lasso overfitting is possible, however for the other methods, it is not possible. We
removed those instances and display the results below.

Figure 5.2: Selection Variability under the Gaussian framework.

SCAD and MCP select the sparsest models with the lowest variance. The Adaptive Lasso per-
forms slightly better than the Lasso and the Naive Elastic Net. Note that the mean parameter
numbers of SCAD and MCP are very close to 5 which is the true number of parameters.

Figure 5.3: Selection Variability under the Logistic framework.
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In the Logistic simulation the Elastic Net over fitted 40 times so we discard those cases. All
methods select sparser models than the Gaussian case, but the Lasso and MCP in particular
seem to under-fit as their mean numbers of parameters are less than 5. Overall, the Adaptive
Lasso performs the best here, with low variance and a mean parameter count close to 5. Now,
we analyse the selection accuracy and relevance of our methods.

Figure 5.4: Comparisons on the selection accuracies. Logistic framework (left), Gaussian framework
(right).

In both cases it seems that Naive Elastic Net performs the best, however, as noted above it suffers
from frequent over-fitting so it is not reliable. Hence, that leaves the Lasso and Adaptive Lasso
as being the best performers in the Gaussian case. In the Logistic case, SCAD performs the best.

Figure 5.5: Comparisons on the selection relevance. Logistic framework (left), Gaussian framework
(right).

For the Gaussian framework, all the methods perform roughly the same on average, with 1 in
10 parameters selected being relevant. SCAD and MCP have a more varied range of selection
variance as they consistently select a sparse model, so not many irrelevant parameters are selected
in the first place. For the Logistic case, selection relevance is very poor, with SCAD performing
the best.
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5.3 Parameter Estimation

In the following examples, we conduct simulations first on non-collinear data and then on multi-
collinear data. We set our true β to be either very large or very small, and observe how accurately
our methods estimate the coefficients. For the folded concave penalties, we use the default values
for γ, namely for MCP γ = 3, and for SCAD γ = 3.7.

Example 5.3.1 (Large Coefficients, Gaussian Response). We generate X ∼ N (0, I) for 50 it-
erations where n = 40, p = 200. The true β is specified in the table below. ϵ ∼ N (0, 1) and
Y = Xβ + ϵ. The columns specify the average absolute difference in magnitude between our
estimated coefficients and the true coefficients over all the iterations. We omit the values of any
other selected parameters and give the estimates to 2 decimal places.

True β Lasso Naive Elastic Net Adaptive SCAD MCP

β1 = 200 12.97 18.32 15.21 2.15 0.86
β2 = −100 14.4 20.53 18.61 2.8 1.09
β3 = 50 12.13 16.78 16.73 16.09 6.77
β4 = −400 13.34 18.52 13.83 1.94 0.78
β5 = 120 13.48 18.65 17.02 2 0.84

Here we see that SCAD and MCP outperform the normed penalties greatly in terms of parameter
estimation accuracy, with MCP performing the best. This could be due to the fact that the
concave penalties tail off as βj increases (see Figure 3.9) so the large coefficients are not overly
penalised.

Example 5.3.2 (Small Coefficients, Gaussian Response). We generate the data in the same way
as above but now with a different set of β.

True β Lasso Naive Elastic Net Adaptive SCAD MCP

β1 = 0.5 0.46 0.45 0.43 0.39 0.42
β2 = 2 0.73 0.75 0.38 0.16 0.16
β3 = −2 0.68 0.7 0.37 0.18 0.17
β4 = −0.8 0.62 0.61 0.53 0.34 0.35
β5 = 1.3 0.67 0.69 0.46 0.18 0.21

In this case, the estimation differences of the methods are similar, with SCAD and MCP per-
forming mildly better.

Example 5.3.3 (Small and Large Coefficients on Multi-collinear data, Gaussian Response). Here,
we generate our data using a covariance matrix Σ̂ which satisfies the irrepresentable condition,
but still has some multicollinearity as it is positive semi-definite but not positive definite. X ∼
N (0, Σ̂), Y ∼ N (Xβ, I). n = 40 observations, p = 200 parameters and we have 50 iterations.

True β Lasso Naive Elastic Net Adaptive SCAD MCP

β1 = 200 5.61 5.53 5.35 0.84 0.84
β2 = −200 6.28 6.2 5.99 0.66 0.66
β3 = 5 4.88 4.76 5 5 5
β4 = 1 1 1 1 1 1
β5 = −2 2 2 2 2 2

All 5 methods miss out the small coefficients β3, β4 and β5 over the 50 iterations except the Lasso
and Elastic Net which select β3 occasionally. This may be because of the large coefficients, which
mask the effects of the parameters with small coefficients. In terms of parameter estimation for
the large coefficients, SCAD and MCP perform better than the normed penalties.
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5.4 Stability

Example 5.4.1 (Stability of OLS stepwise selection and Lasso to single observation removal).
We sample non-collinear data X ∼ N (0, I) with 100 observations and 30 parameters. We sample
5 uniform βj ∼ U(−10, 10) and the rest of the βj are 0. ϵ ∼ N (0, 1) and Y = Xβ+ ϵ. We remove
the observation at index i ∈ {1, ..., 100} and compare OLS with backward stepwise selection
against Lasso regression 100 times to select models. We present a table concerning the numbers
of parameters selected each time for both Lasso and stepwise OLS.

No. of parameters 5 6 7 8 9 10 11 13

Stepwise OLS 0 0 11 58 5 17 8 1
Lasso 33 67 0 0 0 0 0 0

Not only is the Lasso less sensitive to observation removal, it also selects models closer to the
number of true parameters. In this example, 33% of its selected models have the same number
as the true model, whilst none of the stepwise selection have. This matches Breiman’s analysis
that stepwise methods have high variability, as their selection is discrete [29]. On the other
hand, the Lasso has less variability the continuous shrinkage allows some compromise between
the coefficients. Using collinear data, the OLS method performs poorly as expected (see Section
2.4) and the Lasso is less stable.

No. of parameters 4 5 6 7 8 9 29

Stepwise OLS 0 0 0 0 0 0 100
Lasso 1 14 33 18 28 6 0

Example 5.4.2 (Sensitivity to observation removal on Microarray-Data, Logistic Response).
Let the 2000 parameter sample covariance matrix from the colon dataset in [6] be denoted Σ̂.
We generate 60 observations using X ∼ N (0, Σ̂). We then generate 5 non-zero beta’s using the
same U(−10, 10) distribution and 60 ϵi ∼ N (0, 1). We take Y = Xβ + ϵ. We remove a single
observation i, for i = 1, ..., 60 leaving behind 59 observations, and compare how many parameters
are selected at a time.

No. Parameters p p < 5 5 ≤ p < 10 10 ≤ p < 15 15 ≤ p < 30 30 ≤ p ≤ 60 p > 60

Lasso 3 20 37 0 0 0
Elastic Net 3 1 6 4 10 36

Adaptive Lasso 5 29 20 6 0 0
SCAD 2 33 24 1 0 0
MCP 43 17 0 0 0 0

Lasso and MCP perform the best in terms of stability. The Elastic Net performs the worst and
suffers from some over-fitting as well due to the compromise with Ridge.
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Chapter 6

Application to Microarray Data

In this chapter, we apply all the penalised methods explored above except Ridge regression on
real life data sets. Recall that we have two objectives:

1. To identify candidate genetic biomarkers for cancers.

2. To identify genes which may affect candidate genetic biomarker for cancers.

6.1 Microarray Data

A microarray dataset is a gene expression matrix of several samples. Fundamentally, genes are
small sections of DNA that provide instructions for the production of specific proteins. The
amount of gene expression determines the characteristics of a cell, so tumour and non-tumour
cells well have different levels of gene expression. DNA contains four bases, adenine (A), thymine
(T), cytosine (C), and guanine (G) where A strictly binds to T and C strictly binds to G. No
other interactions are possible. Two strands of DNA are complementary if, for all bases on one
strand, the other strand contains the complements of those bases. The two strands react in a
process called hybridization to form a double helix.

Microarray technology works by extracting mRNA from a tissue, e.g. tumour tissue, labelling
it to form complementary DNA and then hybridizing it to the genes on the microarray chip.
The mRNA represents the characteristics of the tissue, and only the genes which contribute to
those will be hybridized. In this report, we investigate data from Affymetrix chips, which use
oligonucleotide sequences thought to be representative of specific genes and photolithographic
technology. Further details can be found in [49]. We use the following data sets:

Figure 6.1: Microarray Datasets from GEO Omnibus [7]: GDS4102 [9], GDS4336 [10], GDS4103 [11].
Platform denotes the Affymetrix chip used. After the removal of control genes, the datasets have 54613,
28829, and 54613 parameters respectively.
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To find candidate biomarkers, we remove any sample replicates and control genes, as these are
used to reduce background and systemic variation, and hence have irrelevant responses. For our
second objective, we remove the control genes but keep the sample replicates, as our analysis is
only based on interactions between genes. Note, all the datasets are already RMA normalised to
reduce background noise and allow for dataset cross-comparison. Before analysing the datasets,
we also perform a log2 transformation to reduce data skewness. After splitting the data randomly
into training and test sets such that the test set contains roughly 25%− 33% of the observations,
we fit the models to the training sets and compare their performances on the test set.

6.2 Methods

For our first application, we fit models using the logistic version of the Lasso, (Naive) Elastic
Net, Adaptive Lasso, SCAD and MCP. From here onwards, we drop the ‘Naive’ distinction and
simply refer to it as the Elastic Net. We do not use Ridge as it does not give sparse solutions.
We use 1D LOOCV for the Lasso, SCAD and MCP. For the Elastic Net and Adaptive Lasso, we
use k-fold 2D cross validation to reduce the computation time. We use the packages GEOquery
[8], glmnet [30], ncvreg [31] and ROCR [50].

For our second application, we use the Gaussian version of the penalised methods given above.
However, we need to ensure that the distribution of the response is Gaussian-like. Hence, we
perform a Box-Cox transformation on Y beforehand and constrain the transformation parameter
λ ∈ [−5, 5]. After that, we standardise Y so that the RMSE values are cross-comparable between
datasets.

6.3 Results

We begin with the results for the first objective. The tables below show the Affymetrix probe set
IDs of the parameters selected for each method per dataset. We also provide the AUROC values
of the models per dataset in Figure 6.5.

Figure 6.2: Affymetrix probe set IDs of parameters with non-zero coefficients in the models fitted per
penalised method on the dataset GDS 4103.

According to Figure 6.5, all the methods produce models with at least excellent discrimination,
and specifically, the Lasso, SCAD and Elastic Net perform outstandingly. These three methods
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share the elements, ‘203021 at’ and ‘212353 at’ in common. Also note, ‘231993 at’ is selected
by the Lasso, Elastic Net and MCP and ‘243372 at’ is selected by all the methods except the
Lasso. Looking at the feature data, we see that the gene symbols are SLPI, SULF1, ITGBL1,
and HSPD1, respectively.

Figure 6.3: Affymetrix probe set IDs of parameters with non-zero coefficients in the models fitted per
penalised method on the dataset GDS 4102.

On this dataset, the Lasso and MCP perform less well, possibly due to the small number of non-
tumour samples. By contrast, the other methods still perform well. Note, that the microarray
platform for this dataset is the same as the one above, so the data parameters are the same.
However, the experimental conditions may be different. ‘1568892 at’ and ‘236972 at’ are selected
by all the methods except the Adaptive Lasso. ‘228233 at’ and ‘237390 at’ are selected by the
Lasso, Elastic Net, and SCAD. ‘220212 at’ is selected by the Elastic Net, Adaptive and SCAD.
The corresponding gene symbols are: LOC100996251, TRIM63, FREM1, ADRA1A. The feature
does not include the gene symbol for ‘220212 at’.

Figure 6.4: Affymetrix probe set IDs of parameters with non-zero coefficients in the models fitted per
penalised method on the dataset GDS 4336.
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Here, all models have excellent discrimination except the Adaptive Lasso. ‘7983718’ and ‘8037408’
were selected by all models except the Adaptive Lasso. ‘8062545’ was selected by all except MCP.
‘8093950’, ‘8098637’, ‘8101366’, ‘8166266’ were all selected by Lasso, Elastic Net and SCAD. The
corresponding gene symbols are: SCG3, KCNN4, ACTR5, S100P, CYP4V2, SCD5, NHS.

Figure 6.5: A table showing the AUROC values for models fitted by a range of penalised methods on a
single random realisation of training and test partition of the data.

We now consider the second objective. The gene MLH1 is a known biomarker of pancreatic cancer
[51]. For, GDS 4103 and GDS 4102, the identifier is 202520 s at and for GDS 4336, the identifier
is 8078544. We regress this parameter against the other parameters using the Gaussian version
of our penalised methods. We present the results in Figure 6.6, Figure 6.7, and Figure 6.8, and
a table of RMSE values for reference in Figure 6.9.

Figure 6.6: Affymetrix probe set IDs of parameters with non-zero coefficients in the models fitted per
penalised method on the dataset GDS 4103 with 202520 s at as the response.

Since the Elastic Net model overfitted, we omit it in our analysis. In all of the other methods,
the following were selected: ‘1555483 x at’, ‘203115 at’, ‘203261 at’, ‘206746 at’, ‘221475 s at’,
‘222844 s at’. The corresponding gene symbols are: FBLIM1, FECH, DCTN6, BFSP1, RPL15,
SRR. Also note that the low RMSE values of the Adaptive Lasso, SCAD and MCP may suggest
they perform well. However, note that the Adaptive Lasso selects many parameters. SCAD and
MCP also select similar parameters to the Lasso, so the increase in predictive accuracy may be
due to better parameter estimation.
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Figure 6.7: Affymetrix probe set IDs of parameters with non-zero coefficients in the models fitted per
penalised method on the dataset GDS 4102 with 202520 s at as the response.

Here, we see that ‘201632 at’ is selected by all methods except the Adaptive Lasso and ‘203409 at’
is selected by all methods except the Lasso. ‘227298 at’ is selected by the Lasso, Elastic Net and
Adaptive Lasso, and echoing the previous dataset ‘221475 s at’ is selected by the Lasso, Elastic
Net and SCAD. The corresponding gene symbols are: IF2B1, DDB2, TRAM2-AS1, RPL15.

Figure 6.8: Affymetrix probe set IDs of parameters with non-zero coefficients in the models fitted per
penalised method on the dataset GDS 4102 with 8078544 as the response.
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Since the Elastic Net overfitted we omit it. ‘8116530’ is selected by all the methods. Lasso,
Adaptive Lasso and SCAD select: ‘7976412’, ‘8030339’, ‘8023080’, ‘8088151’, ‘8105801’, ‘8127141’,
‘8129943’. The corresponding gene symbols are: SNORD96A, LINC00521, FLT3LG, LOXHD1,
ACTR8, SLC30A5 with the last two being unnamed.

Figure 6.9: A table showing the RMSE values for models fitted by a range of penalised methods on a
single random realisation of training and test partition of the data.
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Chapter 7

Conclusion

In this report, we have compared the theoretical and practical aspects of the Lasso, Adaptive
Lasso, Naive Elastic Net, SCAD and MCP. We have presented the theoretical motivations behind
the methods and compared their shrinkage effects through closed form, orthogonal solutions. We
have also explored their parameter estimation, model selection and stability properties. Addition-
ally, we have explored key model fitting algorithms process such as penalised coordinate descent
and K-fold cross validation, for both Gaussian and Logistic frameworks. We have also included
a brief overview of our model diagnostics.

In our simulations, we observe that despite having good predictive accuracies, the methods per-
form poorly in terms of model selection accuracy and relevance. In particular, the Naive Elastic
Net frequently overfits and suffers major stability issues. Moreover, despite being asymptotically
selection consistent, we observe that the Adaptive Lasso, SCAD and MCP do not exhibit any
significant improvements against the Lasso in terms of selection accuracy and relevance. This is
possibly due to the small sample size compared to the number of parameters. In future, it may
be beneficial to explore whether there are any selection improvements given a greater sample size.
In our application, we observe several potential candidate biomarkers. However, we note that
each dataset gives a different set of results with hardly any overlap, which suggests some concern
on the reliability of our results.

Throughout our analysis, we have assumed that all the genes are equally likely to be significant a
priori. However, in reality there is already known information on genetic interaction. Therefore,
an interesting direction would be to consider a Bayesian approach, where one could determine a
shrinkage prior to take into account known biological information. Furthermore, we have applied
the methods on each dataset individually. We believe it may be more beneficial to aggregate the
data through sequential analysis under a Bayesian framework so that no information is wasted.
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Appendix A

Code

All the code used to produce the figures and simulations in the report can be accessed via the
following link to google drive.

https://drive.google.com/drive/folders/14A1CzqftsmYrQMLvZd9uWOjHkjEUcGf2?usp=drive_

link
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