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Chapter 1

Introduction

The field of Bayesian statistics holds significant importance as it allows for the incorpo-
ration of prior beliefs into the statistical framework. This makes it possible to include
existing knowledge and expertise into the analysis, leading to more accurate and in-
formed decision-making. Essentially, Bayesian statistics treats any unknown quantity
as a random variable, where we can assign prior probabilities based on the degree of
belief or previous knowledge about certain characteristics of the quantities. Naturally,
this field of statistics extends to a variety of problems. One of its applications is model
selection, where we may have a collection of models and must discern which one is the
most adequate for explaining the generating process of some data. Since we reflect our
prior knowledge about each model and treat the unknown model parameters probabilis-
tically, the Bayesian statistical framework integrates seamlessly with model selection.

At the heart of Bayesian model selection is a quantity called the model evidence which
enables direct comparison between competing models through Bayes factors. However,
it is common for the model evidence to be analytically intractable which poses a compu-
tational problem in and of itself. The challenge of estimating the model evidence has led
to the introduction of a diverse pool of methodologies and approaches. The foundation
of these methods often requires samples from either the prior distribution, the posterior
distribution, or in some cases, an introduced proposal distribution. We must resort to
Markov chain Monte Carlo (MCMC) methods when sampling from the posterior distri-
bution in most scenarios.

In Chapter 2, we will formally introduce Bayesian statistics and its applications to
model selection, as well as how the model evidence fits into the problem. In Chapter 3,
we discuss the strengths and weaknesses of a broad selection of model evidence estima-
tion methods. We initially illustrate the implementation of the selected model evidence
estimators using a Gamma-Poisson conjugate model in Chapter 4, where the model ev-
idence is analytically tractable. Therefore, we can compare the results of the model
evidence estimators against the true model evidence values and accurately assess their
performance. Subsequently, in Chapter 5, we delve into a logistic regression example
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that comprises a multivariate parameter space. We will create a set of models for this
example, with one true model being used to simulate the data. We can then use the
model evidence estimators to approximate the model evidence for each model and then
proceed with model selection, assessing whether the estimators will correctly select the
true model out of the set. In Chapter 6, we will touch on some potential issues that may
arise when dealing with high-dimensional data, where it is essential to perform dimen-
sionality reduction before proceeding with model selection. In Chapter 7, we will draw
some final conclusions, highlighting the key takeaways and outlining the future outlook
of Bayesian model selection.
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Chapter 2

Bayesian Model Selection

2.1 An Introduction to Bayesian Model Selection

In statistics, we often use a range of techniques and methods to learn more about the
data we are analysing. In contrast to Frequentist statistics, the Bayesian interpretation
of statistics treats all unknown variables as random, allowing for the use of probability
to quantify the degree of belief one has for an event to occur. This field of statistics
stems from a result known as Bayes’s Theorem Bayes (1763). The theorem is given as
follows:

p(A|B) =
p(B|A) p(A)

p(B)

where p(A|B) is the probability of event A occurring conditional on event B, p(B|A) is
the probability of event B occurring conditional on event A, p(A) is the probability of
event A occurring, and p(B) is the probability of event B occurring.

To apply Bayes’s Theorem in a statistical setting, we fist suppose that we have data
y = (y1, . . . , yn)

T which we assume follows a given model M, with corresponding pa-
rameter vector θ. We then define the prior, p(θ), as the probability distribution sum-
marising our initial beliefs about θ; the likelihood, p(y|θ), as the probability of observing
the data y under model M and vector parameter θ; and finally, the posterior, p(θ|y),
as the probability distribution that expresses the updated beliefs about the parameter
vector θ after having seen the data y. Bayes’s Theorem then provides the platform to
link these quantities together as follows:

p(θ|y) = p(y|θ) p(θ)
p(y)

Noting that the denominator of the right hand side is constant, we simply have:

Posterior ∝ Likelihood × Prior

Moreover, by sampling from the posterior, we can make inferences about the vector pa-
rameter θ within the framework of the model M, such as giving point estimations or
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credible intervals, which quantify any uncertainty beliefs about θ.

However, although model M may be a viable candidate for describing the data, as-
suming that it is the sole adequate model is a large assumption and might lead to some
unsatisfactory results. Instead, we could adopt a more nuanced approach, by exploring
a variety of potentially better-fitting models that may provide a more accurate represen-
tation of the underlying process generating the data y. This leads to a common problem
that arises in statistics known as model selection - where we have a collection of po-
tentially adequate models M = {M1, . . . ,Mk}, each with their own parameter vectors
θ1, . . . ,θk, and we need to select which model is the most likely to have produced the
data, y = (y1, . . . , yn)

T . Resorting to Bayes’s Theorem again, we obtain the result:

p(Mi|y) =
p(y|Mi)p(Mi)

k∑
ℓ=1

p(y|Mℓ)π(Mℓ)

(Mi ∈ M) (1)

where p(Mi) is the prior probability of model Mi, p(Mi|y) is the posterior probability
of model Mi, and p(y|Mi) is the evidence of model Mi.

The posterior probabilities are particularly useful for comparing the feasibility of two
models given the data. Using (1), we can obtain the ratio of posterior model probabili-
ties of any two models Mi, Mj ∈ M , with the sums of the denominator cancelling out
with each other:

p(Mi|y)
p(Mj |y)

=
π(y|Mi)

p(y|Mj)
× p(Mi)

p(Mj)

The first factor of the right hand side is known as the Bayes factor, BFij , and is cru-
cial for calculating the posterior model probabilities and discern which model is more
likely to have generated the data. Particularly, if we believe the prior model probabili-
ties are equal, then the Bayes factor will become equal to the ratio of posterior model
probabilities.

2.2 The Bayesian Evidence Computation Problem

Finding the Bayes factor involves some computational challenges. Specifically, to obtain
the Bayes factor we need the model evidence p(y|M) - a term which goes under various
names in the literature, such as the prior predictive distribution, the marginal likelihood,
and more recently the Bayesian evidence. The Bayesian evidence or model evidence
seems to be more relevant for the model selection discussion, so we will mainly use
this throughout. If θi = (θ1, . . . , θd) are the parameters of model Mi, then the model
evidence is given by the following integral,

p(y|Mi) =

∫
p(y|θi,Mi)p(θi|Mi) dθi
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In some situations, we have that the posterior and prior distributions belong to the same
family of distributions. In such a case, the prior is known as a conjugate prior and we will
be able to derive a closed form for our posterior and hence reach the model evidence.
Similarly, in non-conjugate cases where the dimensionality of the parameter vector is
small i.e 1 or 2 dimensions, we may be able to approximate the defining integral of the
model evidence through numerical methods alone. However, outside of these specific
cases, the model evidence is often analytically intractable and difficult to approximate,
which presents a computational problem. In Chapter 3 we introduce a selection of
methods which can be used to overcome this computational problem.

2.3 Interpreting the Bayes Factor

We have seen in the previous Section 2.2, that the Bayes factor is central to the model se-
lection problem. However, we need to be able to interpret it to use it in a practical sense.
Jeffreys (1961) gives a valid interpretation that has been widely accepted since its first
introduction. We can summarise these interpretations in Table 2.1, which also provides
the interpretations on the logarithmic scale. Here, the Bayes factor BFij corresponds to
two models Mi, Mj ∈ M which we are comparing against one another.

BFij log(BFij) Interpretation

> 100 > 4.61 Decisive evidence for Mi

30− 100 3.40− 0.61 Very strong evidence for Mi

10− 30 2.30− 3.40 Strong evidence for Mi

3− 10 1.10− 2.30 Substantial evidence for Mi

1− 3 0− 1.10 Not worth more than a bare mention
1/3− 1 (−1.10)− 0 Not worth more than a bare mention
1/10− 1/3 (−2.30)− (−1.10) Substantial evidence for Mj

1/30− 1/10 (−3.40)− (−2.30) Strong evidence for Mj

1/100− 1/30 (−4.61)− (−3.40) Very strong evidence for Mj

< 1/100 < (−4.61) Decisive evidence for Mj

Table 2.1: Table representing the interpretations of the Bayes factor given in Jeffreys
(1961), taken and edited from Dittrich et al. (2019)

Alternatively, there is an interpretation of the Bayes factor proposed by Kass & Raftery
(1995) that is more commonly used today. In this interpretation, we work with the
values of twice the natural logarithm of the Bayes factor which is on the same scale as
deviance and likelihood ratio test statistics. These interpretations can be found in Table
2.2
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2 log(BFij) BFij Evidence against Mj

0− 2 1− 3 Not worth more than a bare mention
2− 6 3− 20 Positive
6− 10 20− 150 Strong
> 10 > 150 Very strong

Table 2.2: Table representing the interpretations of twice the logarithm of the Bayes
factor, taken and edited from Kass & Raftery (1995)

For the purpose of our model selection examples, the interpretations from Table 2.1 will
suffice, and will be used in later chapters.
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Chapter 3

Model Evidence Estimation
Methods

In this section, we will be introducing the model evidence estimation methods which we
proceed to investigate in the remaining chapters. For the mathematical descriptions, we
will use the simpler notation, p(y), in place of p(y|Mi).

3.1 Basic Monte Carlo Estimator: Sampling from the Prior

Arguably the simplest method of estimating the Bayesian Evidence is the basic Monte
Carlo estimator Hammersley & Handscomb (1964), which uses samples from the prior
distribution to estimate the model evidence. Although this method is very simple to
use, as it does not require a posterior sample, its accuracy can be quite sensitive to the
form of the prior distribution.

The method uses the basic integral form of the model evidence that we saw when intro-
ducing it in Section 2.2:

p(y) =

∫
p(y|θ)p(θ) dθ

Note that the marginal likelihood here is essentially the expectation with respect to the
prior distribution, which gives the following form:

p(y) = EP (θ) [p(y|θ)]

Using the standard Monte Carlo technique, we then approximate this expectation as
a sum over samples from the prior distribution. This leads to the basic Monte Carlo
estimator:

p̂MC =
1

N

N∑
t=1

p(y|θ(t))
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where θ(t) are draws from the prior distribution.

Although this is a very simple estimator, it is highlighted by Kass & Raftery (1995)
that the estimator does not perform well when the posterior is concentrated relative
to the prior. This occurs, for example, when the prior is diffuse and non-informative.
However, if we have very weak prior beliefs about the parameters of interest, then it is
natural to opt for a prior of this form. The problem that arises in these cases is that
most of the prior samples, θ(t), will carry small likelihood values, p(y|θ(t)), causing the
final estimate to be dominated by the small number of large likelihood values.

3.2 Harmonic Mean Estimator

The harmonic mean estimator Newton & Raftery (1994) is a technique which works
on the reciprocal of the model evidence. Unlike the basic Monte Carlo estimator, the
harmonic mean estimator uses draws from the posterior distribution to arrive at the
estimate. We start with the following identity, which is trivially true due to the normal-
isation condition of probability density functions:

1 =

∫
p(θ) dθ

Now, by dividing each side by the model evidence and introducing the factor p(y|θ)
p(y|θ) inside

the integral of the right hand side, we obtain the following two lines:

1

p(y)
=

∫
p(θ)

p(y)
dθ

=

∫
1

p(y|θ)
p(θ)p(y|θ)

p(y)
dθ

By replacing p(θ)p(y|θ)
p(y) with the posterior density p(θ|y), we can simplify the integral.

Crucially, this makes its possible to write the reciprocal of the model evidence as an
expectation with respect to the posterior distribution:

1

p(y)
=

∫
1

p(y|θ)
p(θ|y) dθ

= EP (·|y)

[
1

p(y|θ)

]
By again using the standard Monte Carlo technique, we approximate this expectation as
a sum, this time over samples from the posterior distribution. This leads to the harmonic
mean estimator:

p̂(y) =

(
1

N

N∑
t=1

1

p(y|θ(t))

)−1
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where θ(t) are draws from the prior distribution.

We can see here that the final estimate gives the harmonic mean of the likelihoods, based
on the posterior sample. A problem with the harmonic mean estimator is demonstrated
in Kass & Raftery (1995), which is almost the opposite of the issue with the basic Monte
Carlo estimator. With this estimator, we can see that the likelihood values appear on
the denominator of the summed terms. Therefore, a small number of posterior samples
which carry small likelihood values will dominate the sum and disproportionately affect
the final estimate. However, despite its instability, the harmonic mean estimator does
have the property that p̂(y) converges almost surely to p(y) as N → ∞.

3.3 Generalised Harmonic Mean Estimator

The generalised harmonic mean estimator provides a similar solution to the harmonic
mean estimator, except now we use a proposal density, g(θ), to obtain the estimate. The
first two lines use the same tricks as in the derivation of the harmonic mean estimator,
this time replacing p(y)p(θ|y) with p(y|θ)p(θ) on the denominator:

1

p(y)
=

∫
1

p(y)
g(θ) dθ

=

∫
g(θ)

p(y|θ)p(θ)
p(θ|y) dθ

We again write the reciprocal of the model evidence as an expectation, but with respect
to the proposal distribution:

1

p(y)
= EP (·|y)

[
g(θ)

p(y|θ)p(θ)

]
Applying standard Monte Carlo technique leads to the generalised harmonic mean esti-
mator:

p̂(y) =

(
1

N

N∑
t=1

g(θ(t))

p(y|θ(t))p(θ(t))

)−1

where θ(t) are draws from the posterior distribution.

Note that here we are still using the posterior sample for the estimate and no draws
are needed from the introduced proposal density. It is suggested in Robert & Wraith
(2009) that the proposal density, g(θ), must have thinner tails than the posterior distri-
bution. The purpose of this is to avoid the lower likelihood values dominating the sum,
as is the problem in the case of the harmonic mean estimator. Specifically, it is stated in
Newton & Raftery (1994) that

∫ g(θ)
p(y|θ)p(θ) dθ < ∞ will ensure that the estimator is well

behaved. One approach to this is to extract the mean and variance from the posterior
sample and use the method of moments to construct a Gaussian proposal density from
the posterior sample.
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3.4 Newton-Raftery Estimator

The identity used in the generalised harmonic mean estimator has also been referred
to as the ”reciprocal importance sampling” estimator Frühwirth-Schnatter (2004) due
to its fundamental identity. We now introduce the standard self-normalised importance
sampling estimator of the model evidence, which begins with the basic integral form of
the model evidence:

p(y) =

∫
p(y|θ)p(θ) dθ

which can be written as an expectation with respect to the likelihood:

EP (θ) [p(y|θ)]

as we saw in Section 3.1 for the basic Monte Carlo estimator. Now, given a possibly
un-normalised probability density function g(θ), self-normmalised importance sampling
provides an approximation of this expectation of the form:

p̂(y) =

N∑
t=1

wt p(y|θ(t))

N∑
t=1

wt

(1)

where wt =
p(θ(t))

g(θ(t))
are the weights of self-normalised importance sampling and θ(t) are

draws from the proposal distribution.

We discussed that the basic Monte Carlo estimator was susceptible to large likelihood
values influencing the estimate, whereas the Harmonic Mean estimator struggled with
small likelihood values disproportionately affecting the estimate. The Newton-Raftery
estimator Newton & Raftery (1994) aims to fix these instability issues through the self-
normalised importance sampling estimator, with a proposal density that uses a mixture
of the prior and posterior density functions:

g(θ) = δp(θ) + (1− δ)p(θ|y) (0 < δ < 1)

This eventually leads to an iterative equation:

p̂(y) =

N∑
t=1

p(y|θ(t)){δp̂(y) + (1− δ)p(y|θ(t))}−1

N∑
t=1

{δp̂(y) + (1− δ)p(y|θ(t))}−1

where θ(t) are draws from the proposal distribution.
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We can derive this result through (1). First, we must calculate the weights of the
self-normalised importance sampling estimator, starting with:

wt =
p(θ(t))

g(θ(t))
=

p(θ(t))

δp(θ(t)) + (1− δ)p(θ(t)|y)

Replacing p(θ(t)) with p(y|θ(t)) p(θ(t))
p(y) and then multiplying through by p(y) leads to:

wt =
p(θ(t))

δp(θ(t)) + (1− δ)p(y|θ
(t)) p(θ(t))
p(y)

=
1

δ + (1− δ)p(y|θ
(t))

p(y)

=
p(y)

δ p(y) + (1− δ)p(y|θ(t))

Applying these weights to (1) then gives:

p̂(y) =

N∑
t=1

p(y)

δ p(y) + (1− δ)p(y|θ(t))
p(y|θ(t))

N∑
t=1

p(y)

δ p(y) + (1− δ)p(y|θ(t))

=

N∑
t=1

p(y|θ(t)){δp(y) + (1− δ)p(y|θ(t))}−1

N∑
t=1

{δp(y) + (1− δ)p(y|θ(t))}−1

We obtain the final iterative equation by replacing p(y) with p̂(y) on the right hand side

In practice, we can use the estimator by initialising p̂(y) at p̂0 and then iterating the
equation n times to obtain p̂1, . . . , p̂n where p̂n is the final estimate.

3.5 Laplace-Metropolis Estimator

The Laplace method Tierney & Kadane (1986) is an approach which can be used to
estimate the model evidence if we assume that the posterior distribution can be approx-
imated by a Gaussian distribution. The resulting approximation is:

p̂(y) = (2π)d/2|Σ̃|1/2p(y|θ̃)p(θ̃)
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where d is the dimension of θ, θ̃ is the posterior mode and Σ̃ is the negative inverse
Hessian matrix at θ̃.

However, in many practical cases, both the inverse Hessian matrix Σ̃ and the poste-
rior mode θ̃ are not analytically tractable. The Laplace-Metropolis estimator Lewis &
Raftery (1997) aims to bridge this gap by using a posterior sample to provide a variation
of the Laplace estimate:

p̂(y) = (2π)d/2|S|1/2p(y|θmax)p(θmax)

θmax = max
t=1,··· ,N

{p(y|θ(t))p(θ(t))}

where S is the sample covariance matrix of the posterior sample, used in place of Σ̃, and
θ(t) are draws from the posterior distribution.

The justification for using the sample covariance matrix comes from the fact that the
posterior variance matrix is asymptotically equal to the inverse Hessian matrix Σ̃. We
can then provide an unbiased estimate of the posterior variance matrix through the
sample covariance matrix. A more advanced technique here could be to use weighted
variance matrices from the sample, which is considered more robust by Lewis & Raftery
(1997). Similarly, there are other methods discussed for estimating the posterior mode,
θ̃, which include estimating the component-wise entries of θ̃ through posterior sample
means or medians.

3.6 Bridge Sampling Estimator

The bridge sampling technique was originally developed by Meng & Wong (1996) in
order to estimate the ratio of the normalising constants, c1 and c2, of two densities. We
will proceed with a version of bridge sampling from Gronau et al. (2017) and follow the
steps laid out in the paper to estimate the model evidence. We will summarise the steps
found in the paper in the rest of this section. Here, we start with the identity:

1 =

∫
p(y|θ)p(θ)h(θ)g(θ) dθ∫
p(y|θ)p(θ)h(θ)g(θ) dθ

where g(θ) is the proposal density and h(θ) is known as the bridge function.

We then multiply both sides of the identity by the model evidence, p(y), to obtain:

p(y) =

∫
p(y|θ)p(θ)h(θ)g(θ) dθ∫ p(y|θ)p(θ)

p(y) h(θ)g(θ) dθ
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Replacing p(y|θ)p(θ)
p(y) with p(θ|y) leads to the following expectations:

p(y) =

∫
p(y|θ)p(θ)h(θ)g(θ) dθ∫
p(θ|y)h(θ)g(θ) dθ

=
EG(·) [p(y|θ)p(θ)h(θ)]

EP (·|y) [h(θ)g(θ)]

We can then obtain the estimate by using the standard Monte Carlo technique to ap-
proximate the expectations:

p̂(y) =

1
N2

N2∑
t=1

p(y|θ(t)
2 )p(θ

(t)
2 )h(θ

(t)
2 )

1
N1

N1∑
t=1

h(θ
(t)
1 )g(θ

(t)
1 )

(2)

where N1 is the size of the proposal sample, N2 is the size of the posterior sample, θ
(t)
1 are

draws from the posterior distribution, and θ
(t)
2 are draws from the proposal distribution

Note that here we need samples from both the proposal distribution and the poste-
rior distribution for this estimator. For the proposal distribution, we can again use the
method of moments to create a Gaussian density which will ideally resemble the pos-
terior density. Aside from that, it is clear that we need to decide on a suitable bridge
function to use this estimator in practice. It is suggested in Meng & Wong (1996) that
the following bridge function is optimal:

h(θ) =
C

s1p(y|θ)p(θ) + s2p(y)g(θ)

where s1 =
N1

N1+N2
, s2 =

N2
N1+N2

, and C is an arbitrary constant. Note that the constant
C will cancel out when we plug the bridge function into (2), which leads to an iterative
equation for the bridge sampling estimate:

p̂(y) =

1
N2

N2∑
t=1

p(y|θ(t)
2 )p(θ

(t)
2 )

s1p(y|θ(t)
2 )p(θ

(t)
2 ) + s2p̂(y)g(θ

(t)
2 )

1
N1

N1∑
t=1

g(θ
(t)
1 )

s1p(y|θ(t)
1 )p(θ

(t)
1 ) + s2p̂(y)g(θ

(t)
1 )

where again we must initalise p̂(y) at p̂0 and then iterate the equation n times to obtain
the final estimate.
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3.7 Fourier Integral Estimator: a Newer Method in the
Field

In contrary to the previously discussed methods, Rotiroti & Walker (2022) use a unique
approach stemming from the central Bayesian equality:

p(θ|y) = p(y|θ)p(θ)
p(y)

The idea here is that if we are able to estimate the posterior density p(θ|y) at a single
point θ∗ in the parameter space, then we can evaluate the model evidence,

p(y) =
p(y|θ∗)p(θ∗)

p(θ∗|y)

On the logarithmic scale, we can reach the estimate using the adapted formula:

log(p(y)) = log(p(y|θ∗)p(θ∗))− log(p(θ∗|y))

Note here that we only need to estimate the posterior density at a single point θ∗ in or-
der to obtain the estimate. This approach was actually first presented by Besag (1989),
where the ”candidate’s estimator” is demonstrated as a method to estimate the marginal
likelihood. The same idea was also used by Chib (1995) and Chib & Jeliazkov (2001),
leading to the Chib estimator and Chib and Jeliazkov estimators respectively. These
methods are also very effective for estimating the model evidence, however will not be
discussed in this report. A comprehensive analysis of the Chib estimator, as well as
other methods not discussed in this report such as annealed importance sampling Neal
(2001), nested sampling Skilling (2006), and power posteriors Friel & Pettitt (2008) can
be found in Friel & Wyse (2012).

We will now discuss how we will obtain the estimate p(θ∗|y) using a sample from the
posterior distribution. We begin by introducing a method called the Fourier transform.
Essentially, the Fourier transform works by decomposing a function into sinusoidal waves
of various frequencies. We won’t delve into specifics here as it is not the focus of the
report, but for a function f(x), the Fourier transform is given by:

f̃(s) =

∫ ∞

−∞
f(x) e−isx dx (3)

By inverting the formula, we obtain the result:

f(x) =
1

2π

∫ ∞

−∞
f̃(s) eisx dx (4)

We can then combine (3) and (4) to derive a double integral solely in terms of f(x):

f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
eisx e−isy f(y) dsdy
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When f(x) is real, we can replace the exponential factors with trig functions:

f(x) =
1

2π
lim

R→∞

∫ ∞

−∞

∫ R

−R
cos(s(x− y)) ds f(y) dy

f(x) =
1

π
lim

R→∞

∫ ∞

−∞
sin(R(x− y)) f(y) dy

We can apply this formula to the posterior density, evaluated at a single point θ∗ in the
parameter space. In the univariate case, this gives the form:

p(θ∗|y) = 1

π
lim

R→∞

∫
sin(R(θ∗ − θ)) p(θ|y) dθ

where y = (y1, . . . , yn)
T now represents the data in our statistical problem. Since we

are left with a single integral, we can represent this as an expectation with respect to
the posterior distribution and use the standard Monte Carlo trick to approximate this
integral, leading to the estimate:

p(θ∗|y) = 1

π
lim

R→∞
EP (·|y) [sin(R(θ∗ − θ))]

p̂(θ∗|y) = 1

Nπ

N∑
t=1

sin(R(θ∗ − θ(t)))

θ∗ − θ(t)

for some fixed large R, where θ(t) are draws from the posterior distribution.

The previous results come from Fourier transforms of univariate functions. We can
also apply the Fourier methods to multivariate functions in order to estimate the model
evidence to parameter spaces of higher dimensionality. We will omit the details here,
but it is possible to arrive at the closed form:

f(x) =
1

πd
lim

R→∞

∫
Rd

d∏
j=1

sin(R(xj − xji))

xj − xji
f(y) dy

Again, we can apply this formula to the posterior density p(θ|y), evaluated at a single
point θ∗ in the now multi-dimensional parameter space:

p(θ∗|y) = 1

πd
lim

R→∞

∫ d∏
j=1

sin(R(θ∗j − θj))

θ∗j − θj
p(θ|y) dθ

By representing this as an expectation and using the Monte-Carlo technique in the
multivariate setting, we reach:

p(θ∗|y) = 1

π
lim

R→∞
EP (·|y)

 d∏
j=1

sin(R(θ∗j − θj))

θ∗j − θj


p̂(θ∗|y) = 1

Nπd

N∑
t=1

d∏
j=1

sin(R(θ∗j − θ
(t)
j ))

θ∗j − θ
(t)
j
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for some fixed large R, where θ(t) = (θ
(t)
1 , . . . , θ

(t)
d )T are draws from the posterior distri-

bution.

Note that we will refer to this estimation method as the Fourier integral estimator
in the remaining chapters.
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Chapter 4

Toy Example: The
Gamma-Poisson Conjugate Model

4.1 The Gamma-Poisson Conjugate Model

We will first introduce a Gamma-Poisson conjugate model which will provide a situation
where we can use the 7 methods to estimate the model evidence. We label this example
as the toy example as we are able to directly obtain both the posterior distribution and
the marginal likelihood, which enables calculating the error of the estimates. The goal
with this model is to test the estimators against a set of known model evidences. We will
simulate 50 data sets y(1), . . . ,y(50) of size n directly from the likelihood. For each data

set y(i) = (y
(1)
(i) , . . . , y

(n)
(i) ), we can then estimate the model evidence using the 7 methods

and compare the estimates to the exact model evidence. The likelihood and prior of the
Gamma-Poisson model are given below:

y(j)|λ ∼ Poisson(λ) (λ ∈ Z+)

λ ∼ Gamma(α, β) (α, β > 0)

After simulating the data, we will immediately be able to derive the posterior distribution
due to conjugacy. The posterior will then take the following form:

λ|y ∼ Gamma(α+
∑
j

y(j), β + n)

Moreover, with this simple model we can extract the model evidence by direct integra-
tion:

p(y) =

∫
p(y|λ) p(λ) dλ =

Γ (ny + α)β α∏
j

y(j)! Γ(α)(n+ β)ny+α
(1)

The model specifications we will use for the remainder of the chapter can be summarised
in the following table:
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size of data sets: n = 50
posterior/ prior sample size: N = 10000
prior hyper-parameters: a = b = 0.1

We specifically choose the Gamma prior to have shape and rate parameter equal to 0.1
as this gives what can be considered a vague prior. Choosing α and β to have very
small values creates a distribution that is heavily skewed towards zero with a long right
tail. Therefore, the probability density will be concentrated at zero, with a range of
non-zero probabilities for the higher values. Moreover, the mean of the distribution will
sit at α

β = 0.1
0.1 = 1, whilst being very uncertain about higher values, having a variance of

α
β2 = 0.1

0.12
= 10. Hence, we will be expressing minimal prior beliefs so that the posterior

will be largely influenced by the likelihood of the data, reflecting real applications where
we may not have much information about the shape of the posterior. A visual comparison
of the prior and posterior density can be found in Figure 4.1.
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Figure 4.1: Density plot of the posterior and vague prior

4.2 Data Simulation

First we must simulate the data sets. As discussed in Section 4.1, we will directly
simulate the data sets y(1), . . . ,y(50) from Poisson(λ). We will select the value of λ to be
2 for data generation purposes. The data is then summarised in a 50× n matrix, where
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each row corresponds to one of the 50 data sets.

Y =


yT
(1)

yT
(2)
...

yT
(50)

 =


y
(1)
(1) y

(2)
(1) . . . y

(n)
(1)

y
(1)
(2) y

(2)
(2) . . . y

(n)
(2)

...
...

. . .
...

y
(1)
(50) y

(2)
(50) . . . y

(n)
(50)


Now that we have determined our 50 data sets, we can calculate the 50 true model
evidence values m1, . . . ,m50 on the logarithmic scale using (1). This gives the 50 model
evidence values as:

p(y(i)) =
Γ (ny(i) + α)β α∏

j

y
(j)
(i) ! Γ(α)(n+ β)ny(i)+α

(i = 1, . . . , 50)

We will store these values in the vector m:

m =


m1

m2
...

m50


4.3 Implementing the Methods

In this section, we will describe how we can implement the estimator methods within the
framework of the Gamma-Poisson Conjugate example. For ease of comparison against
the true model evidence values, we will be working on the logarithmic scale. Please note
that there are likely many ways in which the code used to implement these methods can
be optimised for greater efficiency. The code used for this chapter can be found through
this link, which allows the reader to change the settings and experiment with the results.

Before proceeding with the methods, we must first generate the prior and posterior
samples. For this, we will denote the prior samples as λprior(1), . . . ,λprior(50) where

λprior(i) = (λ
(1)
prior(i), . . . , λ

(N)
prior(i)) contains N different λ samples. In similar notation, we

will denote the posterior samples by λpost(1), . . . ,λpost(50) and the proposal samples by
λprop(1), . . . ,λprop(50). We will also summarise the prior, posterior and proposal samples
in 3 50 x N matrices, with each row corresponding to a unique sample. The procedures
are described below.

4.3.1 Sampling from the Prior

For the prior sample, we will generate this by sampling directly from the prior distribu-
tion:

λ ∼ Gamma(0.1, 0.1)

23

https://github.com/sheldonfi/Model-Selection-via-Bayesian-Evidence


The results of this are given in the matrix Λprior, taking the form:

Λprior =


λT
prior (1)

λT
prior (2)
...

λT
prior (50)

 =


λ
(1)
prior(1) λ

(2)
prior(1) . . . λ

(N)
prior(1)

λ
(1)
prior(2) λ

(2)
prior(2) . . . λ

(N)
prior(2)

...
...

. . .
...

λ
(1)
prior(50) λ

(2)
prior(50) . . . λ

(N)
prior(50)


4.3.2 Sampling from the Posterior

In a similar fashion, we generate the posterior samples by sampling directly from the
known posterior distribution. The ith posterior sample will be sampled from the distri-
bution:

λ
(j)
post(i)|y(i) ∼ Gamma(0.01 +

∑
j

y
(j)
(i) , 0.01 + n)

The results of this are given in the matrix Λpost, taking the form:

Λpost =


λT
post (1)

λT
post (2)
...

λT
post (50)

 =


λ
(1)
post(1) λ

(2)
post(1) . . . λ

(N)
post(1)

λ
(1)
post(2) λ

(2)
post(2) . . . λ

(N)
post(2)

...
...

. . .
...

λ
(1)
post(50) λ

(2)
post(50) . . . λ

(N)
post(50)


We discuss the collection of the proposal samples in Section 4.3.8

Now we can proceed with the implementation of our model evidence estimators.

4.3.3 Basic Monte Carlo Estimator

As discussed in Section 3.1, the basic Monte Carlo estimator only relies on a prior sample.
We must calculate the likelihood for each of the 50 prior samples generated in Section
4.2 with the corresponding data values y. For example:

p(yi|λ(j)
prior(i)) =

n∏
ℓ=1

Poisson(yi,ℓ ;λ
(j)
prior(i))

When utilising a vague prior, it’s quite possible to encounter likelihood values so small
that they round to zero in R, even when computed on the logarithmic scale. In such
cases, we have the decision to round these zero values to the lowest available number in
R, 2.225e − 308. However, in practice, we observe that performing this substitution is
so insignificant that it will not affect the final estimates. Hence, we will proceed with
any zero values for our estimates.
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Now, the 50 Monte Carlo estimates are given by:

log p̂MC(1) = log

(
1

N

N∑
t=1

p(y1|λ(t)
prior(1))

)
...

log p̂MC(50) = log

(
1

N

N∑
t=1

p(y50|λ(t)
prior(50))

)

4.3.4 Harmonic Mean Estimator

The harmonic mean estimator relies on a posterior sample. Similar to the Monte Carlo
estimate, we must calculate the likelihood values of the data y1, . . . ,y50, except this
time with the 50 posterior samples. For example:

p(yi|λ(j)
post(i)) =

n∏
ℓ=1

Poisson(yi,ℓ ;λ
(j)
post(i))

Now, the Harmonic Mean estimates can be calculated by taking the log of the formula
in Section 3.2:

log p̂(y) = log

(
1

N

N∑
t=1

1

p(y|λ(t)
post)

)−1

= −log

(
1

N

N∑
t=1

1

p(y|λ(t)
post)

)

The 50 Harmonic Mean estimates are then given by:

log p̂HM(1) = −log

 1

N

N∑
t=1

1

p(y1|λ(t)
post(1))


...

log p̂HM(50) = −log

 1

N

N∑
t=1

1

p(y50|λ(t)
post(50))


4.3.5 Generalised Harmonic Mean Estimator

As discussed in Section 3.3, the generalised harmonic mean estimator requires the intro-
duction of a proposal density, ideally having thin tails. For this example, we will use the
method of moments to construct 50 Gaussian proposal densities of the form g(λ), each
corresponding to a posterior sample λpost. We will first calculate the sample means and
sample variances of each posterior sample:
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λpost(i) =
1

N

N∑
t=1

λ
(t)
post(i) s2post(i) =

1

N

N∑
t=1

(
λ
(t)
post(i) − λpost(i)

)2
Now, the densities will take the form:

g(λ) = Normal(λ; λpost(i), s
2
post(i))

Since we are still using the posterior sample for the Generalised Harmonic Mean estimate,
we will be using the same likelihood values as calculated for the Harmonic Mean estimate
in Section 4.3.4. However, now we must also calculate the prior density values and
proposal density values of the 50 posterior samples. For the prior density values, we
have:

p(λ
(j)
post(i)) = Gamma(λ

(j)
post(i); 0.1, 0.1)

Similarly, for the proposal density values, we have:

g(λ
(j)
post(i)) = Normal(λ

(j)
post(i); λpost(i), s

2
post(i))

Again, we receive the generalised harmonic mean estimates by taking the log of the
formula derived in Section 3.3:

log p̂(y) = log

(
1

N

N∑
t=1

g(λ
(t)
post)

p(y|λ(t)
post) p(λ

(t)
post)

)−1

= −log

(
1

N

N∑
t=1

g(λ
(t)
post)

p(y|λ(t)
post) p(λ

(t)
post)

)

The 50 Generalised Harmonic Mean estimates are then given by:

log p̂GHM(1) = −log

 1

N

N∑
t=1

g(λ
(t)
post(1))

p(y1|λ(t)
post(1)) p(λ

(t)
post(1))


...

log p̂GHM(50) = −log

 1

N

N∑
t=1

g(λ
(t)
post(50))

p(y50|λ(t)
post(50)) p(λ

(t)
post(50))


4.3.6 Newton-Raftery Estimator

We will be running the Newton-Raftery estimator with 1000 iterations and the δ set to
0.2. For this estimator, we make use of both the posterior sample and the prior sample
through the proposal mixture density:

g(λ) = δp(λ) + (1− δ)p(λ|y) (0 < δ < 1)
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We need to draw a sample of size N from this mixture density, which we will call the
NR sample. Obtaining this sample is equivalent to randomly replacing δ × N ele-
ments of the posterior sample with elements from the prior sample. Doing this with
the 50 posterior samples and corresponding prior samples results in the 50 NR samples
λNR(1), . . . ,λNR(1).

We must now calculate the likelihood for each of the 50 NR samples as we did in Section
4.3.3 for the prior samples and in Section 4.3.4 for the posterior samples, where we have:

p(yi|λ(j)
NR(i)) =

n∏
ℓ=1

Poisson(yi,ℓ ;λ
(j)
NR(i))

As we have now incorporated the prior samples into the posterior samples to form the
NR samples, we face the same decision as with the basic Monte Carlo estimator in Sec-
tion 4.3.3 with zero likelihoods. We will again choose not to round up any zero values
that may occur.

To reach the final estimates, we must now use the calculated likelihoods with the it-
erative formula stated in Section 3.4:

p̂(y) =

N∑
t=1

p(y|λ(t)
NR){δp̂(y) + (1− δ)p(y|λ(t)

NR)}
−1

N∑
t=1

{δp̂(y) + (1− δ)p(y|θ(t))}−1

We must also make a decision on how we initialise p̂(y) with p0. From trialling different
options for p0, including setting it equal to the Monte Carlo estimate p̂MC and Har-
monic Mean estimate, we can conclude that the starting point of the iteration will not
significantly affect the final estimate. Therefore, it seems most sensible to initialise at a
constant that is unrelated to the other methods. For this, we will simply choose p̂0 = 1
as the initial point for all 50 estimates. For each of the 50 sets of likelihoods, we perform
1,000 iterations of the iterative formula using p̂0 = 1. Figure 4.2 shows how the iterative
sequence from the first set of likelihoods converges. After taking the logs of the final
iterations, this leaves the 50 Newton-Raftery estimates of the form:

log p̂NR(1), . . . , log p̂NR(50)
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Figure 4.2: Series plot of the 10th iteration to the 1000th iteration for the first Newton-
Raftery estimate

4.3.7 Laplace-Metropolis Estimator

In the Gamma-Poisson setting, the Laplace-Metropolis estimator from Section 3.5 is
given by:

p̂(y) = (2π)d/2|S|1/2p(y|λmax)p(λmax)

λmax = max
t=1,··· ,N

{p(y|λ(t)
post)p(λ

(t)
post)}

Therefore, we must first calculate the λmax for each of the 50 posterior samples
λpost(1), . . . ,λpost(50). We will label these values λmax

1 , . . . , λmax
50 . Following this, we

calculate the product of the likelihood and prior densities corresponding to these λ values,
which will be of the form p(y|λmax

(i) )p(λmax
(i) ). In order to complete the estimate, we must

also calculate S values, which similar to the λmax values, we will denote S(1), . . . ,S(50)

For the Gamma-Poisson model, these values are simply the sample variances of the
posterior samples, as we are only working with univariate parameters:

S(i) =
1

N − 1

N∑
t=1

(
λ
(t)
post(i) − λpost(i)

)2
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Now, the 50 Laplace-Metropolis estimates are given by:

log p̂LM(1) =
d

2
log (2π) +

1

2
log |S(1)|+ log (p(y|λmax

(1) )p(λmax
(1) ))

...

log p̂LM(50) =
d

2
log (2π) +

1

2
log |S(50)|+ log (p(y|λmax

(50) )p(λ
max
(50) ))

4.3.8 Bridge Sampling Estimator

As with the Newton-Raftery Estimator, we will be running the Bridge Sampling estima-
tor with 1000 iterations. Also, we set the values N1 and N2 equal to N, which gives:

s1 =
N

N +N
=

1

2
and s2 =

N

N +N
=

1

2

The bridge sampling method is unique in that it requires a sample from the proposal
distribution alongside the posterior sample. For this, we construct 50 proposal densities
in the same way as we did for the generalised harmonic mean estimator in Section 4.3.5,
resulting in:

g(λ) = Normal(λ; λpost(i), s
2
post(i))

We will generate the 50 proposal samples of size N by sampling directly from the 50
proposal distributions G(λ). We summarise the samples in a matrix labelled Λprop,
which takes the form:

Λprop =


λT
prop (1)

λT
prop (2)
...

λT
prop (50)

 =


λ
(1)
prop(1) λ

(2)
prop(1) . . . λ

(N)
prop(1)

λ
(1)
prop(2) λ

(2)
prop(2) . . . λ

(N)
prop(2)

...
...

. . .
...

λ
(1)
prop(50) λ

(2)
prop(50) . . . λ

(N)
prop(50)


Now that we have generated the proposal samples, the formula derived in Section 3.6
can be written:

p̂(y) =

1
N2

N2∑
t=1

p(y|λ(t)
prop)p(λ

(t)
prop)

s1p(y|λ(t)
prop)p(λ

(t)
prop) + s2p̂(y)g(λ

(t)
prop)

1
N1

N1∑
t=1

g(λ
(t)
post)

s1p(y|λ(t)
post)p(λ

(t)
post) + s1p̂(y)g(λ

(t)
post)

After substituting in the chosen values for N1 and N2 as well as the corresponding s1
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and s2 this becomes:

p̂(y) =

2
N

N∑
t=1

p(y|λ(t)
prop)p(λ

(t)
prop)

p(y|λ(t)
prop)p(λ

(t)
prop) + p̂(y)g(λ

(t)
prop)

2
N

N∑
t=1

g(λ
(t)
post)

p(y|λ(t)
post)p(λ

(t)
post) + p̂(y)g(λ

(t)
post)

(2)

We notice here that all of the quantities required to compute the denominator of the
formula have already been calculated in previous methods. We can use the likelihoods
of the posterior sample calculated for the harmonic mean estimator in Section 4.3.4 and
the proposal density values and priors of the posterior samples can be taken from the
Generalised Harmonic Mean implementation in Section 4.3.5. However, we still need to
obtain the proposal, likelihood and prior density values for the new proposal samples.
Firstly, the proposal density values are calculated from g(λ), which will take the form:

g(λ
(j)
prop(i)) = Normal(λ

(j)
prop(i); λpost(i), s

2
post(1))

We similarly calculate the prior density values of the proposal samples:

p(λ
(j)
prop(i)) = Gamma(λ

(j)
prop(i); 0.1, 0.1)

as well as the likelihood density values:

p(yi|λ(j)
prop(i)) =

n∏
ℓ=1

Poisson(yi,ℓ ;λ
(j)
prop(i))

We can summarise these values in 3 50 × N matrices as we have done previously, to
ease the computation of the final estimates. Now that we have obtained the 6 matrices
of density values from the posterior and proposal samples that we require, we can use
the iterative formula (2). As with the Newton-Raftery estimator, we will initialise at
p̂0 = 1 and then perform 1000 iterations for each of the 50 sets of posterior and proposal
samples. After taking the logs of the final iterations, we have the 50 bridge sampling
estimates of the form:

log p̂BS(1), . . . , log p̂BS(50)

4.3.9 Fourier Integral Estimator

In order to implement the Fourier integral estimator, we must first decide at which point
in the parameter space to centre the posterior density estimate. For this, we take the
means of the posterior samples. For example, we set:

λ∗
(i) = λpost(i)
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In the Gamma-Poisson setting, we must use the posterior density estimate formula
derived in Section 3.7 for the univariate case, which can be applied as follows:

p̂(λ∗
(i)|yi) =

1

Nπ

N∑
t=1

sin(R(λ∗
(i) − λ

(t)
post))

λ∗
(i) − λ

(t)
post

Here, we must decide on a value of R in order to progress with the 50 density estimates.
We can assess convergence by producing a series plot of the first 5 estimates, varying
R from 1 to 100. Due to the very simple form of the density estimates, we are able
to produce 100 estimates for each set quickly and with little computational effort. The
results of the series plots are shown in Figure 4.3 which show that we reach convergence
around R=10. We will proceed with R=20 for the final steps of the method. The
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Figure 4.3: Series plot of the first 5 estimates when increasing R from 1 to 100

likelihood and prior density values need to be calculated at the 50 centres λ∗
(1), . . . , λ

∗
(50)

before proceeding with the model evidence estimates. These density values will be of
the form p(yi|λ∗

i ) and p(λ∗
i ) respectively. We can now use Bayes’ Theorem to arrive at

the final estimates:

log p̂FI(1) = log p̂(λ∗
(1)|y1) + log p(λ∗

1)− log p(y1|λ∗
1)

...

log p̂FI(1) = log p̂(λ∗
(1)|y50) + log p(λ∗

1)− log p(y50|λ∗
1)
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4.4 Results (Gamma-Poisson Conjugate Model)

Now that we have obtained the estimates for each method, we can compare these against
the true model evidence values stored in vector m. First, we will consider the absolute
errors of each set of estimates. The constructed box plots of these errors, for each method,
can be found in Figure 4.4. We can see that most of the methods have performed well
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Figure 4.4: Box plots of the absolute errors of the 50 estimates

here, apart from the harmonic mean estimator. The generalised harmonic mean, Laplace-
Metropolis, bridge sampling and Fourier integral estimators have performed particularly
well, showing very thin box plots close to zero which represents close to zero errors across
all 50 estimates. We can provide a numerical summary of the estimators by calculating
the mean and standard deviation of the absolute errors on the logarithmic scale, which
can be found in Table 4.1.
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Methods Mean Std. Dev.

Monte Carlo 0.04057 0.03295
Harmonic Mean 2.66557 0.33388
Gen. Harmonic Mean 0.00087 0.00060
Newton-Raftery 0.08100 0.06686
Laplace-Metropolis 0.00549 0.00349
Bridge Sampling 0.00069 0.00045
Fourier Integral 0.01046 0.00700

Table 4.1: Means and standard deviations of the absolute errors for the 50 estimates of
each method

We can see that the bridge sampling method has performed the best here with the
lowest mean error and the lowest standard deviation, with the Generalised Harmonic
Mean performing to similar ability. Although the Fourier Integral estimator hasn’t
performed as well, we note that its strength lies in its computational efficiency and
we can perform the estimate with a much larger sample size with relative ease. To
demonstrate this numerically, the total elapsed time to run the Bridge Sampling code
in this setting is 86.532s whereas the elapsed time for the Fourier Integral estimate is
0.052s - a substantial difference. Note that as mentioned in the start of the chapter,
there will be ways to optimise the bridge sampling code and this doesn’t account for the
time taken to obtain the posterior sample which is used in both methods, however it is
clear that the Fourier Integral estimator is more computationally efficient. Increasing
the posterior sample to N = 107 leads to the new Fourier integral estimator summaries
that can be found in Table 4.2, where the results now align closely with that of the
generalised harmonic mean and bridge sampling estimator.

Methods Mean Std. Dev.

Fourier Integral 0.001040 0.0008212

Table 4.2: Means and standard deviations of the absolute errors for the Fourier Integral
estimates with N = 107

Although the Newton-Raftery estimator has improved the estimates in comparison to
the harmonic mean estimator with the incorporation of the prior sample, it has not
performed well in comparison to the rest of the estimators and noticeably has a higher
mean and standard deviation score than the basic Monte Carlo estimator.
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Chapter 5

Intractable Example: The
Logistic Regression Model

5.1 The Logistic Regression Model

We will now introduce a set of logistic regression models M = {M1, . . . ,M7}, where the
model evidence is analytically intractable. We will introduce the data as independent
variables consisting of 3 covariates, xi = (xi,1, xi,2, xi,3)

T (i = 1, . . . , n) with correspond-
ing binomial response variables y1, . . . , yn. The goal here is to perform model selection
with the 7 estimation methods. We will select one of the models in the set M to be the
true model and then simulate the binomial responses y1, . . . , yn using this model. We
will then estimate the model evidence of each model and calculate the corresponding
Bayes factors against the true model. With the aid of the interpretations in Table 2.1
we can judge whether the methods have successfully distinguished the true model from
the other models in the set M .

The logistic regression parameters are β0, β1, β2, β3 with β0 being the intercept parameter
and β1, β2, β3 being the coefficient parameters. We can strategically omit combinations
of the coefficient parameters in order to construct the models. The different combina-
tions of omitting the coefficient parameters gives rise to a model space of size 23 = 8.
We will be working with all of the models in this space, apart from the trivial model
which omits all 3 coefficient parameters. These seven models, which comprise M , are
listed below, where M5 is chosen as the true model for the data generation:

M1 :β = (β0, β1, 0, 0) M5 : β = (β0, β1, 0, β3) (True model)

M2 :β = (β0, 0, β2, 0) M6 : β = (β0, 0, β2, β3)

M3 :β = (β0, 0, 0, β3) M7 : β = (β0, β1, β2, β3)

M4 :β = (β0, β1, β2, 0)

The binomial response y = (y1, . . . , yn)
T will rely on p = (p1, . . . , pn)

T and m where p
is the vector containing the probability parameters for each of the individual responses
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yi ∈ y and m is the parameter denoting the number of trials of each binomial response.
Note that it is commonplace to use n for the number of trials, however we will reserve
this for the sample size of the data.
For a specific pi ∈ p, we define the odds ratio as the ratio of the probability of a successful
trial to the probability of a trial not being successful:

Odds ratio =
pi

1− pi

In the logistic regression setting, the log of the odds ratio is a linear combination of the
covariates. For example, with the model M7 ∈ M , we have:

logit (pi) = log

(
pi

1− pi

)
= β0 + β1x1 + β2x2 + β3x3

where the logit function maps the probability to a value on the entire space of real
numbers (−∞,+∞):

logit (x) = log

(
x

1− x

)
(x ∈ [0, 1])

We will conveniently place the generated data into an n×4 matrix, with the first column
consisting of a vector of 1s for the intercept parameter.

Xnx4 =


1 xT

1

1 xT
2

...
...

1 xT
n

 =


1 x1,1 x1,2 x1,3
1 x2,1 x2,2 x2,3
...

...
...

...
1 xn,1 xn,2 xn,3


Then, we can efficiently compute the vector of probability parameters for the binomial
response:

log

(
p

1− p

)
= Xβ

p

1− p
= exp(Xβ)

p =
exp(Xβ)

1 + exp(Xβ)

p =
1

1 + exp(−Xβ)

Now, for each model Mi ∈ M , we can define the prior and likelihood in concise notation:

yi ∼ Bin (m, pi) (i = 1, . . . , n)

βk ∼ N
(
µ, σ2

)
(k = 0, . . . , 3)

The model specifications we will use for the remainder of the chapter can be summarised
in the following table:
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size of data sets: n = 20
posterior/ prior sample size: N = 10000
response parameter: m = 20
prior hyper-parameters: µ = 0, σ2 = 100

As for the toy example in Section 4, we aim to introduce a vague prior through the σ2

parameter. Setting this to 100 will ensure that the prior takes a flat shape with density
distributed well through the tails.

5.2 Data Simulation

As in Section 4, we will simulate the data. We choose to simulate 20 sets of independent
variables and corresponding response variables. The independent variables consisting of
three covariates xi = (xi,1, xi,2, xi,3)

T (i = 1, . . . , 20) will be drawn independently from
xi,j ∼ N (0, 5) (i = 1, . . . , 20 and j = 1, . . . , 3). When placed into the n × 4 matrix,
this gives:

Xnx4 =


1 xT

1

1 xT
2

...
...

1 xT
n

 =


1 x1,1 x1,2 x1,3
1 x2,1 x2,2 x2,3
...

...
...

...
1 xn,1 xn,2 xn,3


We now use the true model M5 : β = (β0, β1, 0, β3) to generate the 20 binomial re-
sponses. We set the logistic regression parameters β = (1, 2, 0,−1.5) for the purpose of
data generation. Now, using these logistic regression parameters we must calculate the
p values p = (p1, . . . , p20) using the derived formula:

p =
1

1 + exp(−Xβ)

We can now directly simulate the response variables y1, . . . , y20 from Binomial(m,p)
with m set to 20.

5.3 Implementing the Methods

In this section, we will now describe how we can implement the estimator methods within
the framework of the logistic regression models, again working on the logarithmic scale.
As before, note that there are ways in which the code used to implement these methods
could be optimised for greater efficiency. The implementation code for the logistic re-
gression models as well as the Stan file used to encode the models can be found through
this link.

First, we must introduce the methods we use to assess the variability of the estima-
tors in this intractable logistic regression example. Essentially, if we split the posterior,
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prior and proposal samples into equally sized batches, we can calculate an estimate from
each distinct batch. Following this, we will compute a mean estimate for each estimator
as well as the standard deviation of the estimates, known as the Monte Carlo (MC)
errors . From now on, we will refer to these batches as chains and for each model we
will be generating 50 chains of samples to use for the estimators. For the chains, we will
use the notation Bprior(1), . . .Bprior(50), Bpost(1), . . . ,Bpost(50) and Bprop(1), . . . ,Bprop(50)

to denote the 50 chains of prior, posterior and proposal samples respectively, where

β
(1)
prior (1) will denote the first sample of betas in the first prior chain. To avoid intro-

ducing excessive notation, we will not differentiate between the samples of each model.
This will not be an issue as we will only be using M4 : β = (β0, β1, β2, 0) to demonstrate
the implementation of the methods, where the same techniques can be applied to every
model in the set M . Note that the prior, posterior and proposal chains generated for
each model will only include the coefficient parameters that have not been omitted.

5.3.1 Sampling from the Prior

For the prior sample, we will generate this by sampling directly from the prior distribu-
tion:

βk ∼ N (0, 100) (k = 0, . . . , 3)

For example, in M4, for the ith prior chain Bprior(i) we have:

Bprior(i) =


β
(1)T
prior (i)

β
(2)T
prior (i)
...

β
(N)T
prior (i)

 =


β
(1)
0 prior(i) β

(1)
1 prior(i) β

(1)
2 prior(i)

β
(2)
0 prior(i) β

(2)
1 prior(i) β

(2)
2 prior(i)

...
...

...

β
(N)
0 prior(i) β

(N)
1 prior(i) β

(N)
2 prior(i)


5.3.2 Sampling from the Posterior

With the logistic regression models, we no longer have an analytically tractable posterior
distribution which we can sample from directly. Instead, we resort to Markov Chain
Monte Carlo (MCMC) methods to obtain the posterior sample, needed for all of the
methods apart from the basic Monte Carlo estimator. For this, we will encode the
logistic regression models in the interface Rstan, which implements an MCMC method
called Hamiltonian Monte Carlo to obtain a posterior sample, after we have inputted
the data generated in Section 5.2 . Note that here we are simulating different sets of
posterior chains for each model, and we must specify which of the coefficient parameters
have been set to zero. For this, we will input the adjusted data matrices which remove the
covariate data corresponding to zeroed coefficient parameters, and then set the number
of coefficient parameters equal to the number of unspecified coefficient parameters. We
will set the number of iterations to 11000 for each of the 50 posterior sample chains,
with the first 1,000 iterations disregarded as warm up samples. For example, in M4, for
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the ith posterior chain, Bpost(i) we have:

Bpost(i) =


β
(1)T
post (i)

β
(2)T
post (i)
...

β
(N)T
post (i)

 =


β
(1)
0 post(i) β

(1)
1 post(i) β

(1)
2 post(i)

β
(2)
0 post(i) β

(2)
1 post(i) β

(2)
2 post(i)

...
...

...

β
(N)
0 post(i) β

(N)
1 post(i) β

(N)
2 post(i)


Some convergence diagnostics can be found in Figure 5.1 and Figure 5.2 for the posterior
sample generated from model M7. Now we can proceed with the implementation of
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Figure 5.1: Trace plots of the first 500 post warm up iterations from chains 1,2 and 3

the model evidence estimators. We will be using M4 : β = (β0, β1, β2, 0) as the example
model for implementing the techniques, where the same approach is used for every model
in the set M . The adjusted data matrix, denoted X ′ will be formed by removing the
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Figure 5.2: 3d density plots of the posterior beta samples using all post warm up itera-
tions from the first posterior chain

third covariate from the original data:

X ′
nx3 =


1 x1,1 x1,2
1 x2,1 x2,2
...

...
...

1 xn,1 xn,2


5.3.3 Basic Monte Carlo Estimator

For the basic Monte Carlo estimator discussed in Section 3.1, we must calculate the
likelihoods for each of the prior sample. In contrary to the Gamma-Poisson example,
we must first calculate the vectors of p values corresponding to the prior samples, using
the formula:

p =
1

1 + exp(−Xβ)

For the ith prior chain, this gives the following p values:

p
(j)
prior(i) =

1

1 + exp(−X ′β
(j)
prior(i))

After we have collected the vectors of p values for each prior sample, we can proceed with
calculating the likelihoods. As laid out in Section 5.1, the likelihood takes the binomial
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form. For the ith prior chain, the likelihoods can be derived as:

p(y|β(j)
prior(i)) =

n∏
ℓ=1

Bin
(
yℓ;m, p

(j)
ℓ prior(i)

)
Now, the 50 Monte Carlo estimates are given by:

log p̂MC(1) = log

(
1

N

N∑
t=1

p(y|β(t)
prior(1))

)
...

log p̂MC(50) = log

(
1

N

N∑
t=1

p(y|β(t)
prior(50))

)

5.3.4 Harmonic Mean Estimator

For the harmonic mean estimator we also must access the likelihoods, this time for the
posterior samples in order to reach the derived formula in Section 3.2. Again, we begin
by calculating the vectors of p values corresponding to the posterior samples before
obtaining the likelihoods. The p values of the ith posterior chain are given by:

p
(j)
post(i) =

1

1 + exp(−X ′β
(j)
post(i))

We can now calculate the likelihoods as we did for the prior samples. The ith posterior
chain gives the likelihoods:

p(y|β(j)
post(i)) =

n∏
ℓ=1

Bin
(
yℓ;m, p

(j)
ℓ post(i)

)
By taking the log of the final formula, we can obtain the final 50 estimates from the sets
of likelihoods:

log p̂HM(1) = −log

 1

N

N∑
t=1

1

p(y|β(t)
post(1))


...

log p̂HM(50) = −log

 1

N

N∑
t=1

1

p(y|β(t)
post(50))


5.3.5 Generalised Harmonic Mean Estimator

For the generalised harmonic mean estimator, we must introduce a proposal density. In
the Toy Example, we achieved this by introducing simple Gaussian proposal densities
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stemming from the sample means and sample variances of the posterior samples. Now
that we are working in a multivariate parameter space, we will need to employ multivari-
ate Gaussian distributions for the proposal densities. Specifically, we will be introducing
50 multivariate Gaussian densities of the form g(β), each corresponding to a distinct
posterior chain. We will set the mean of each Gaussian proposal to the sample mean
of the posteriors samples from the corresponding chain and the variance equal to the
sample variance of the posterior samples from the corresponding chain. For example,
with the ith chain we have:

βpost(i) =



1
N

N∑
t=1

β
(t)
0 post(i)

1
N

N∑
t=1

β
(t)
1 post(i)

1
N

N∑
t=1

β
(t)
2 post(i)


Spost(i) =

1

N

(
Bpost(i) − βpost(i)

)(
Bpost(i) − βpost(i)

)T
The 50 proposal densities then take the form:

g(β) = N (β; βpost(i), Spost(i))

To apply the generalised harmonic mean formula from Section 3.3, we must obtain the
likelihood, prior and proposal density values evaluated at each posterior sample. Again,
we will recycle the likelihoods calculated for the harmonic mean estimator, meaning we
only need the prior and proposal density values. The prior density values of the ith
posterior chain are given as:

p(β
(j)
post(i)) =

2∏
ℓ=0

N (β
(j)
ℓ post(i); 0, 100)

Similarly, we obtain the proposal densities using g(β), with the results of the ith chain
taking the form:

g(β
(j)
post(i)) = N (β

(j)
post(i); βpost(i), Spost(i))

Taking the log of the formula we get the 50 estimates as:

log p̂GHM(1) = −log

 1

N

N∑
t=1

g(β
(t)
post(1))

p(y1|β(t)
post(1)) p(β

(t)
post(1))


...

log p̂GHM(50) = −log

 1

N

N∑
t=1

g(β
(t)
post(50))

p(y50|β(t)
post(50)) p(β

(t)
post(50))
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5.3.6 Newton-Raftery Estimator

We run the Newton-Raftery estimator using the same settings as with the Toy Example,
setting the iterations to 1000 and δ to 0.2. We incorporate the posterior and prior
samples together when calculating the estimates through the mixture density:

g(λ) = δp(λ) + (1− δ)p(λ|y) (0 < δ < 1)

We will still be replacing the posterior samples with some of the prior sample to acheive
a sample from this mixture density, however we must now approach this more carefully.
To obtain the NR samples, we will randomly replace 50 × N samples elements of each
posterior chain with elements from the corresponding prior chain. Following this, we will
have 50 NR chains with which we must calculate the likelihood values. Again, when we
need likelihood values in are logistic regression setting, we must calculate the associate
p values of the samples:

p
(j)
NR(i) =

1

1 + exp(−X ′β
(j)
NR(i))

We now summarise the likelihood values for the ith chain, which alongside the other sets
of likelihood values will lead to the 50 estimates:

p(y|β(j)
NR(i)) =

n∏
ℓ=1

Bin
(
yℓ;m, p

(j)
ℓ NR(i)

)
With these likelihoods, we can now apply the iterative equation on the newly formed
NR chains:

p̂(y) =

N∑
t=1

p(y|β(t)
NR){δp̂(y) + (1− δ)p(y|β(t)

NR)}
−1

N∑
t=1

{δp̂(y) + (1− δ)p(y|θ(t))}−1

After the findings in Section 4.2, we will initialise the iterative equation at p0 = 1 for
the 50 sets of likelihoods and then take logs to obtain the final 50 estimates of the form:

log p̂NR(1), . . . , log p̂NR(50)

5.3.7 Laplace-Metropolis Estimator

Applying the formula from Section 3.5 to the logistic regression setting, we have:

p̂(y) = (2π)d/2|S|1/2p(y|βmax)p(βmax)

βmax = max
t=1,··· ,N

{p(y|β(t)
post)p(β

(t)
post)}
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We first calculate the βmax corresponding to each of the 50 posterior chains. We can
use the likelihood values calculated for the harmonic mean estimator and the prior
values calculated for the generalised harmonic mean estimator to determine the product
which gives the maximum value. We label the 50 values βmax

(1) , . . . ,βmax
(50) . We use the

corresponding likelihood and prior product of these values for the formula. We must
now calculate the S values which correspond to the sample covariance matrices of the
posterior chains. These are the same sample covariance matrices that we calculated
in Section 5.3.5 which we labelled Spost(1), . . . , Spost(50). For M4, we have 1 intercept
parameter and 2 coefficient parameters, so set d equal to 3. We then obtain the following
50 estimates after taking the log the estimating formula:

log p̂LM(1) =
3

2
log (2π) +

1

2
log |Spost(1)|+ log (p(y|βmax

(1) )p(βmax
(1) ))

...

log p̂LM(50) =
3

2
log (2π) +

1

2
log |Spost(50)|+ log (p(y|βmax

(50) )p(β
max
(50) ))

5.3.8 Bridge Sampling Estimator

We will stay consistent and run the bridge sampling estimator for 1000 iterations with
both N1 and N2 set to 1000, giving s1 = s2 =

1
2

As before, we must acquire proposal samples alongside the posterior samples in order to
reach the final estimates. For the proposal distribution, we again construct 50 multivari-
ate normal distributions which take their means and variances from the posterior sample
means and sample variances respectively. This provides the same proposal densities g(β)
as in Section 5.3.5. We sample directly form the corresponding proposal distributions
G(β) to obtain the proposal chains, stored in matrices Bprop(1), . . . ,Bprop(50) For the ith
proposal chain, Bprop(i), we have:

β
(1)T
prop (i)

β
(2)T
prop (i)
...

β
(N)T
prop (i)

 =


β
(1)
0 prop(i) β

(1)
1 prop(i) β

(1)
2 prop(i)

β
(2)
0 prop(i) β

(2)
1 prop(i) β

(2)
2 prop(i)

...
...

...

β
(N)
0 prop(i) β

(N)
1 prop(i) β

(N)
2 prop(i)


After subbing in the values for N1, N2 as well as the corresponding s1 and s2 values, the
iterative formula derived in Section 3.6 becomes:

ˆp(y) =

2
N

N∑
t=1

p(y|λ(t)
prop)p(λ

(t)
prop)

p(y|λ(t)
prop)p(λ

(t)
prop) + ˆp(y)g(λ

(t)
prop)

2
N

N∑
t=1

g(λ
(t)
post)

p(y|λ(t)
post)p(λ

(t)
post) +

ˆp(y)g(λ
(t)
post)

(1)
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The likelihood, prior and proposal density values needed for the posterior chains on
the denominator of (1) have already been calculated in previous methods. Therefore,
in order to implement the formula we simply need to derive the equivalent values for
the proposal chains. We demonstrate the implementation for the ith chain, with the
proposal density values taking the form:

g(β
(j)
prop(i)) = Normal(β

(j)
prop(i); βpost(i), s

2
post(i))

We now apply the prior density to obtain the prior density values: Finally, to generate
the likelihood values of the proposal samples we must calculate the vectors of p values
corresponding to the proposal samples, as we did for the posterior samples in Section
5.3.4 and prior samples in Section 5.3.3 For the ith proposal chain, we get the following
p values:

p
(j)
prop(i) =

1

1 + exp(−X ′β
(j)
prop(i))

the binomial likelihood values then take the form:

p(y|β(j)
prop(i)) =

n∏
ℓ=1

Bin
(
yℓ;m, p

(j)
ℓ prop(i)

)
We can now push ahead with the iterative formula (1), setting the initialiser p̂0 = 1.
After 1000 iterations, we take logs to get the final 50 estimates of the form:

log p̂BS(1), . . . , log p̂BS(50)

5.3.9 Fourier Integral Estimator

Now that we are working in multivariate settings with the logistic regression models, we
use the corresponding formula derived in Section 3.7:

p̂(β∗|y) = 1

Nπd

N∑
t=1

d∏
j=1

sin(R(β∗
j − β

(t)
j ))

β∗
j − β

(t)
j

As we did for the toy Gamma-Poisson example, we will take the means of the posterior
samples as the centres of the posterior density estimate, which take the form β∗

(i) =

βpost(i). Now we must again decide on a value of R before proceeding with the estimating
formula. We first produce a series plot of the first 5 density estimates under M4 which
can be found in Figure 5.3. We can see that in the logistic regression setting the estimates
do not converge as nicely as for Gamma-Poisson model. Here, we have a short window
for R where the estimator behaves well, which is roughly from R = 15 to R = 25. If we
make R too large, the estimates will be susceptible to fluctuations in the sine function.
To proceed, we will set R to 20, as before. Finally, in order to obtain the model evidence
estimates we must calculate the posterior and prior density values of the centres. These
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Figure 5.3: Series plot of the first 5 estimates when increasing R from 1 to 100

will take the form p(y|β∗
i ) and p(β∗

i ) respectively. By rearranging Bayes’ Theorem and
taking logs we arrive at the final 50 model evidence estimates:

log p̂FI(1) = log p̂(β∗
(1)|y) + log p(β∗

1)− log p(y|β∗
1)

...

log p̂FI(50) = log p̂(β∗
(50)|y) + log p(β∗

50)− log p(y|β∗
50)

5.4 Results (Logistic Regression Model)

Now that we have obtained the 50 batch estimates from each estimator, we can proceed
with model selection. We first compute the means of the collections of batch estimates,
which will be the final estimate for each of the methods. These can be found in Table 5.1.
We immediately see that the basic Monte Carlo estimator has failed to produce numer-
ical estimates for models M4,M5,M6,M7. Upon further investigation, we find that a
few of the batch estimates returned small values on the logarithmic scales whereas some
produced zero estimates due the lack of prior simulations near the posterior mode. We
also see a consistent grouping of the estimates for the general harmonic mean, Laplace
Metropolis, bridge sampling and Fourier integral methods which suggests that they have
located the model evidence values accurately. This is coupled with very low MC errors,
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with the bridge sampling estimator again having the lowest values amongst the group.
The Newton-Raftery estimator has performed outside of the top group, with larger MC
errors and batch mean estimates which disagree with the previously mentioned group.
However, it is clear that the Newton-Raftery estimator has marked an improvement on
the harmonic mean estimator.

Using the batch mean estimates, we can now calculate the Bayes factors on the log-
arithmic scale for each model in comparison with the true model M5 using the formula:

̂log (BF5 j) = log p̂M5 − log p̂Mj

We can then compare the results against the interpretation table shown in Figure 2.1.
We can see that for the General Harmonic Mean, Laplace Metropolis, bridge sampling
and Fourier integral estimators, we have ”decisive evidence” for the true model M5 over
the other models in the set. Therefore, if we were performing model selection, these
estimators would have successfully calculated the model evidence values to sufficient
accuracy in order to confidently chooseM5 over the other models. With the less accurate
model evidence values calculated by the harmonic mean and Newton-Raftery estimators,
we would still manage to confidently choose M5 over models M1,M2,M3,M4,M6.
However, the log Bayes factor of model M5 in comparison to M7 falls in the range

−1.10 ≤ ̂log (BFi j) ≤ 1.10 which is considered ”not worth more than a bare mention” in
Jeffreys (1961). Therefore, despite having less accurate estimates of the model evidence,
we are able to reduce the set of models to 2 possible models, with one of them being the
true model that generated the data.
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Model M.Carlo H.Mean G.H.Mean N.Raftery L.Metropolis B.Sampling F.Integral

log p̂MC log p̂HM log p̂GHM log p̂NR log p̂LM log p̂BS log p̂FI

M1 −103.900−64.756 −75.093 −71.587 −75.080 −75.092 −75.073

- (29.358) (0.479) (0.001) (0.175) (0.015) (0.001) (0.020)

M2 −196.826−134.142−145.058−140.920−145.049 −145.057 −144.997

- (47.472) (0.644) (0.001) (0.269) (0.013) (0.0004) (0.016)

M3 −137.273−93.904 −104.385−100.705−104.379 −104.384 −104.359

- (27.030) (0.554) (0.001) (0.227) (0.014) (0.008) (0.021)

M4 Inf −65.587 −81.451 −72.391 −81.437 −81.449 −81.431

- (NaN) (0.431) (0.001) (0.247) (0.015) (0.001) (0.032)

M5 Inf −37.674 −52.891 −44.438 −52.877 −52.890 −52.890

- (NaN) (0.644) (0.001) (0.290) (0.020) (0.001) (0.042)

M6 Inf −94.707 −110.657−101.416−110.645 −110.656 −110.621

- (NaN) (0.831) (0.001) (0.229) (0.014) (0.001) (0.025)

M7 Inf −37.394 −58.002 −44.078 −57.985 −58.000 −57.984

- (NaN) (0.622) (0.002) (0.212) (0.025) (0.002) (0.071)

Table 5.1: Final batch mean estimates of the marginal likelihoods for each model, with
MC errors given in brackets

Model M.Carlo H.Mean G.H.Mean N.Raftery L.Metropolis B.Sampling F.Integral

B̂F5 jMC B̂F5 jHM B̂F5 jGHM B̂F5 jNR B̂F5 jLM B̂F5 jBS B̂F5 jFI

M1 - 27.082 22.202 27.149 22.203 22.203 22.183

M2 - 96.468 92.166 96.481 92.172 92.167 92.101

M3 - 56.230 51.494 56.267 51.502 51.495 51.469

M4 - 27.913 28.560 27.953 28.560 28.560 28.541

M5

M6 - 57.033 57.766 56.977 57.768 57.766 57.731

M7 - 0.280 5.110 -0.360 5.108 5.110 5.094

Table 5.2: Bayes factors of each model in comparison to the true model M5, given on
the logarithmic scale
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Chapter 6

Dealing with Real-World Data

The previous chapters have shown that model evidence estimation methods can be very
effective at accurately determining the marginal likelihood, a useful tool in model se-
lection. However, real-world datasets often involve a a high number of variables which
make full models very complex and challenging to work with. In practice, it is com-
mon to implement dimensionality reduction techniques to retain a smaller set of crucial
variables for regression analysis, before proceeding with the standard model selection
procedure.

There are many approaches we can take to address this dimensionality reduction prob-
lem. For example, techniques such as lasso regression introduced by Tibshirani (1996)
or elastic net regression proposed by Zou & Hastie (2005) impose a penalty on the ab-
solute size of the regression parameters β, effectively performing variable selection by
shrinking the less important parameters to zero. Alternatively, principal component
analysis (PCA) is a technique developed by Pearson (1901) and Hotelling (1933) which
aims to transform the original variables to a new set of uncorrelated variables known as
the principal components, and to keep the principal components which hold the most
variation in the data.

In this chapter, we will demonstrate a technique recommended independently by Kendall
et al. (1965) and Hotelling (1957) called principal component regression (PCR). This is a
two-stage process where PCA is performed on the set of explanatory variables to obtain
a smaller set of crucial principal components, before performing regression analysis, with
the new explanatory variables being the reduced set of principal components.

To demonstrate PCR, we will be using the Communities and Crime data set from the
UCI machine learning repository Redmond (2009) which combines socio-economic data
from the 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and
crime data from the 1995 FBI UCRtotal, leading to 1994 observations of 128 variables.
The goal here is to perform regression analysis, with the response variable being the
number of violent crimes per 100,000 of the population. The data set is unclean, con-
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taining missing values, as well as 4 variables which are not predictive for the response
variable. To amend this, we work with a cleaned version of the data from the mogavs
package in R, which removes the non-predictive variables and imputes the missing values
using the mclust package. This leaves a clean data set with now 123 variables, one of
which being the aforementioned response variable. The code used for this chapter can
be found through this link.

6.1 Part 1 - Principal Component Analysis

The first step of PCR is the PCA. As previously mentioned, the goal in this step is to
perform PCA on the set of explanatory variables. Therefore, we first compile the data of
the explanatory variables into a 1994 × 122 matrixX, where the rows ofX correspond to
the observations and the columns of X correspond to the various explanatory variables of
the regression problem. Essentially, when performing PCA, we will find a d-dimensional
projection of X which preserves as much variance of the data as possible. In doing this,
we find an orthonormal basis v1, ...,vd of a d-dimensional space, where v1, ...,vd are the
principal components of the analysis. To perform the analysis, we must first center and
scale X so that all of its columns have mean = 0 and variance = 1. We then use the R
package prcomp to perform PCA on X. A summary of the PCA can be found in Table
6.1.

Standard deviation Proportion of variance Cumulative proportion

v1 8.801 0.635 0.635

v2 2.964 0.072 0.707

v3 2.661 0.058 0.765

v4 2.230 0.041 0.806

v5 1.778 0.026 0.832

v6 1.372 0.015 0.847

v7 1.331 0.015 0.862

v8 1.213 0.012 0.874

v9 1.149 0.011 0.884

v10 1.026 0.009 0.893

v11 0.997 0.008 0.901

v12 0.964 0.008 0.909

Table 6.1: Table depicting the breakdown of variance explained by the first 12 principal
components
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The results show that over 90% of the variance in the data is explained by the first
11 principal components alone, with the first principal component containing 63.5%
of the variance. To determine the amount of principal components that we want to
keep for the regression analysis, we may choose a cut off value i.e. 80% and retain
the smallest number of principal components that result in a cumulative proportion of
variance greater than this cut off value. Alternatively, we could produce a scree plot
of the variance proportions for each principal component in descending order. We then
choose the cutoff point as the point after which the values tend to level off. This is
also known as the ”elbow” of the scree plot. Note that both of these methods aim to
keep the principal components that explain the highest proportion of variance, which is a
technique suggested in Hadi & Ling (1998). For the latter alternative, the corresponding
scree plot from the PCA can be found in Figure 6.1, where there is a subtle ”elbow”
point at the sixth principal component, indicating that we should proceed with 6 of the
principal components. When deciding on how many principal components to retain,
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Figure 6.1: Scree plot depicting the percentage of explained variances in the first 15
principle components

there is a clear trade off between holding enough principal components to maintain
the variability in the data, and reducing the dimensionality of the data so that we
can minimise the complexity of further analysis. Choosing 6 principal components, as
the scree plot suggests in Figure 6.1, will capture 84.7% of the data whilst effectively
reducing the size of the explanatory data from 122 variables to just 6 components. This
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demonstrates how we are able to strike a balance between retaining information and
simplifying the data set, which is the main goal of PCA.

6.2 Part 2 - Performing Regression analysis

The second and final step of PCR is to perform regression analysis, using the 6 chosen
principal components as the new explanatory variables in the regression problem. It is
important to note that original explanatory variables are now incorporated into the 6
principal components, however they will not contribute equally. Essentially, the vari-
ables that explain the most variation in the data will be more heavily weighted in the
principal components. We can visualise this by plotting the contributions of the original
explanatory variables to the first two principal components v1 and v2. This plot can be
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Figure 6.2: Visualisation of the data decomposed into the first 2 principal components

found in Figure 6.2 which shows that all of the original variables contribute negatively
to v1, whilst the loadings in v2 split the variables into two distinct groups - those that
contribute negatively to v2 and those that contribute positively. A newer method by Zou
et al. (2006) called Sparse PCA introduces a penalty, shrinking the loading of the less
important variables in the principal components to zero, effectively reducing the amount
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of variables that are incorporated at the end of the analysis.

Now that we are working with a more reasonable number of variables, it will be more
computationally feasible to suggest regression models that fit the data and proceed with
model selection methods that we have discussed in previous chapters.

We end the discussion with a final note on PCR. Throughout the chapter, we have
assumed that the principal components that explain the most variance will be the most
crucial in our regression problem. However, this may not always be the case. More-
over, since we only performed PCA on the explanatory variables in the first step, it is
clear that there is no information from the response variable being used in this pro-
cess. Kawano et al. (2018) addresses this issue through a one-stage procedure known as
sparse principal component regression for generalized linear models (SPCR-glm) which
introduces a basic loss function that combines the regression loss and the PCA loss.
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Chapter 7

Conclusion

In this report, we explored the subject of Bayesian model selection and in particular the
computation of the model evidence, which lies at the centre of this problem alongside
the Bayes factor. We investigated a selection of methods aimed at estimating the model
evidence. It is clear that some of the estimators such as the basic Monte Carlo estimator
relied on simpler identities and formulas, which often resulted in less accurate outcomes
when applied to the examples in Chapters 4 & 5. However, some of the methods dis-
cussed, such as the bridge sampling estimator, encompassed a more intensive set up
but have led to estimates of a higher degree of accuracy. We also discussed some of the
practical considerations that must be addressed when dealing with real-world data, high-
lighting techniques such as PCR and the newer sparse PCR, which can simplify complex
data sets. The exploration of model evidence methods included a newer method in the
field which utilised the Fourier transform in its set up. It is important to note that the
continued emergence of newer methods highlights the dynamic and evolving nature of
Bayesian model selection, where progress may lead to methods with increased accuracy
and efficiency in the future.

Finally, for reference, the code used throughout this report to implement the meth-
ods in Chapters 4 & 5 as well as for PCR in chapter 6 the can be found through this
link.
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