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Abstract. We calculate the alternation number of torus knots with braid
index 4 and less. For the lower bound, we use the Upsilon-invariant recently

introduced by Ozsváth, Stipsicz, and Szabó. For the upper bound, we use

a known bound for braid index 3 and a new bound for braid index 4. Both
bounds coincide, so that we obtain a sharp result.

1. Introduction

Kawauchi introduced the alternation number alt(K) of a knot K—the minimal
number of crossing changes needed to turn a diagram of K into the diagram of an
alternating knot [14]. Our main result determines the alternation number for all
torus knots with braid index 4 or less.

Theorem 1. If K is a torus knot of braid index 3 or 4, then alt(K) = b 1
3g(K)c.

In other words, for all positive integers n, we have

alt(T3,3n+1) = alt(T3,3n+2) = alt(T4,2n+1) = n.

The proof of Theorem 1 consists of two parts. We use Ozsváth, Stipsicz, and
Szabó’s Υ-invariant [17] to improve previously known lower bounds for the alter-
nation number. The necessary upper bounds are provided by an explicit geometric
construction in the case of braid index 4, and by Kanenobu’s bound of [12] for braid
index 3.

Let us put Theorem 1 in context. Calculation of the alternation number for
general knots is difficult; even for small crossing knots, say 12 or less crossings, for
which many invariants are calculated (compare [5]), the alternation number appears
to be unknown; compare also Jablan’s work which determines many small crossing
knots to have alternation number one [11]. Many knot knot invariants, including
Floer theoretic invariants, have a particularly simple behavior for alternating knots.
Hence it is natural to study the alternation number which can be understood as
a ‘distance’ from alternating knots, and in this sense it is analogous to the better
known unknotting number.

We focus on the natural and well-studied torus knots, which are arguably one
of the simplest classes of knots and typically non-alternating. Their symmetry and
periodic knot diagram representations allow for treatment of infinite families rather
than case-by-case treatment. Also, torus knots are L-space knots, that is they are
particularly simple from Heegaard-Floer theory point of view and, in particular, the
Υ-invariant can be calculated combinatorially; compare Section 2. Let us address
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the alternation number of torus knots by considering them ordered by the braid
index:

Torus knots with braid index 2 are alternating; in other words, their alterna-
tion number is zero. For torus knots with braid index 3, our result is a slight
improvement on previous work of Kanenobu. In [12], he established that

alt(T3,3n+1) = alt(T3,3n+2) = n

for even positive integers n, whereas for odd integers n he is left with the ambiguity
that

alt(T3,3n+1), alt(T3,3n+2) ∈ {n− 1, n}.
For torus knots of braid index 4, Kanenobu established

n ≤ alt(T4,2n+1) ≤ 3

2
n and n− 1 ≤ alt(T4,2n+1) ≤ 3

2
n− 1

2

for even and odd n, respectively [12]. Therefore, Theorem 1 improves both the
previously existing lower and upper bound.

The question whether all positive integers appear as alternation numbers of torus
knots has been considered before. This is a natural question given the partial re-
sults found by Kanenobu [12]. Theorem 1 answers this question in the positive.

A related knot invariant is the dealternating number dalt(K) of a knot. This
number is the minimal number of crossing changes that one needs for turning a
diagram of K into an alternating diagram. Clearly,

alt(K) ≤ dalt(K)

for all knotsK. The dealternating number might appear less appealing at first sight.
However, there exists the following interesting connection to quantum topology, due
to Asaeda and Przytycki (reproved by Champanerkar-Kofman in [6] with a spanning
tree model for Khovanov homology): for all knots K,

width(Kh(K))− 2 ≤ dalt(K), (1)

where Kh denotes the unreduced Khovanov homology [3], and width(Kh(K)) de-
notes the number of δ-diagonals with δ-grading greater or equal the lowest δ-grading
on which the Khovanov homology has support and less than or equal the highest
δ-grading on which Khovanov homology has support. The inequality (1) can be
used to show that the alternation number differs from the dealternating number in
general. For instance, any Whitehead double WK of a (non-trivial) knot K has al-
ternation number 1, while width(Kh(K)) is in general larger than 3 for Whitehead
doubles.

Using Turner’s calculation of width(Kh) for torus knots of braid index three [22],
Abe and Kishimoto used inequality (1) to calculate the dealternating number for
torus knots with braid index 3. However, the width width(Kh) is unknown for
torus knots of braid index 4. In fact, by work of Benheddi, one has n + 2 ≤
width(Kh(T4,2n+1)), see [4], and, conjecturally, this is an equality.

Question. Does Theorem 1 also hold for the dealternating number? In other words,
are there geometric constructions similar to the ones provided below, that show
dalt(T4,2n+1) = alt(T4,2n+1) = n?

A positive answer would determine width(Kh(T4,2n+1)) to be n + 2. This was
part of the original motivation for the study conducted in this paper. However, it
is impossible to directly use the constructions that we presented in Section 3 below
to prove that dalt(T4,2n+1) ≤ n; compare Remark 8.
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Finally, we would like to point out that our approach of using the Υ-invariant
as a lower bound for the alternation number described in Section 2 has inspired
successful applications of the Υ-invariant in the study of knot concordances in the
context of alternating knots by Friedl, Livingston, and the third author [9].

Acknowledgements: We are greatful to Tetsuya Abe and Kengo Kishimoto for
interesting conversations and references. The third author is grateful for support
by the SFB ‘Higher Invariants’ at the University of Regensburg, funded by the
Deutsche Forschungsgesellschaft (DFG.)

2. Lower bounds for the alternation number

In [1], Abe observed that

|s(K)− σ(K)|
2

≤ alt(K)

for all knots K, where s and σ denote Rasmussen’s invariant [19] and Trotter’s
signature [21], respectively. In fact, this lower bound works similarly with other
knot invariants:

Proposition 2. Let ψ1 and ψ2 be any real-valued knot invariants such that

(i) for all alternating knots ψ1 and ψ2 are equal and
(ii) if K+ and K− are two knots such that K− is obtained from K+ by changing

a positive crossing to a negative crossing, then

ψi(K−)− 1 ≤ ψi(K+) ≤ ψi(K−)

for i = 1, 2.

Then for all knots K, we have

|ψ1(K)− ψ2(K)| ≤ alt(K).

Proof. For i = 0, . . . , n, let Ki be a sequence of knots such that for i = 1, . . . , n− 1
the knot Ki+1 results from Ki through a crossing change, and such that K0 is
alternating. Induction on n shows that the difference |ψ1(Kn)−ψ2(Kn)| can be at
most n. �

For Ozsváth and Szabó’s τ -invariant the negative ψ1(K) = −τ(K) satisfies (ii)
from Proposition 2; see [18]. Similarly, the invariant ψ2(K) = ΥK(1) = υ(K) does
satisfy (ii), and

ψ1(A) = −τ(A) = ΥA(1) = υ(A) = ψ2(A)

for all alternating knots A. Here ΥK(t) (denoted by υ(K) when t = 1) is the
real valued knot-invariant (depending piecewise-linearly on a parameter t in [0, 2])
introduced by Ozsváth, Stipsicz, and Szabó [17]. Therefore, we get the following.

Corollary 3. For all knots K, we have

|τ(K) + υ(K)| ≤ alt(K) .

We note that other invariants rather than τ can be used and will yield the same
lower bounds for the alternation number on torus knots; for example, Rasmussen’s
s-invariant or any concordance invariant with the properties described in [15, The-
orem 1]. The τ -invariant seems to be the canonical choice to work with since Υ is

a generalization of it: indeed, one has −τ = limt→0
Υ(t)
t ; see [17, Proposition 1.6].

Proposition 4. For all positive integers n, we have the following bounds for the
alternation number.

n ≤ alt(T3,3n+1), n ≤ alt(T3,3n+2), and n ≤ alt(T4,2n+1).
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Proof. This is immediate from calculating |τ +υ|. On positive torus knots τ equals
the three-genus:

τ(Tp,q) =
(p− 1)(q − 1)

2
,

for all coprime positive integers p and q; see [18, Corollary 1.7]. For torus knots
(and more generally L-space knots) Ozsváth, Stipsicz, and Szabó [17, Theorem 1.15]
provided a procedure to calculate Υ(t) from the Alexander polynomial. With this
procedure one calculates

υ(T3,3n+1) = −2n = υ(T4,2n+1) and υ(T3,3n+1) = −2n− 1,

for all n; compare [8, Proposition 28], where this elementary calculation is provided.
The values for τ and υ combined yield

|τ(T3,3n+1) + υ(T3,3n+1)| = 3n− 2n = n

|τ(T3,3n+2) + υ(T3,3n+2)| = 3n+ 1− 2n− 1 = n

|τ(T4,2n+1) + υ(T4,2n+1)| = 3n− 2n = n.

This concludes the proof since |τ + υ| is a lower bound for the alternation number
by Corollary 3. �

3. Upper bounds for the alternation number

For torus knots with braid index 3, upper bounds for the alternation number
where calculated by Kanenobu [12]; compare also [7], where this is recovered from
a different perspective. Abe and Kishimoto showed that the same upper bounds
hold for the dealternating number [2].

Proposition 5 ([12, Theorem 8],[2, Theorem 2.5]). For all positive integers n,

alt(T3,3n+1) ≤ dalt(T3,3n+1) ≤ n and alt(T3,3n+2) ≤ dalt(T3,3n+2) ≤ n.

We provide new upper bounds for torus knots of braid index 4.

Proposition 6. Let n ≥ 2 be an integer. There is a diagram of the torus knot
T4,2n+1 such that n crossing changes yield the knot T2,2n+1 #T2,2n+1. In particular,

alt(T4,2n+1) ≤ n.

Remark 7. Similarly, one can show that for n ≥ 2 there is a diagram of the torus
link T4,2n such that there are n crossing changes which turn this torus link into an
alternating link.

Remark 8. It is impossible that the diagram for T2,2n+1 #T2,2n+1 provided by
Proposition 6 is alternating. Indeed, assume towards a contradiction that there
is a diagram D1 for the torus knot T4,2n+1 such that n crossing changes yield an
alternating diagram D2 for the knot T2,2n+1 #T2,2n+1. We may assume that D1

and D2 are reduced diagrams. Since the minimal crossing number of T4,2n+1 is
6n+ 3, the diagram D1, and thus also D2, has at least 6n+ 3 crossings. However,
T2,2n+1 #T2,2n+1 has an alternating diagram with 4n+ 2 crossings, which contra-
dicts Tait’s conjecture that two reduced alternating diagrams for the same knot
have the same number of crossings [13, 16, 20].

Proof of Proposition 6. We think of the torus knots T4,2n+1 as closures of braids.
Using braid relations, or equivalently using isotopies of the closure, we see that a
‘full twist’ can be isotoped according to Figure 1.

Similarly, a braid of three half twists can be isotoped according to Figure 2. We
notice a slight asymmetry in the two ‘bands’ in this case.

We observe that these isotopies are compatible with iterations of full twists
respectively multiplication of the braids corresponding to full twists. The result
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Figure 1. These are identical braids corresponding to isotopic
diagrams relative to the ends. The left hand side is standard, the
right hand side description will be used later on.

Figure 2. Isotopy corresponding to three half twists.

will be two bands which, when seen from the top to the bottom, both first twist,
and then cross each other as planar bands.

Now in each full twist, we can find two crossing changes in the region where
the bands cross with a geometric significance. Figure 3 below shows how we can
arrange for the two outer strands to pass in front of the two inner. Similarly,
Figure 4 shows how we can arrange for the two inner strands to pass in front of the
two outer strands.

Iterating this, we see that with n crossing changes, we transform the braid cor-
responding to the torus knot T4,2n+1 to the braid on the left hand side of Figure 5
if n is even, and to the braid on the right hand side if n is odd. In the first case, we
have used the crossing changes according to Figure 3, in the second case we have
used those of Figure 4.

Finally we observe that the braid closure of this is the connected sum

T2,2n+1 #T2,2n+1.
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1 2 3 4

Figure 3. Two
crossing changes
bringing the ou-
ter two strands
(number 1 and
4) to the front

1 2 3 4

Figure 4. Two
crossing changes
bringing the in-
ner two strands
(number 2 and
3) to the front

Figure 5. After n crossing changes, we obtain the braid on the
left for n even, and the one on the right for n odd, starting from
T4,2n+1.

To see this, we must distinguish the cases n even and n odd. If n is even, we start
with the braid closure of the left hand diagram in Figure 5. We can flip the two
inner strands (corresponding to strands 2 and 3 in Figure 3) in the braid closure
to the top, passing behind everything else; see Figure 6. Notice that this flipping
yields a new crossing between the two flipped strands.

The case where n is odd is entirely analogous. In the braid closure of the right
hand braid of Figure 5, we can flip the outer two strands (corresponding to strands
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Figure 6. An isotopy from the braid closure to the connected sum
T2,2n+1 #T2,2n+1. The two inner strands pass behind everything
else.

1 and 4 in Figure 4) behind everything else. This also resolves the apparent asym-
metry in the top of the braid we have started with.

�

4. Proof of the main result

Theorem 1 is an immediate consequence of Propositions 4, 5, and 6. The re-
formulation that alt(K) = b 1

3g(K)c is an easy computation that follows from the
formula of the genus of a torus knot, given by

g(Tp,q) =
(p− 1)(q − 1)

2
,

for p, q > 1 coprime integers.

5. Perspectives

It is natural to wonder what the alternation numbers for torus knots of higher
braid index are. Even the asymptotic behavior is unclear. To make this precise we
set

ap = lim sup
n→∞

alt(Tp,i+np)

n

for p ≥ 2, 0 ≤ i < p. It follows from [7] that one has

|alt(Tp,k)− alt(Tp,l)| ≤
p− 1

2
|k − l| ,
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showing that the above limit superior is independent of i. In fact, we suspect that
this limit superior is a limit since any geometric constructions that realize the limit
superior and is periodic (such as what we found for the case of torus knots of braid
index 4) would establish the existence of the limit.

In this setup, Kanenobu’s lower bound [12], which he obtained using Abe’s lower
bound [1] and Gordon, Litherland and Murasugi’s signature calculation [10], yields

(p− 1)2

4
≤ ap for p odd, and

(p− 2)p

4
≤ ap for p even.

(2)

In fact, using the |τ + υ|-bound from Section 2, one can recover (2). In particular,
using the υ-invariant, one does not get a better asymptotic lower bound than Abe’s
bound using the signature and the τ -invariant. The same bounds hold for the limit
inferior.

Kanenobu’s upper bound on the alternation number of torus knots of braid index
3 (compare Proposition 5) shows that (2) is an equality for p ≤ 3 and our main
result Theorem 1 shows that (2) is an equality for p = 4 as well. The values ap
for p ≥ 5 seem out of reach at the moment. However, maybe the geometrically
constructed upper bounds generalize such that in the future the following question
can be answered in the positive.

Question. Is (2) an equality for all positive integers p?

As a further hint in this direction, we notice that the lower bound in (2), for
p even, is equal to the number of ‘band crossings’ in a full twist for a suitable
generalization of Figure 3. For odd p ≥ 5, we briefly comment on the case p =
5, the smallest for which ap remains unknown. While we are able to determine
the alternation number of T (5, 6) to be 4 (explicit manipulations allow to make
T (5, 6) alternating with four crossing changes, which agrees with the lower bound
|τ(T (5, 6)) + υ(T (5, 6))| = 10− 6 from Corollary 3.), alt(T (5, n)) remains unknown
for all n ≥ 7 and coprime to 5. Even asymptocally, combining the lower bounds (2)
and the upper bounds Kanenobu provides in [12, Corollary 28], one only finds
4 ≤ ap ≤ 6.
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