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Abstract. We use instanton gauge theory to prove that if Y is a closed,
orientable 3-manifold such that H1(Y ;Z) is nontrivial and either 2-torsion
or 3-torsion, and if Y is neither #rRP3 for some r ≥ 1 nor ±L(3, 1), then
there is an irreducible representation π1(Y ) → SL(2,C). We apply this to
show that the Kauffman bracket skein module of a non-prime 3-manifold has
nontrivial torsion whenever two of the prime summands are different from
RP3, answering a conjecture of Przytycki (Kirby problem 1.92(F)) unless
every summand but one is RP3. As part of the proof in the 2-torsion case, we
also show that if M is a compact, orientable 3-manifold with torus boundary
whose rational longitude has order 2 in H1(M), then M admits a degree-1
map onto the twisted I-bundle over the Klein bottle.

1. Introduction

Given a 3-manifold Y , the SL(2,C) character variety of the fundamental group
π1(Y ) contains a lot of information about the geometry and topology of Y . For
example, one can use the characters of irreducible representations to understand
something about the hyperbolic structure on Y , if it exists, or to find incom-
pressible surfaces in Y . Before doing so, however, it is natural to ask whether
there are any irreducible representations in the first place. The third author
recently used instanton gauge theory to say that in many cases, the answer is
yes.

Theorem 1.1 ([Zen18, Theorem 9.4]). Let Y be an integer homology 3-sphere.
If Y is not homeomorphic to S3, then there is an irreducible representation
π1(Y )→ SL(2,C).

The main results of this paper extend Theorem 1.1 to all manifolds Y for
which H1(Y ;Z) is either 2-torsion or 3-torsion.

Theorem 1.2. Let Y be a closed, orientable 3-manifold with H1(Y ;Z) ∼= (Z/2Z)r

for some integer r ≥ 1. If Y is not homeomorphic to #rRP3, then there is an
irreducible representation π1(Y )→ SL(2,C).

Theorem 1.3. Let Y be a closed 3-manifold such that H1(Y ;Z) ∼= (Z/3Z)r for
some r ≥ 1. If Y is not homeomorphic to ±L(3, 1), then there is an irreducible
representation π1(Y )→ SL(2,C).

Although we will mostly describe applications of Theorem 1.2, it turns out
that Theorem 1.3 is slightly easier to prove. In fact, the analogous result when
H1(Y ;Z) is p-torsion for an odd prime p follows from the case where H1(Y ;Z)
is cyclic of order p; this is detailed in Theorems 9.1 and 9.10. However, it is not
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always true that if H1(Y ;Z) ∼= Z/pZ, then either Y is a lens space or there must
be a representation π1(Y ) → SL(2,C) with non-abelian image; a construction
due to Motegi [Mot88] (see Remark 9.2) provides counterexamples for many
primes, starting with p = 37.

In the following subsections we will provide some applications of Theorem 1.2
to character varieties and skein modules of reducible 3-manifolds, and then we
will give an outline of its proof.

1.1. SL(2,C) character varieties. Given a 3-manifold Y , we can define its
SL(2,C) representation variety to be

R(Y ) = Hom(π1(Y ),SL(2,C)).

We will say that Y is SL(2,C)-reducible if every ρ ∈ R(Y ) is reducible, or
SL(2,C)-abelian if every ρ ∈ R(Y ) has abelian image. If Y is SL(2,C)-abelian
then it is SL(2,C)-reducible, though the converse need not be true.

The representation variety R(Y ) carries an action of SL(2,C) by conjugation,
and the SL(2,C) character variety of Y is the GIT quotient

X (Y ) = R(Y ) // SL(2,C).

Culler and Shalen [CS83] showed that one can use ideal points of curves in
X (Y ) to find incompressible surfaces in Y . In the opposite direction, one can
ask whether the existence of incompressible surfaces in Y forces dimCX (Y ) to
be positive, and Motegi [Mot88] showed that this is not always true, but for
essential spheres we have the following.

Proposition 1.4. Suppose that for i = 1, 2 there are representations

ρi : π1(Yi)→ SL(2,C)

whose images are not central (i.e., not contained in {±1}). Then dimCX (Y1#Y2)
is positive.

Proof. We write π1(Y1#Y2) ∼= π1(Y1) ∗ π1(Y2) and consider the map SL(2,C)→
R(Y1#Y2) given by A 7→ ρ1 ∗ (Aρ2A

−1). This has positive-dimensional image,
even in the quotient X (Y1#Y2). �

Combining this observation with Theorem 1.2, we readily deduce the following.

Theorem 1.5. If Y1 and Y2 are closed, oriented 3-manifolds, and neither Y1 nor
Y2 is homeomorphic to #rRP3 for any r ≥ 0, then dimCX (Y1#Y2) is positive.

Proof. If Yi 6∼= #rRP3 for any r, then we can always find a representation ρi :
π1(Yi)→ SL(2,C) with non-central image. Indeed, if H1(Yi;Z) is 2-torsion then
Theorem 1.2 applies; if it is not 2-torsion, then we can take ρi to factor through
H1(Yi;Z) and send a summand of the form Z or Z/nZ (n ≥ 3) to a non-central
subgroup of SL(2,C). Now we apply Proposition 1.4. �

We remark that the condition Yi 6∼= #rRP3 is necessary in Theorem 1.5, be-
cause we have

X (Y#RP3) ∼= X (Y )× {±1}
and so taking connected sums with RP3 cannot change the dimension of X (Y ).
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1.2. Skein modules. The Kauffman bracket skein module, defined by Przytycki
[Prz91] and Turaev [Tur88], is a Z[A±1]-module S(Y ) associated to any oriented
3-manifold Y . Relatively little is known about the structure of this invariant
in general; it was only recently proved by Gunningham, Jordan, and Safronov
[GJS23] that if Y is a closed, oriented 3-manifold then S(Y ) is finite-dimensional
over Q(A). Przytycki conjectured the following.

Conjecture 1.6 ([Kir97, Problem 1.92(F)]). If Y ∼= Y1#Y2, where neither of
the Yi is homeomorphic to S3 with some number of disjoint balls removed, then
S(Y ) has non-trivial torsion.

By contrast, we know that S(S3) ∼= Z[A±1] is freely generated by the empty
link [Prz91, Theorem 12], while for lens spaces Hoste and Przytycki [HP93]
showed that S(L(p, q)) is a free module on bp/2c+ 1 generators. (On the other
hand, a non-separating S2 always leads to torsion in S(Y ), by a version of Dirac’s
belt trick [Prz99, §4].) We remark that removing a ball from Y , or conversely
filling in an S2 component of ∂Y with a ball, does not change S(Y ) up to
isomorphism [Prz91, Proposition 4(d)].

We note the relevance of Theorem 1.5 to Conjecture 1.6 via work of Bullock
[Bul97, Corollary 1], who showed that if dimCX (Y ) ≥ 1 then S(Y ) is infinitely
generated. Indeed, Przytycki [Prz99, Theorem 4.2(b)] proved that Conjecture 1.6
holds for a connected sum Y = Y1#Y2 if for each i, there is a representation

ρi : π1(Yi)→ SL(2,C)

with non-central image. (See also [Prz97, Theorem 4.4].) We have therefore
shown the following, exactly as in Theorem 1.5.

Theorem 1.7. Let Y be an oriented 3-manifold, and suppose that we can write

Y ∼= Y1#Y2

where neither Y1 nor Y2 is homeomorphic to some #rRP3 (r ≥ 0) minus a
disjoint union of balls. Then S(Y ) has non-trivial torsion.

In particular, the following conjecture would now imply Conjecture 1.6.

Conjecture 1.8. Suppose that Y is a closed oriented 3-manifold that is not
homeomorphic to S3. Then S(Y#RP3) has non-trivial torsion.

We note that at least the case Y = RP3 of Conjecture 1.8 is known: the
Kauffman bracket skein module of RP3#RP3 was completely determined by
Mroczkowski [Mro11], who showed in [Mro11, Proposition 4.17] that S(RP3#RP3)
does contain torsion.

1.3. Outline of the proof of Theorem 1.2. Just as for SL(2,C), we will
say that Y is SU(2)-abelian if every ρ : π1(Y ) → SU(2) has abelian image; in
contrast with the SL(2,C) case, this is the same as being SU(2)-reducible. We
will use gauge theory to show that many of the 3-manifolds under consideration
are not SU(2)-abelian, which means that they are not SU(2)-reducible and hence
not SL(2,C)-reducible either.

With this in mind, we let Y be an SL(2,C)-reducible 3-manifold, and we
suppose that H1(Y ;Z) ∼= (Z/2Z)r for some r ≥ 0. We can assume without
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loss of generality that Y is prime, since otherwise each of its summands also is
SL(2,C)-reducible with 2-torsion homology.

Theorem 1.2 follows quickly for several large classes of 3-manifolds: Thurston
proved that closed hyperbolic 3-manifolds are never SL(2,C)-reducible [CS83,
Proposition 3.1.1], and among the prime Seifert fibered 3-manifolds with 2-
torsion homology, work of the second and third author [SZ22] implies that among
these only RP3 is SU(2)-abelian. Thus if Y 6∼= RP3 is SL(2,C)-reducible, then we
use the geometrization theorem to conclude that Y contains an incompressible
torus, and this torus must be separating since b1(Y ) = 0.

We now decompose Y along this torus T , writing

Y = M1 ∪T M2

where each Mi is compact and irreducible with incompressible torus boundary.
Then we can write the SU(2) representation variety of Y as a fiber product

R(Y ) = R(M1)×R(T ) R(M2),

so it suffices to find representations ρj : π1(Mj) → SU(2) for j = 1, 2 whose
restrictions to π1(T ) coincide. In fact, we need only find these up to conjugation,
so we end up studying the images

i∗j : X(Mj)→ X(T )

of the respective SU(2) character varieties in the SU(2) character variety of the
torus, known as the pillowcase orbifold. We will generally aim to show that these
images intersect, since the points of intersection correspond to representations
π1(Y )→ SU(2); if we know that one of the images at such a point corresponds
to an irreducible representation of π1(Mj), then the representation of π1(Y ) will
also be irreducible, as desired.

Each Mi comes equipped with a distinguished peripheral curve up to orienta-
tion, namely the rational longitude λi: this generates the kernel of the inclusion
map H1(∂Mj ;Q)→ H1(Mj ;Q), but may be either zero or torsion in H1(Mj ;Z).
If λ2 is nullhomologous in M2 then there is a standard degree-1 map that pinches
M2 onto a solid torus (see Proposition 4.2), and hence there is a degree-1 map

Y →M1(λ2)

onto the Dehn filling of M1 along the slope λ2 ⊂ T . This induces a surjection
π1(Y ) → π1(M1(λ2)), so if Y is SL(2,C)-reducible then M1(λ2) must be as
well. Similarly, if [λ1] = 0 in H1(M1;Z) then we deduce that M2(λ1) is also
SL(2,C)-reducible.

By choosing an appropriate Dehn filling of Mj we may write it as the com-
plement of a nullhomologous knot Kj in a closed 3-manifold Yj , with meridian
µj ⊂ ∂Mj , such that each H1(Yj ;Z) is 2-torsion and one of the following applies:

(1) both of the Kj are nullhomologous, with longitudes λj , and we glue

∂M1
∼=−→ ∂M2 so that

(a) µ1 ∼ λ2 and λ1 ∼ µ2, or
(b) µ1 ∼ µ−1

2 and λ1 ∼ µ2
2λ2;
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(2) or without loss of generality [λ1] is 2-torsion in H1(M1;Z), and then

[λ2] = 0 in H1(M2;Z). In this case we glue ∂M1
∼=−→ ∂M2 so that µ1 ∼ λ2

and λ1 ∼ µ2.

(This list is shown to be exhaustive in §7.1 and §7.2.) Cases 1a and 2 are handled
similarly, so we will summarize the arguments in cases 1a, 2, and 1b in that order
below.

Case 1a (Theorem 5.1): The above discussion says that each of

Y1 = M1(µ1) = M1(λ2),

Y2 = M2(µ2) = M2(λ1)

is SL(2,C)-reducible. In particular we can follow work of Lidman, Pinzón-
Caicedo, and the third author [LPCZ23] essentially verbatim to construct an
irreducible representation ρ : π1(Y )→ SU(2), giving a contradiction. The rough
idea is that by using work of [Zen18], we know that each of the images i∗j

(
X(Mj)

)
must contain a closed essential curve in the twice-punctured pillowcase, and the
gluing map guarantees that these two curves will intersect.

The only change from [LPCZ23] is that we replace Floer’s instanton homology
for homology 3-spheres with the irreducible instanton homology of each Yj . This
invariant is generated as a complex by gauge equivalence classes of irreducible
flat connections on the trivial SU(2)-bundle P → Yj , and the theory works in
exactly the same way when H1(Yj ;Z) is 2-torsion, because the reducible flat
connections on P all have central holonomy. See §2 for further discussion.

Case 2 (Theorem 5.2): This is similar to case 2, but a priori we do not know
that Y2 is SL(2,C)-abelian: we cannot pinch M1 onto a solid torus, because
the class [λ1] ∈ H1(M1;Z) is 2-torsion rather than zero. In §4, we construct a
replacement that should be of independent interest.

Proposition 1.9 (Proposition 4.5). Let M be a compact, oriented 3-manifold
with torus boundary, and suppose that the rational longitude λM ⊂ ∂M has order
2 in H1(M). Then there is a degree-1 map

f : M → N,

where N is the twisted I-bundle over the Klein bottle, such that f restricts to a
homeomorphism ∂M → ∂N sending λM to a rational longitude λN ⊂ ∂N .

Using Proposition 1.9, we see that N∪TM2 is SU(2)-abelian if Y is; this is enough
to deduce that Y2 is SU(2)-abelian and understand the image i∗2

(
X(M2)

)
⊂ X(T )

exactly as in case 1a. This leads us to an irreducible SU(2) representation of
π1(N ∪T M2), and hence of π1(Y ).

Case 1b (Theorem 6.1): Here the λj are both nullhomologous again, but the
analogous degree-1 maps from Y have targets (Yj)2(Kj) rather than Yj . This
means that the 2-surgeries on Kj are SL(2,C)-reducible, and if one of them is
toroidal then we may replace Y with it and repeat. We apply the following
theorem of Rong [Ron92] to say that this process must terminate after finitely
many iterations:
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Theorem 1.10 ([Ron92, Theorem 3.9]). Suppose we have an infinite sequence
of closed, oriented 3-manifolds and degree-1 maps between them, of the form

M1
f1−→M2

f2−→M3
f3−→ · · · .

Then the map fi is a homotopy equivalence for all sufficiently large i.

(We omit Rong’s hypothesis that the Mi belong to a set Gc of 3-manifolds sat-
isfying the geometrization conjecture, as this is now a theorem.) Thus we can
freely assume that the SL(2,C)-reducible 2-surgeries are atoroidal.

Now we must have (Yj)2(Kj) ∼= #njRP3 for some nj . With this simplification
at hand, we prove in Theorem 6.1 that such Y cannot be SU(2)-abelian. The
key idea is to examine the subset

R′j = {ρ : π1(Yj \N(Kj))→ SU(2) | ρ(µ2
jλj) = −1}

of each representation variety R(Mj). These ρ do not descend to representations
of

π1((Yj)2(Kj)) ∼= π1(#njRP3) ∼= (Z/2Z)∗nj ,

but their adjoint representations do, and we can understand the representation
variety Hom((Z/2Z)∗nj , SO(3)) explicitly enough to see that each path compo-
nent of R′j contains an abelian representation. This tells us in Proposition 6.4

that for each j, the image i∗j
(
X(Mj)

)
⊂ X(T ) meets the line corresponding to

the condition ρ(µ2
jλj) = −1 in a connected arc. It also contains an essential

closed curve as in the previous cases, as well as the image of this curve under an
involution of X(T ). All of this ensures that the images i∗j (X(Mj)) are too large
to avoid each other, and where they intersect we get an irreducible representation
after all, completing the proof.

Remark 1.11. If Y is toroidal and H1(Y ;Z) is 2-torsion then one might expect
there to be an irreducible representation π1(Y )→ SU(2), as shown for homology
spheres in [LPCZ23, BS22], but we do not prove this here. The issue is that
in case 1b, we only get an SU(2) representation once we have reduced to the
case where π1((Yj)2(Kj)) is generated by elements of order 2. The reduction
process gets stuck if (Yj)2(Kj) is hyperbolic: in this case the degree-1 map
Y → (Yj)2(Kj) tells us that Y is not SL(2,C)-reducible and we stop there, but
we cannot conclude that Y is not SU(2)-abelian because we do not know whether
(Yj)2(Kj) is.

Remark 1.12. The proof of Theorem 1.3, carried out in Sections 9 and 10, is
similar enough to that of Theorem 1.2, so we will not outline it here. We note
only that it can be reduced to an analogue of Case 1b, namely Theorem 10.2,
whose analysis is simpler because (unlike #rRP3) a nontrivial connected sum of
order-3 lens spaces is not SL(2,C)-reducible.

Organization. In Section 2 we discuss the needed background from instanton
Floer homology, including some non-vanishing results; this includes a general-
ization of the usual surgery exact triangle, Theorem 2.5, the details of which
we postpone to Appendix A. Then in Section 3 we use this to investigate the
SU(2) character varieties of knot complements and their images in the pillowcase,
the SU(2) character variety of T 2. In Section 4 we study the twisted I-bundle
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over the Klein bottle in depth, and construct “pinch” maps onto it from knot
manifolds with rational longitudes of order 2 (Proposition 4.5).

Building on this, Sections 5 and 6 prove the existence of irreducible SU(2)-
representations for various toroidal 3-manifolds built by gluing together the com-
plements of knots in 3-manifolds whose homology is 2-torsion; these are Theo-
rems 5.1, 5.2, and 6.1, respectively. Notably, in Subsection 5.2 we apply the
pinch maps of Proposition 4.5 to study the case where one of the knots has a
homologically essential rational longitude.

Finally, in Section 7 we prove that if Y is a toroidal 3-manifold whose first
homology is p-torsion for some prime p, then Y can be decomposed into a union
of knot complements in one of a few standard ways; when p = 2 these are
precisely the forms studied in Sections 5 and 6. Thus allows us to complete the
proof of Theorem 1.2, which we do in Section 8. In Section 9 we study the case
where H1(Y ) is instead p-torsion for some odd prime p > 2, and we conclude by
applying this in Section 10 to prove Theorem 1.3.

Acknowledgments. We thank Ali Daemi, Tye Lidman, and Mike Miller Eis-
meier for helpful conversations about the irreducible instanton homology of 3-
manifolds Y such that H1(Y ) is 2-torsion. We also thank Rhea Palak Bakshi and
Renaud Detcherry for discussions about the relation between character varieties
and torsion in skein modules. We are grateful to the Max Planck Institute for
Mathematics for hosting all three of us for the bulk of this work.

2. Instanton Floer homology

Let I∗(Y ) denote Floer’s instanton homology [Flo88], associated to any integer
homology 3-sphere, and Iw∗ (Y ) the variant assigned to a Hermitian line bundle
w → Y such that c1(w) has odd evaluation on some homology class. (This means
that we fix a U(2)-bundle E → Y and an isomorphism ∧2E ∼= w, and let Iw∗ (Y )
be the SO(3) instanton homology of the admissible bundle ad(E)→ Y , following
[Don02, §5.6].) Kronheimer and Mrowka proved the following important result
en route to their proof of the property P conjecture.

Theorem 2.1 ([KM04b]). Let K ⊂ S3 be a nontrivial knot. Then Iw∗ (S3
0(K)) 6=

0.

Here, we cap off a Seifert surface Σ for K to get a closed surface Σ̂ generating
H1(Y0(K)) ∼= Z, and then we let w → Y0(K) be the unique non-trivial line

bundle with 〈c1(w), [Σ̂]〉 = 1. (In general we will write w for both the line
bundle and its first Chern class, and this should not cause any confusion.) In
fact, we have the following more general nonvanishing result.

Theorem 2.2 ([KM10, Theorem 7.21]). Let Y be an irreducible 3-manifold, and
suppose that there is a line bundle w → Y and an embedded surface R ⊂ Y such
that w ·R = 1. Then Iw∗ (Y ) 6= 0.

Theorem 2.1 was crucial in the proof of Theorem 1.1 in [Zen18]. Lidman,
Pinzón-Caicedo, and Zentner [LPCZ23, Theorem 1.3] used Theorem 2.2 to gen-
eralize this to knots K ⊂ Y with irreducible, boundary-incompressible exterior,
proving for such K that if Y is an integer homology sphere with I∗(Y ) = 0 then
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Iw∗ (Y0(K)) 6= 0, and they used this to produce SU(2) representations for toroidal
homology spheres. We would like to further generalize it to other Y in order to
prove Theorem 1.2, but the problem is that I∗(Y ) does not make sense unless Y
is a homology sphere.

In this section we will discuss a version of Floer’s instanton homology for 3-
manifolds whose first homology is 2-torsion. This does not seem to have appeared
explicitly in the literature in this form, but we make no claim of originality
here; these ideas appear in recent work of Daemi, Lidman, and Miller Eismeier
[DLME22, §2.1], and have been elaborated on in much greater detail by Daemi
and Miller Eismeier [DME22] under the name of irreducible instanton homology.

By way of motivation, Floer originally defined I∗(Y ) for a homology sphere
Y [Flo88] in terms of a chain complex generated by gauge equivalence classes of
irreducible flat connections on the trivial SU(2)-bundle P → Y . This construc-
tion ignores the trivial connection θ completely, except as a way of lifting the
relative Z/8Z grading to an absolute one. The reason that we can safely omit θ
is that it has central holonomy.

As an example of why this matters, we recall that d2 = 0 because the matrix
coefficients 〈d2a, b〉 count pairs of rigid flowlines, meaning ASD connections on
R× P belonging to 0-dimensional moduli spaces, of the form

(A1, A2) ∈ M̂0(a, c)× M̂0(c, b)

as c ranges over generators of the chain complex. This count is meant to equal
the number of points in the boundary of the compactification of a 1-dimensional
moduli space M̂1(a, b), which is zero, and indeed this is the case as long as no

sequence in M̂1(a, b) limits to a broken flowline a → θ → b that breaks at the
omitted connection θ. We rule out this problematic case by observing that rigid
flowlines a → θ and θ → b can only be glued into a moduli space M̂(a, b) of
dimension at least 4, because the gluing map in this case involves an extra SO(3)
factor coming from the isotropy group of θ. The proof that I∗(Y ) is an invariant
similarly only relies on the fact that θ is central.

Having said this, we can define I∗(Y ) for manifolds with H1(Y ;Z) ∼= (Z/2Z)r

for some r ≥ 0, by repeating the material in [Don02, §5] essentially verbatim.
We need only observe that all of the reducible flat connections on P have central
holonomy, due to the fact that every homomorphism (Z/2Z)r → SU(2) has
image in the center {±1}.

Theorem 2.3. Let Y be a closed, oriented rational homology 3-sphere, and sup-
pose that H1(Y ;Z) is 2-torsion. Then there is an irreducible instanton homology
group

I∗(Y )

defined exactly as in [Flo88, Don02]. It is the homology of a chain complex whose
generators are gauge equivalence classes of irreducible flat connections on the
trivial SU(2)-bundle P → Y , and its differential counts anti-self-dual connections
on the product R× P → R× Y .

Remark 2.4. For other rational homology spheres the story is much more com-
plicated, and we will say nothing more about it here. See [DME22, §7] for
details.
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The key property we will need from irreducible instanton homology is a surgery
exact triangle, which goes back to Floer [Flo90, BD95] for the case of knots in
homology spheres.

Theorem 2.5. Let Y be a closed, oriented 3-manifold such that H1(Y ;Z) is
2-torsion, and let K ⊂ Y be a nullhomologous knot. Then there is an exact
triangle

· · · → I∗(Y )→ Iw∗ (Y0(K))→ I∗(Y1(K))→ · · · ,
where the Hermitian line bundle w → Y0(K) has c1(w) Poincaré dual to a merid-
ian of K.

We note in Theorem 2.5 that H1(Y ) ∼= H1(Y1(K)) is 2-torsion, so Theo-
rem 2.3 says that all of the groups in the exact triangle are well-defined. The
proof of Theorem 2.5 follows an argument given by Scaduto in [Sca15], after
one checks that the relevant compactifications of moduli spaces do not include
broken flowlines with reducible connections in the middle. We discuss the details
in Appendix A.

Theorem 2.6. Let Y be a closed, oriented 3-manifold such that H1(Y ;Z) is
2-torsion, and let K ⊂ Y be a nullhomologous knot. For any n ∈ Z, there is an
exact triangle

· · · I∗(Y1/n(K))→ Iw∗ (Y0(K))→ I∗(Y1/(n+1)(K))→ · · · ,

where the Hermitian line bundle w → Y0(K) has c1(w) Poincaré dual to a merid-
ian of K.

Proof. We let Y ′ = Y1/n(K), with K ′ ⊂ Y ′ the core of this surgery. Then
H1(Y ′) ∼= H1(Y ) is 2-torsion, and 1-surgery on K ′ is the same as Dehn filling the
exterior ofK ′ along the curve µK′λK′ = (µKλ

n
K)(λK) = µKλ

n+1
K , which produces

Y1/(n+1)(K). The desired triangle is thus the result of applying Theorem 2.5 to
the pair (Y ′,K ′). �

With all of this at hand, we can now provide the desired generalization of
[LPCZ23, Theorem 1.3].

Theorem 2.7. Let Y be a closed, orientable, SU(2)-abelian 3-manifold, and
suppose that H1(Y ;Z) is 2-torsion. Let K ⊂ Y be a nullhomologous knot with
irreducible, boundary-incompressible exterior. Then Iw∗ (Y0(K)) 6= 0, where w is
Poincaré dual to a meridian of K.

Proof. We repeat the proof of [LPCZ23, Theorem 1.3] verbatim, including the
details here for convenience. Since Y is SU(2)-abelian, there are no irreducible
flat connections on the product SU(2)-bundle over Y , so I∗(Y ) = 0. Supposing
that Iw∗ (Y0(K)) = 0 as well, we apply Theorem 2.5 to get I∗(Y1(K)) = 0, and
then Theorem 2.6 with n = 1, 2, 3 in succession to get

I∗(Y1/2(K)) = I∗(Y1/3(K)) = I∗(Y1/4(K)) = 0.

Then Gordon [Gor83, Corollary 7.3] showed that Y1/4(K) ∼= Y1(K2,1), where
K2,1 denotes the (2, 1)-cable of K, so we apply Theorem 2.5 to get

Iw∗ (Y0(K2,1)) = 0.
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But Y0(K2,1) is irreducible, because it can be built by gluing two irreducible
3-manifolds – the exterior of K and the 0-surgery on the (2, 1)-cable knot in
S1×D2 – along their incompressible boundaries. Thus Iw∗ (Y0(K2,1)) is nonzero,
by Theorem 2.2, and we have a contradiction. We conclude that Iw∗ (Y0(K)) 6= 0
after all. �

3. Closed curves in the pillowcase

3.1. The pillowcase. Here we review basic facts about the pillowcase, following
[LPCZ23, §3.1–3.2]. Given a manifold Y , we define its SU(2)-representation
variety

R(Y ) = Hom(π1(Y ), SU(2)),

and let Rirr(Y ) denote the subspace consisting of irreducible representations.
(We recall that an SU(2) representation is irreducible if and only if its image
is non-abelian.) These both carry an action of SU(2) by conjugation, and we
define the character varieties

X(Y ) = R(Y )/SU(2),

X irr(Y ) = Rirr(Y )/SU(2)

as the quotients by this action. Note that we use a plain font (R, X) for the
SU(2) representation and character varieties, in contrast to the calligraphic R
and X for their SL(2,C) counterparts.

IfK is a nullhomologous knot in a 3-manifold Y , with exterior EK = Y \N(K),
then the inclusion i : ∂E(K) ↪→ E(K) induces a map

i∗ : X(EK)→ X(∂EK) ∼= X(T 2).

Letting µ, λ be a meridian–longitude basis of π1(∂EK), every representation ρ
of either π1(EK) or π1(T 2) is conjugate to one in which

ρ(µ) =

(
eiα 0
0 e−iα

)
, ρ(λ) =

(
eiβ 0
0 e−iβ

)
,

for some α, β ∈ R/2πZ, and these coordinates are almost unique: the only
ambiguity is that the representations corresponding to (α, β) and (−α,−β) are
conjugate to each other. Thus the pair µ, λ leads to an identification

X(T 2) =
(R/2πZ)× (R/2πZ)

(α, β) ∼ (−α,−β)
,

and this quotient orbifold is called the pillowcase. See Figure 1 for an example.

The following is one of the key technical results of [Zen18], though it is only
applied there to non-trivial knots in S3.

Proposition 3.1. Let K be a nullhomologous knot in a 3-manifold Y , and
let w ∈ H2(Y0(K);Z) be Poincaré dual to a meridian of K. Suppose that
Iw∗ (Y0(K)) 6= 0, and that the pillowcase image i∗(X(EK)) does not contain the
points

P = (0, π), Q = (π, π) ∈ X(T 2).

Then there is a topologically embedded curve C ⊂ i∗(X(EK)) that is homologi-
cally essential in

X(T 2) \ {P,Q} ∼= (0, 1)× S1.
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0
α

π

0

β

2π

∼=

Figure 1. The image i∗(X(EK)) in the pillowcase, where EK is
the exterior of the right-handed trefoil in S3.

Proof. This is proved in [Zen18, §7]; we sketch the argument here. We first
observe that Iw∗ (Y0(K)) is generated as a chain complex by gauge equivalence
classes of flat connections on the associated SO(3) bundle over Y0(K) that do
lift to SU(2) connections over EK , but that do not lift over all of Y0(K) because
the lifted connections over EK have holonomy −1 along λ. Equivalently, these
are conjugacy classes of representations

ρ : π1(EK)→ SU(2)

such that ρ(λ) = −1. Thus the complex used to define Iw∗ (Y0(K)) is generated
by the points of X(EK) whose images lie on the line segment Lπ = {β ≡ π
(mod 2π)} in the pillowcase.

The next step is to show as in [Zen18, Theorem 7.2] that if

γ : [0, 1]→ X(T 2)

is a topologically embedded path from γ(0) = P to γ(1) = Q that avoids the
line L0 = {β ≡ 0 (mod 2π)}, then γ intersects the image i∗(X(EK)). Now
the chain complex for Iw∗ (Y0(K)) is generated by the intersection of i∗(X(EK))
with one such path, namely the line Lπ. Supposing we have another such path
γ that avoids i∗(X(EK)) completely, then since i∗(X(EK)) is compact it must
actually be disjoint from an open neighborhood U of this path. Now Iw∗ (Y0(K))
is defined using a certain Chern–Simons functional, and [Zen18, Theorem 4.2]
says that we can modify it using holonomy perturbations so that Iw∗ (Y0(K)) is
instead defined by the intersection of i∗(X(EK)) with a path that is arbitrarily
C0-close to γ. We take this path to lie in U , and then the intersection is empty,
so Iw∗ (Y0(K)) is the homology of the zero complex and this is a contradiction.
So every such γ must intersect i∗(X(EK)).

Now just as in the proof of [Zen18, Theorem 7.1] we know that Γ = i∗(X(EK))
is an embedded finite graph in the pillowcase X(T 2) ∼= S2. The graph Γ contains
the entire line L0 = {β ≡ 0 (mod 2π)}, as the image of the reducible characters
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of π1(EK), but by assumption it contains neither P nor Q, so the above argument
says that P and Q lie in different components of the complement S2 \ Γ. We
use [Zen18, Lemma 7.3] to conclude that Γ contains a topologically embedded,
homologically essential curve in S2 \ {P,Q}. �

The following lemma will be useful in conjunction with Proposition 3.1, in
order to understand when the essential curve C can pass through the corners of
the pillowcase.

Lemma 3.2. Suppose that H1(Y ;Z) is 2-torsion, and let K ⊂ Y be a nullhomol-
ogous knot. If either (0, 0) or (π, 0) is a limit point of the image i∗(X irr(EK)),
then there must be a representation ρ : π1(EK) → SU(2) with non-abelian im-
age such that ρ(µ) = ρ(λ) = 1. In particular, neither Y nor any Dehn surgery
Yp/q(K) is SU(2)-abelian.

Proof. Suppose we have a sequence of irreducible representations ρn : π1(EK)→
SU(2) such that the images

i∗([ρn]) = (αn, βn) ∈ X(T 2)

converge to either (0, 0) or (π, 0). If their limit is (π, 0), then since H1(EK) ∼=
H1(Y )⊕ Z with the Z summand generated by µ, we can define a character

χ : π1(EK) � H1(EK)→ {±1}
which sends H1(Y ) to +1 and µ to −1, and thus has central image. In particular
each

ρ′n = χ · ρn : π1(EK)→ SU(2)

is an irreducible representation as well, and since ρ′n(µ) = χ(µ)ρ(µ) = −ρn(µ)
but ρ′n(λ) = ρ(λ), we have

i∗([ρ′n]) = (αn − π, βn)→ (0, 0).

Thus we may as well assume that (αn, βn) → (0, 0). Moreover, since the SU(2)
representation varietyR(EK) is compact, we can pass to a subsequence to assume
that the ρn converge in R(EK); their limit is a representation

ρ : π1(EK)→ SU(2)

with i∗([ρ]) = (0, 0) and thus ρ(µ) = ρ(λ) = 1.

The limiting representation ρ factors as a composition

π1(EK) �
π1(EK)

⟪µ⟫
∼= π1(Y )

ρY−−→ SU(2),

in which the last map ρY has the same image as ρ itself. If this image is abelian
then ρY further factors through H1(Y ); the latter is 2-torsion, and −1 is the
only order-2 element of SU(2), so then the image of ρ lies in the center {±1} of
SU(2). We will show that this is impossible, arguing along the same lines as in
[LPCZ23, Lemma 3.1], and this will imply that ρ must not have abelian image
after all.

To prove that ρ cannot have central image, we think of it as a point of the
SL(2,C) representation variety R(EK), which is an affine variety over C, and
then since ad ρ is trivial we can identify

TρR(EK) ∼= H1(EK ; sl(2,C)ad ρ) ∼= H1(EK ;C3) ∼= C3.
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We have a finite-to-one (in fact, injective) morphism f : SL(2,C) → R(EK),
defined by sending A ∈ SL(2,C) to the unique representation

ρA : π1(EK) � H1(EK ;Z) ∼= H1(Y )⊕ Z φA−−→ SL(2,C)

such that φA|H1(Y ) = ρ|H1(Y ) and φA(µ) = A. Then f(1) = ρ1 = ρ and

dimC(SL(2,C)) = 3 = dimC TρR(EK),

where on the left side we view SL(2,C) as a complex variety and compute its
dimension at the identity 1 ∈ f−1(ρ). Thus [LM85, Lemma 2.5] says that Im(f)
contains a neighborhood of ρ in R(EK), all of whose points are non-singular.
But then ρ has a neighborhood in R(EK) ⊂ R(EK) consisting only of points
in Im(f), all of which have abelian image, and this contradicts the assumption
that ρ is a limit of irreducible representations.

In summary, we have shown that the representation ρ must have non-abelian
image, with ρ(µ) = ρ(λ) = 1. Now for any slope p

q , including p
q = 1

0 , we have

ρ(µpλq) = 1 and so ρ factors as a composition

π1(EK) �
π1(EK)

⟪µpλq⟫
∼= π1(Yp/q(K))

ρp/q−−→ SU(2).

The map ρp/q has the same image as ρ itself, so its image is non-abelian and
thus Yp/q(K) is not SU(2)-abelian. �

3.2. The cut-open pillowcase. In some cases we can say more about the pil-
lowcase image of X(EK) and can use this to simplify the statement of Proposi-
tion 3.1. For example:

Lemma 3.3. Let K be a nullhomologous knot in an SU(2)-abelian 3-manifold
Y , and fix a representation ρ : π1(EK) → SU(2). Suppose that i∗([ρ]) has
coordinates (α, β) in the pillowcase, where α ∈ πZ. Then ρ has abelian image
and β ≡ 0 (mod 2π).

Proof. The claim that β ≡ 0 will follow from knowing that Im(ρ) is abelian: then
ρ factors through H1(EK ;Z), and the homology class [λ] is zero, so we must have
ρ(λ) = 1. Thus we focus on the claim that ρ has abelian image.

Suppose first that α ≡ 0 (mod 2π). Then ρ(µ) = 1, and so ρ descends to a
representation

ρY : π1(Y ) ∼=
π1(EK)

⟪µ⟫ → SU(2),

which must then have abelian image. But ρ has the same image as ρY , so Im(ρ)
is abelian as well.

In the remaining case, we have α ≡ π (mod 2π), so ρ(µ) = −1. Then we can
multiply by a central character χ : π1(EK) → {±1} with χ(µ) = −1, just as
in the proof of Lemma 3.2, to replace ρ with ρ′ such that ρ′(µ) = 1. By the
previous case we know that ρ′ has abelian image, hence so does ρ. �

Lemma 3.3 sometimes allows us to replace the pillowcase with the cut-open
pillowcase

P = [0, π]× (R/2πZ).
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In particular, the natural quotient map P → X(T 2) glues each point (0, β) to
(0, 2π − β), and (π, β) to (π, 2π − β), so it is one-to-one except at points of the
form (α, β) with α ∈ πZ but β 6∈ πZ. Lemma 3.3 says that if Y is SU(2)-abelian
then i∗(X(EK)) avoids the images of such points, so it lifts uniquely to P. Thus
for SU(2)-abelian Y we have a well-defined map

j : X(EK)→ P.

The following is now a quick application of Proposition 3.1, generalizing
[LPCZ23, Theorem 3.3].

Theorem 3.4. Let K ⊂ Y be a nullhomologous knot in an SU(2)-abelian 3-
manifold, and suppose that Iw∗ (Y0(K)) 6= 0, where w is Poincaré dual to a merid-
ian of K in Y0(K). Then the image j(X(EK)) ⊂ P must contain a topologically
embedded curve that is homologically essential in H1(P;Z) ∼= Z.

Proof. The pillowcase image i∗(X(EK)) ⊂ X(T 2) does not contain the points
P = (0, π) or Q = (π, π), by Lemma 3.3. Thus we can apply Proposition 3.1 to
find an embedded curve

C ⊂ i∗(X(EK))

that is homologically essential in X(T 2)\{P,Q}. Lemma 3.3 says that C actually
lies in

X(T 2) \
(
{0, π} × (0, 2π)

)
,

where it is still homologically essential, and the inclusion of the latter into P is
a homotopy equivalence taking C to its image j(C), so j(C) is a homologically
essential curve in P. �

We can now deduce the following generalization of the main result of [KM04a].

Theorem 3.5. Let Y be an SU(2)-abelian 3-manifold such that H1(Y ) is 2-
torsion, and let K ⊂ Y be a nullhomologous knot with irreducible, boundary-
incompressible complement. Then for any r ∈ Q with 0 < |r| ≤ 2, there is a
representation

ρ : π1(Yr(K))→ SU(2)

with non-abelian image.

Proof. Proposition 2.7 tells us that Iw∗ (Y0(K)) 6= 0, where w is Poincaré dual to
a meridian of K. By Theorem 3.4, we can thus find a continuous path

γ : [0, 1]→ [0, π]× [0, 2π]

such that if we write γ(t) = (αt, βt), then

• β0 = 0, β1 = 2π, and 0 < βt < 2π for 0 < t < 1;
• for each t, there is a representation ρt : π1(EK)→ SU(2) with

ρt(µ) =

(
eiαt 0
0 e−iαt

)
, ρt(λ) =

(
eiβt 0
0 e−iβt

)
;

• and ρt is irreducible for 0 < t < 1, since 0 < βt < 2π implies that
ρt(λ) 6= 1.
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Since (αt, βt)→ (α0, 0) as t↘ 0, and since R(EK) is compact, some subsequence
of the irreducibles

{ρt | 0 < t < 1} ⊂ X irr(EK)

converges to a representation ρ̄0 ∈ R(EK) with j([ρ̄0]) = (α0, 0). Since H1(Y ) is
2-torsion, we can apply Lemma 3.2 to say that α0 is neither 0 nor π. The same
argument says that 0 < α1 < π as well.

Now suppose without loss of generality that 0 < r ≤ 2, and write r = p
q in

lowest terms, so that 0 < p ≤ 2q. We note for each t ∈ [0, 1] that

ρt(µ
pλq) =

(
ei(pαt+qβt) 0

0 e−i(pαt+qβt)

)
,

and that α0 < π and p ≤ 2q imply that

pα0 + qβ0 = pα0 < pπ ≤ 2qπ,

while α1 > 0 tells us that

pα1 + qβ1 = pα1 + 2qπ > 2qπ.

Thus by continuity there is some t ∈ (0, 1) such that pαt + qβt = 2qπ, and then
ρt is an irreducible representation satisfying ρt(µ

pλq) = 1, so it descends to the
desired representation of π1(Yr(K)). �

Remark 3.6. It is not clear to us whether the hypotheses of Theorem 3.5 should
imply the existence of a non-abelian representation π1(Y0(K)) → SU(2), even
when Y = S3. This is equivalent to there being an irreducible ρ : π1(EK) →
SU(2) with pillowcase image i∗([ρ]) = (α, 0) for some α. If no such ρ exists,
then the representation ρ̄0 ∈ R(EK) constructed in the proof of Theorem 3.5 is a
reducible limit of irreducible representations, and this implies that the Alexander
polynomial satisfies ∆K(e2iα0) = 0, cf. [Kla91, Theorem 19] in the case Y = S3

or [HPSP01, Theorem 2.7] more generally.

On the other hand, these hypotheses do imply that Iw∗ (Y0(K)) 6= 0, and hence
there is an irreducible representation π1(Y0(K)) → SO(3) that does not lift to
an SU(2) representation.

4. Pinching and the twisted I-bundle over the Klein bottle

In this section we will construct and study some degree-1 maps between com-
pact 3-manifolds with torus boundary. As a warm-up exercise, we recall the
well-known construction of “pinching” maps onto solid tori here; after doing so,
we will study the twisted I-bundle over the Klein bottle in some detail, culmi-
nating in the construction of pinching maps onto it in Proposition 4.5. We will
repeatedly make use of the following claim.

Lemma 4.1. Let X be a compact n-manifold, and suppose we have a continuous
map f : ∂X → Sn−1. Then f can be extended to a continuous map f̃ : X → Dn,
with f̃−1(∂Dn) = ∂X.

Proof. We identify a collar neighborhood [0, 1]× ∂X of the boundary {1}× ∂X,
and then set

f̃(t, x) = t · f(x)
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for all (t, x) ∈ [0, 1]× ∂X. Then f̃({0} × ∂X) = {0}, so we extend f̃ to the rest

of X by setting f̃(y) = 0 for all y 6∈ [0, 1]× ∂X. �

Lemma 4.1 allows us to construct pinching maps onto solid tori as follows.

Proposition 4.2. Let M be a compact, oriented 3-manifold with torus boundary,
and let λ ⊂ ∂M be an essential curve that bounds a properly embedded, orientable
surface F ⊂M . Then there is a degree-1 map

f : M → S1 ×D2

that restricts to a homeomorphism ∂M → S1×∂D2 and sends λ to {pt}×∂D2.

Proof. We first define f on ∂M by choosing a homeomorphism ∂M ∼= S1 ×
∂D2 that sends λ to {pt} × ∂D2, and then extend it to a homeomorphism
between collar neighborhoods of both boundaries. Now f is defined on a collar
neighborhood of ∂F in F , and it sends the boundary of this collar to a circle
in {pt} × D2 that bounds a disk, so Lemma 4.1 lets us extend f across all of
F . Again we extend this to a collar neighborhood of F , so now f is defined on
N(∂M ∪ F ). The boundary of this domain is sent to a 2-sphere that bounds a
3-ball (namely, the boundary component of N

(
(S1 × ∂D2) ∪ ({pt} ×D2)

)
that

lies on the interior of S1 ×D2), so we use Lemma 4.1 to extend f to the rest of
M and we are done. �

In the rest of a section we will work with rational longitudes, so in order to
define them we must first recall a standard fact about 3-manifolds that we will
use frequently in §7. If M is a compact orientable 3-manifold with boundary, the
“half lives half dies” principle (see for example [Hat07, Lemma 3.5]) says that
over any field F, the map

i∗ : H1(∂M ;F)→ H1(M ;F)

has rank 1
2 dimH1(∂M ;F), which is 1 if ∂M is a torus. (The orientability is

needed to ensure that M satisfies Poincaré–Lefschetz duality over F.) Applying
this over F = Q, we deduce that there is a primitive integral class λ ∈ H1(∂M ;Z)
that generates the kernel of i∗ over Q, and it is unique up to sign. We call this
the rational longitude of M . While λ need not be nullhomologous in M , the
integral class i∗(λ) is always torsion.

4.1. The twisted I-bundle over the Klein bottle. We define an annulus

A = [−1, 1]× (R/2πZ)

and a pair of orientation-preserving homeomorphisms A→ A by the formulas

φ(r, θ) = (−r,−θ),
τ(r, θ) = (r, θ − π(r + 1)).

We note that the homeomorphism τ is a Dehn twist about the core c = {0} ×
(R/2πZ).

Lemma 4.3. Define a diffeomorphism ψn : A→ A for each n ∈ Z by ψn = τn◦φ.
Then the mapping torus Mψn is homeomorphic to the twisted I-bundle over the
Klein bottle for all n, and if λ ⊂ ∂Mψn is the rational longitude then each annulus
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A× {1}

A× {0}

B ψn

Figure 2. The twisted I-bundle over the Klein bottle B, shown
here as the mapping torus of ψn : A → A, together with the
fibration of the top and bottom annuli into intervals.

fiber generates H2(Mψn , ∂Mψn) ∼= Z and has boundary homologous in ∂Mψn to
2λ.

Proof. We first observe that ψn fixes the curve c = {0}× (R/2πZ) setwise, since
both φ and τ do, but that it reverses the orientation of c: we have

ψn(r, θ) = τn(φ(r, θ)) = τn(−r,−θ) = (−r,−θ − nπ(1− r))

for all r and θ, and this sends the circle {r = 0} to itself. Thus the mapping
torus

Mψn|c =
c× [0, 1]

(x, 1) ∼ (ψn(x), 0)

of ψn|c is homeomorphic to a Klein bottle.

Next, the mapping torus of ψn on all of A is by definition

Mψn =
A× [0, 1]

(x, 1) ∼ (ψn(x), 0)
,

and the Klein bottle B = Mψn|c is a submanifold of Mψn , identified as the image
of {r = 0} × [0, 1] inside A× [0, 1]. We can check that the projection map

π : A× [0, 1]→ c× [0, 1](
(r, θ), t

)
7→
(
(0, θ + (1− t)nπr), t

)
fixes all points of c× [0, 1], i.e., where r = 0, and that the fiber over each point
is an interval:

π−1
(
(0, θ), t

)
= {((s, θ − (1− t)nπs), t) | s ∈ [−1, 1]}.

Moreover, the monodromy ψn identifies the fibers at t = 1 with fibers at t = 0:
we have (

(r, θ), 1
)
∼ (ψn(r, θ), 0) =

(
(−r,−θ − nπ(1− r)), 0

)
=
(
(−r, (−θ − nπ)− nπ(−r)), 0

)
∈ π−1

(
(0,−θ − nπ), 0

)
.
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Thus π descends to a fibration π : Mψn → B with interval fibers. The total
space is orientable whereas B is not, so it must be the twisted I-bundle over B,
as claimed.

Finally, consider the fiber A1 = A× {1} of Mψn . This fiber is primitive as an
element of

H2(Mψn , ∂Mψn) ∼= H1(Mψn) ∼= H1(B) ∼= Z,
and hence generates it, because it has a single transverse point of intersection
with the closed curve

(0,−nπ
2 )× [0, 1] ⊂ A× [0, 1]

(x, 1) ∼ (ψn(x), 0)
= Mψn .

(We note that this curve is closed because ψn(0,−nπ
2 ) = (0,−nπ

2 ).) We orient
the components of

∂A1 =
(
{±1} × (R/2πZ)

)
× {1}

as the boundary of A1. Then these components are isotopic to each other as
oriented curves in the torus ∂Mψn , because λ =

(
{+1} × (R/2πZ)

)
× {1} is

identified with
(
{−1} × (R/2πZ)

)
× {0} in an orientation-reversing way. In

particular λ is a rational longitude for Mψn , and ∂A1 is homologous in ∂Mψn to
2λ as claimed. �

The twisted I-bundle over the Klein bottle is depicted as a mapping torus
in Figure 2. With this construction at hand, we now study its SU(2) character
variety.

Proposition 4.4. Let N be the twisted I-bundle over the Klein bottle, with
rational longitude λ0. Then there is a unique peripheral curve µ0 ⊂ ∂N with
Dehn filling N(µ0) ∼= RP3#RP3, and µ0 is dual to λ0. Every other SU(2)-
abelian Dehn filling of N has cyclic fundamental group, namely Z or Z/4kZ for
some integer k ≥ 1.

Viewing SU(2) as the unit quaternions, every representation

ρ : π1(N)→ SU(2)

is conjugate to one with (ρ(µ0), ρ(λ0)) equal to either (1,±1) or (−1, eit) for
some t ∈ R/2πZ, and every such value is realized by some ρ. The image of ρ is
non-abelian if and only if ρ(λ0) 6= ±1.

Proof. Taking n = 0 in Lemma 4.3, the mapping torus Mψ0 = Mφ
∼= N has

fundamental group

π1(Mφ) ∼= π1(B) ∼= 〈a, b | aba−1 = b−1〉,
where a is identified with the section

(0, 0)× [0, 1] ⊂ A× [0, 1]

(x, 1) ∼ (φ(x), 0)

of Mφ → S1, and b is identified with a core circle c× {1
2} of one of the annulus

fibers. Then b is isotopic in Mφ to the rational longitude λ0 ⊂ ∂Mφ, while a2 is
isotopic to a dual peripheral curve

µ0 = {(1, 0), (−1, 0)} × [0, 1] ⊂Mφ.

Thus π1(Mφ) has peripheral subgroup 〈µ0, λ0〉 = 〈a2, b〉.



RATIONAL HOMOLOGY 3-SPHERES AND SL(2,C) REPRESENTATIONS 19

We first claim that the Dehn filling N(µ0) is RP3#RP3. Indeed, by viewing
N as the mapping torus of φ : A→ A, one can see that the annuli

([−1, 1]× {θ})× [0, 1] ⊂ A× [0, 1], θ = 0 or π

give rise to a pair of Möbius bands in N , with tubular neighborhoods

([−1, 1]× I)× [0, 1]

(x, 1) ∼ (φ(x), 0)
, I = (−π

2 ,
π
2 ) or (π2 ,

3π
2 ),

whose boundaries are parallel copies of µ0. The meridional disks in the Dehn
filling solid torus complete each of these Möbius bands to real projective planes in
N(µ0), and their tubular neighborhoods to punctured copies of RP3, producing
the desired identification N(µ0) ∼= RP3#RP3.

Next, we will show that µ0 is unique. Given any other slope α = µp0λ
q
0 = a2pbq

in ∂N , we must have q 6= 0 and gcd(p, q) = 1; we take q ≥ 1 without loss of
generality. If q = 1 then we compute that

π1(N(α)) ∼= 〈a, b | aba−1 = b−1, b = a−2p〉 ∼= Z/4|p|Z,
which is cyclic of order 4|p| if p 6= 0, and is Z otherwise (corresponding to
N(λ0) ∼= S1 × S2). If q ≥ 2 and p is odd then we can define a non-abelian
representation

π1(N(α)) ∼= 〈a, b | aba−1 = b−1, a2pbq = 1〉 → SU(2)

by sending a 7→ j and b 7→ eiπ/q, so N(α) is not SU(2)-abelian. Similarly if q ≥ 3

and p is even then we can send a 7→ j and b 7→ ei·2π/q, and this is also non-abelian;
the case where q = 2 and p is even does not occur because p and q are coprime.
Thus every SU(2)-abelian Dehn filling of N other than N(µ0) ∼= RP3#RP3 has
fundamental group Z or Z/4|p|Z for some p.

Finally, we consider an arbitrary representation ρ : π1(Mφ) → SU(2), which
must satisfy ρ(aba−1) = ρ(b−1). If ρ(a) = ±1 then ρ is reducible and ρ(b) =
ρ(b−1) implies that ρ(λ0) = ρ(b) = ±1, while ρ(µ0) = ρ(a2) = 1. Otherwise up
to conjugation we have ρ(a) = ejs for some s 6∈ πZ; the relation ρ(aba−1) =
ρ(b−1) implies that ρ(a) = ±j and that ρ(b) has zero j-component, so up to
another conjugation we can further arrange that ρ(a) = j and ρ(b) = eit for
some t, and any value of t works. In this case we have ρ(µ0) = ρ(a2) = −1 and
ρ(λ0) = ρ(b) = eit, and ρ is irreducible unless ρ(b) = eit commutes with ρ(a) = j,
i.e., unless ρ(b) = ±1. �

4.2. Pinching maps for rational longitudes of order 2. In this subsection
we will construct degree-1 maps from compact manifolds M with torus boundary
onto the twisted I-bundle over the Klein bottle. In contrast to Proposition 4.2,
which only works when the rational longitude of M is nullhomologous, here we
require the rational longitude to have order 2.

Proposition 4.5. Let M be a compact, oriented 3-manifold with torus boundary,
and suppose that the rational longitude λM ⊂ ∂M has order 2 in H1(M). Then
there is a degree-1 map

f : M → N,

where N is the twisted I-bundle over the Klein bottle, such that f restricts to a
homeomorphism ∂M → ∂N sending λM to a rational longitude λN ⊂ ∂N .
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Proof. Using Lemma 4.3, we realize N as the mapping torus of some self-
diffeomorphism

ψn : A→ A

of the annulus; we will choose the integer n ∈ Z later. We will also let

F ⊂M
be a connected, properly embedded rational Seifert surface, whose boundary is
two disjoint copies λ0

M , λ
1
M ⊂ ∂M of the rational longitude for M . We will

construct the map f in stages: first we define it on ∂M , then we extend it to a
rational Seifert surface F ′ constructed by stabilizing F , and then we extend it
across the remainder of M .

This last step requires substantially more care than did the pinching maps onto
solid tori in Proposition 4.2: letting M0 denote the remaining portion of M , we
will want to send M0 into N minus a neighborhood of an annulus fiber, i.e., a
solid torus. In order to extend our initial map ∂M0 → S1×S1 to M0 → S1×D2,
we must arrange for some curve γ ⊂ ∂M0 that is nullhomologous in M0 to be
sent to {pt} × S1, so that we can collapse a surface in M0 with boundary γ
to {pt} ×D2. By contrast, the target in the analogous step of Proposition 4.2
was a solid torus minus a disk fiber, which is a ball, and we could just apply
Lemma 4.1 to extend ∂M0 → S2 to M0 → D3 without any extra hypotheses.

We fix points p0 ∈ λ0
M and p1 ∈ λ1

M , and a properly embedded, oriented
arc α ⊂ F from p0 to p1. Identifying a closed tubular neighborhood of F as
F × [−1, 1] ⊂M , with F = F × {0}, and letting

EF = M \
(
F × (−1, 1)

)
be the exterior of F , we build a closed curve c ⊂ ∂EF as the union of the oriented
arcs

α± = α× {±1} ⊂ F × {±1}
with a pair of arcs in ∂M ∩EF from p1×{1} to p0×{−1}, and from p1×{−1}
to p0 × {1}. See the top row of Figure 3.

Next, we take a collar neighborhood ∂EF × [−1, 0] ⊂ EF of the boundary of
EF , which we identify in these coordinates as ∂EF × {0}. Then c = c × {0}
and c′ = c × {−1} cobound an annulus in EF , namely the product c × [−1, 0].
We take an arc β connecting c′ to F in the interior of M , chosen so that β
intersects the annulus c × [−1, 0] in a separating arc. Then we stabilize F to
get a new rational Seifert surface F ′, with g(F ′) = g(F ) + 1, by attaching the
boundary of a small tubular neighborhood of c′∪β, as shown in the bottom row
of Figure 3; we also perturb the arc α− ⊂ F × {−1} slightly so that it avoids
this neighborhood. The end result is that we have a properly embedded disk
D in the exterior EF ′ ∼= M \

(
F ′ × (−1, 1)

)
of F ′, consisting of the annulus

c× [−1, 0] ⊂ EF minus a neighborhood of the arc β. The intersection

∂D ∩ ∂M = c ∩ ∂M
consists of the two chosen arcs from p1×{±1} to p0×{∓1}, and the rest of ∂D
consists of a pair of properly embedded arcs

α′+ × {+1} ⊂ F ′ × {+1},
α′− × {−1} ⊂ F ′ × {−1}
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λ0
M

p0 α

λ1
M

p1 α
c

c′

F ′

Figure 3. Top left: the rational Seifert surface F ⊂ M . Top
right: the curve c in the boundary of the exterior EF . Bottom
left: the push-off c′ ⊂ M of the curve c ⊂ ∂EF . Bottom right:
stabilizing F to get a new rational Seifert surface F ′ ⊂M .

from p1 × {±1} ∈ λ1
M × {±1} to p0 × {±1} ∈ λ0

M × {±1}.
We are now ready to construct the desired map f : M → N , where N is the

mapping torus

Mψn =
A× [0, 1]

(x, 1) ∼ (ψn(x), 0)

as described in Lemma 4.3. We start by choosing a map

g : (F ′, ∂F ′)→ (A, ∂A)

as follows: we choose an identification of ∂F ′ with the two components of ∂A,
and then extend this by sending the arc α′− ⊂ F ′ homeomorphically onto some
properly embedded arc γ connecting the components of ∂A. We extend this to
collar neighborhoods of each, getting a partially defined homeomorphism

g : N(∂F ′ ∪ α′−)
∼=−→ N(∂A ∪ γ)

as shown in Figure 4. This sends the circle

∂
(
N(∂F ′ ∪ α′−)

)
\ ∂F ′
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α′−

γ

Figure 4. Constructing a degree-1 map g : (F ′, ∂F ′)→ (A, ∂A).

∂D
g(α
′
−
)

ψn
(g(α

′
+
))

ψn

Figure 5. The map f : M → N , as partially defined on a neigh-
borhood of ∂M ∪ F ′.

homeomorphically to a circle in A that bounds a disk, and this circle bounds the
portion of F ′ on which g has not yet been defined, so we now use Lemma 4.1 to
extend g to the rest of F ′.

We now define f : M → N on the union of ∂M and the rational Seifert surface
F ′ as follows. We first choose a homeomorphism

f |∂M : ∂M → ∂N

that takes the two rational longitudes λiM to the components of

∂A× {1} ⊂ A× [0, 1]

(x, 1) ∼ (ψn(x), 0)
∼= N.

Having done so, we use the above map g : (F ′, ∂F ′)→ (A, ∂A) to set

f(x) = (g(x), 1) ∈ A× [0, 1]

(x, 1) ∼ (ψn(x), 0)

for all x ∈ F ′. We can extend f to a collar neighborhood of ∂M , and then to a
neighborhood F ′ × [−1, 1] of F ′ such that

f(F ′ × {1}) ⊂ A× {ε},
f(F ′ × {−1}) ⊂ A× {1− ε}

where ε > 0 is small (say ε = 1
10 for concreteness). This is illustrated in Figure 5.
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We note that so far the image of f , which has been defined on a neighborhood
of ∂M ∪ F ′, is the union of

A× ([0, ε] ∪ [1− ε, 1])

and a neighborhood of ∂N . The complement of that image is a solid torus
V ⊂ N , and the properly embedded disk D ⊂ EF ′ has its boundary ∂D sent to
an essential curve in ∂V , consisting of

• one arc in each component of ∂A× [ε, 1− ε];
• the image g(α′−)×{1−ε} = γ×{1−ε} of the arc α′−×{−1} ⊂ F ′×{−1};
• the image ψn(g(α′+))× {ε} of the arc α′+ × {+1} ⊂ F ′ × {+1}.

The curve f(∂D) may not bound a disk in V , but if we change the parameter
n in the monodromy ψn, then its intersection with A × {ε} changes by the
corresponding number of Dehn twists along the core of that annulus. Thus by a
suitable choice of n we can arrange for f(∂D) to be nullhomologous in V , hence
null-homotopic in V ; we apply a further homotopy, supported away from ∂M ,
so that f |∂D is a homeomorphism sending ∂D to the boundary of a properly
embedded disk in V . We extend f across D by sending it homeomorphically to
that disk, and then further extend f to a collar neighborhood of D.

At this point we have defined f on a neighborhood of ∂M ∪ F ′ ∪D, and the
boundary of the subdomain where f remains undefined is sent to a 2-sphere in
V ⊂ N that bounds a ball. We thus apply Lemma 4.1 again to extend f to the
rest of M , and this completes the proof. �

5. Splicing knots in manifolds with 2-torsion homology

In this section we study images of character varieties in the pillowcase to un-
derstand what happens when we splice the complements of knots in 3-manifolds
whose homology is 2-torsion.

5.1. The nullhomologous case. Our main result here is a generalization of
[Zen18, Theorem 8.3], which describes the case where Y1

∼= Y2
∼= S3, using the

methods of [LPCZ23].

Theorem 5.1. Let Y1 and Y2 be closed, orientable 3-manifolds such that H1(Y1;Z)
and H1(Y2;Z) are both 2-torsion, and let K1 ⊂ Y1 and K2 ⊂ Y2 be non-trivial
nullhomologous knots with irreducible complements. We splice their exteriors
EK1 = Y1 \N(K1) and EK2 = Y2 \N(K2) to form a closed 3-manifold

Y = EK1 ∪∂ EK2 ,

gluing the meridian and longitude µ1 and λ1 in ∂EK1 to the longitude and merid-
ian λ2 and µ2 in ∂EK2, respectively. Then there is a representation

ρ : π1(Y )→ SU(2)

with non-abelian image.

Proof. Proposition 4.2 gives us degree-1 maps

Y → EK1(λ2) ∼= Y1 and Y → EK2(λ1) ∼= Y2,

which induce surjections π1(Y )→ π1(Yi) for i = 1, 2. If there is some non-abelian
representation π1(Yi)→ SU(2) then we can compose it with the surjection from
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π1(Y ) to get the desired ρ : π1(Y )→ SU(2). Thus we may assume from now on
that both Y1 and Y2 are SU(2)-abelian.

Since neither K1 nor K2 is unknotted, we apply Theorem 2.7 to see that their
zero-surgeries have non-trivial instanton homology: if w` ∈ H2((Y`)0(K`);Z) is
Poincaré dual to a meridian of K`, then

Iw`
∗
(
(Y`)0(K`)

)
6= 0

for ` = 1, 2. Noting that each Y` is SU(2)-abelian, Theorem 3.4 says that the
pillowcase images

j(X(EK`
)) ⊂ P

contain homologically essential loops. This means that for ` = 1, 2 we can find
continuous paths

γ`t = (α`t , β
`
t ) : [0, 1]→ [0, π]× [0, 2π]

such that

• β`0 = 0, β`1 = 2π, and 0 < β`t < 2π for 0 < t < 1;
• 0 < α`t < π for 0 < t < 1;
• for each t ∈ [0, 1], there is a representation ρ`t : π1(EK`

) → SU(2) such
that

ρ`t(µ`) =

(
eiα

`
t 0

0 e−iα
`
t

)
, ρ`t(λ`) =

(
eiβ

`
t 0

0 e−iβ
`
t

)
;

• for 0 < t < 1, each ρ`t is irreducible, since ρ`t(λ`) 6= 1.

Since H1(Y1;Z) is 2-torsion, Lemma 3.2 also tells us that

• 0 < α1
t < π for all t ∈ [0, 1],

since (α1
0, β

1
0) = (α1

0, 0) is a limit point of (α1
t , β

1
t ) ∈ j(X irr(EK1)) as t approaches

0 from above, and likewise for (α1
1, β

1
1).

Now if we let τ = inf{t ∈ [0, 1] | β2
t = π}, so 0 < τ < 1, then the transposed

path

γ̃2
t = (β2

t , α
2
t ) : [0, τ ]→ [0, π]× [0, 2π]

starts on the line {0} × [0, 2π] and ends on the line {π} × [0, 2π], with second
coordinate α2

t ∈ (0, π) for all t ∈ (0, τ ]. Then γ̃2
t separates the rectangle [0, π]×

[0, 2π], with the subsets

(0, π)× {0} and (0, π)× {2π}
in different path components of the complement of its image. These subsets
contain γ1

0 = (α1
0, β

1
0) and γ1

1 = (α1
1, β

1
1) respectively, so γ̃2 must intersect the

path γ1 at some point

γ1
t = (α1

t , β
1
t ), 0 < t < 1.

Taking t̃ ∈ [0, τ ] so that γ1
t = γ̃2

t̃
, it follows that

ρ1
t (µ1) = ρ2

t̃
(λ2) =

(
eiα

1
t 0

0 e−iα
1
t

)
,

ρ1
t (λ1) = ρ2

t̃
(µ2) =

(
eiβ

1
t 0

0 e−iβ
1
t

)
.
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Thus ρ1
t and ρ2

t̃
agree on the torus ∂EK1 = ∂EK2 inside Y , and so they glue

together to give a representation

ρ : π1(Y )→ SU(2).

This representation restricts to π1(EK1) as the irreducible ρ1
t , where 0 < t < 1,

and its restriction to π1(EK2) is likewise irreducible since ρ(λ2) = ρ(µ1) = ρ1
t (µ1)

is not the identity. Thus ρ is irreducible as well. �

5.2. The homologically essential case. In this subsection, we consider what
happens if we splice two knot complements where one of the knots is homologi-
cally essential. We will ultimately prove the following.

Theorem 5.2. Let K1 ⊂ Y1 and K2 ⊂ Y2 be knots in rational homology spheres
such that H1(Y1;Z) and H1(Y2;Z) are both 2-torsion. Suppose that the exteriors
EK1 and EK2 are irreducible, and that

• The rational longitude λ1 ⊂ ∂EK1 has order 2 in H1(EK1 ;Z);
• K2 is nullhomologous, with irreducible, boundary-incompressible comple-

ment.

We form a closed 3-manifold

Y = EK1 ∪∂ EK2

by splicing the exteriors along their boundaries so that µ1 ∼ λ2 and λ1 ∼ µ2.
Then there is a representation

ρ : π1(Y )→ SU(2)

with non-abelian image.

Unlike in Theorem 5.1, one key obstacle is that we cannot make use of a
degree-1 pinching map

Y → EK2(λ1) ∼= Y2,

because we may not be able to collapse EK1 onto a solid torus. However, since
the rational longitude λK1 has order 2 in homology, we can use Proposition 4.5
to pinch it to the next best thing, the twisted I-bundle over the Klein bottle.

Proof of Theorem 5.2. Suppose to the contrary that Y is SU(2)-abelian. We first
note that by the Mayer–Vietoris sequence, the homology H1(Y ) is isomorphic to

H1(EK1)⊕H1(EK2)

µ1 ∼ λ2, λ1 ∼ µ2

∼=
H1(Y1)⊕H1(EK2)

λ1 ∼ µ2

∼= H1(Y1)⊕H1(Y2),

where we first use the fact that [λ2] = 0 in H1(EK2), and then that H1(EK2) ∼=
H1(Y2) ⊕ Z with the Z summand generated by [µ2]. In particular H1(Y ;Z) is
2-torsion.

Now we apply Proposition 4.5 to construct a degree-1 map

Y → N ∪∂ EK2 ,

where N is the twisted I-bundle over the Klein bottle. The rational longitude
λ0 of N is still glued to µ2, since this map preserves rational longitudes, but a
priori we only know that some curve µ ⊂ ∂N that is dual to λ0 has been glued
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to λ2. However, we can now pinch EK2 to a solid torus as in Proposition 4.2, so
we have a composition of degree-1 maps

Y → N ∪∂ EK2 → N(λ2) = N(µ).

This induces a surjection on π1 and hence on H1, so we conclude that H1(N(µ))
is 2-torsion since H1(Y ) is; and that both

Y ′ = N ∪∂ EK2

and N(µ) are SU(2)-abelian, since Y is. Since N(µ) is SU(2)-abelian and its
first homology is 2-torsion, Proposition 4.4 says that µ is the unique slope µ0

such that N(µ0) ∼= RP3#RP3.

We now claim that Y2 must be SU(2)-abelian. We know that Y ′ is SU(2)-
abelian, and since the slopes µ0 and λ0 are glued to λ2 and µ2 respectively, we
have

π1(Y ′) =
〈a, b | aba−1 = b−1〉 ∗ π1(EK2)

a2 = µ0 ∼ λ2, b = λ0 ∼ µ2
.

Suppose that there is a non-abelian representation π1(Y2) → SU(2), or equiva-
lently some non-abelian ρ : π1(EK2)→ SU(2) with ρ(µ2) = 1. Then since every
element of SU(2) has a square root, we can extend ρ to π1(Y ′) by setting ρ(b) = 1
and letting ρ(a) be some square root of ρ(λ2). This contradicts the fact that Y ′

is SU(2)-abelian, so Y2 is SU(2)-abelian after all.

Now we recall from Proposition 4.4 that for every t ∈ R/2πZ, there is a
representation ρt : π1(N)→ SU(2) with

ρt(µ0) = −1, ρt(λ0) =

(
eit 0
0 e−it

)
,

and that this has non-abelian image if t 6∈ πZ. If for some t we can find a
representation ρK2 : π1(EK2)→ SU(2) with

ρK2(µ2) =

(
eit 0
0 e−it

)
, ρK2(λ2) = −1,

then we could glue this to the corresponding ρt to get a representation ρ′ :
π1(Y ′)→ SU(2). But then ρK2 has non-abelian image, since otherwise we would
have ρK2(λ2) = 1, and so ρ′ must be non-abelian as well. This would also
contradict the fact that Y ′ is SU(2)-abelian.

In conclusion, we have shown that if Y is SU(2)-abelian then there cannot be
any representations ρ : π1(EK2)→ SU(2) with ρ(λ2) = −1. But such representa-
tions up to conjugacy generate Iw∗

(
(Y2)0(K2)

)
, where w is dual to a meridian of

K2, so the latter invariant must be zero. On the other hand, we know that Y2 is
SU(2)-abelian, and that K2 ⊂ Y2 is nullhomologous with irreducible, boundary-
incompressible complement, so Theorem 2.7 says that Iw∗ ((Y2)0(K2)) 6= 0. This
is a contradiction, so we conclude that the spliced manifold Y could not have
been SU(2)-abelian after all. �

6. Gluing complements of knots in sums of RP3

Our goal in this somewhat lengthy section is to prove the following theorem.
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Theorem 6.1. Let K1 ⊂ Y1 and K2 ⊂ Y2 be nullhomologous knots in rational
homology spheres whose 2-surgeries satisfy

(Y1)2(K1) ∼= #kRP3, (Y2)2(K2) ∼= #`RP3

for some integers k, ` ≥ 1, and suppose that their exteriors EK1 and EK2 are
irreducible and not solid tori. We form a closed 3-manifold

Y = EK1 ∪∂ EK2

by gluing the exteriors along their boundaries so that µ1 ∼ µ−1
2 and λ1 ∼ µ2

2λ2.
Then there is a representation

π1(Y )→ SU(2)

whose restrictions to each of π1(EK1) and π1(EK2) have non-abelian image.

The gluing map used to construct Y in Theorem 6.1 is not arbitrary: it pro-
duces a toroidal 3-manifold whose homology is 2-torsion, and we will eventually
see in §7 that for such manifolds, this is essentially the only gluing map we need
to consider that is not of the form (µ1, λ1) ∼ (λ2, µ2). The proof of Theorem 6.1
will occupy the next several subsections.

6.1. Knots with #nRP3 surgeries. Suppose that Y is a rational homology 3-
sphere, and K ⊂ Y is a nullhomologous knot such that Y2(K) ∼= #nRP3 for some
n ≥ 1. If Y0(K) is irreducible then we have Iw∗ (Y0(K)) 6= 0, which we can use
to understand something about the SU(2) character variety of the complement
of K. We wish to understand exactly when this happens, so that we can almost
always guarantee that Iw∗ (Y0(K)) will be nonzero.

Proposition 6.2. Let Y be a rational homology 3-sphere, and suppose for some
nullhomologous knot K ⊂ Y with irreducible exterior EK = Y \N(K) that either

• Y2(K) ∼= #nRP3, where n ≥ 1; or
• Yp(K) is a lens space of order p for some prime p.

Then Y0(K) is irreducible unless (Y,K) ∼= (S3, U).

Proof. We first consider the case where Y2(K) ∼= #nRP3 for some n ≥ 2. In this
case, the Dehn filling EK(µ2λ) produces the connected sum #nRP3, which is
reducible. Since EK is irreducible, any pair of slopes producing reducible fillings
must have distance 1 [GL96, Theorem 1.2]; but then λ has distance 2 from µ2λ,
so EK(λ) ∼= Y0(K) must be irreducible as well.

From now on we suppose that Yp(K) ∼= L(p, q) for some prime p, which may be
either 2 or odd, so that Y is an integral homology sphere. We will suppose that
Y0(K) is reducible. Then the exterior EK has a reducible Dehn filling (of slope
0) and a Dehn filling with finite fundamental group (of slope p), and these filling
slopes have distance p ≥ 2. A theorem of Boyer and Zhang [BZ98, Theorem 1.2]
thus asserts that one of the following must hold: either

• EK is a simple (i.e., irreducible and atoroidal) Seifert fibered manifold,
or
• EK is a cable on the twisted I-bundle over the Klein bottle.



28 SUDIPTA GHOSH, STEVEN SIVEK, AND RAPHAEL ZENTNER

In the latter case any Dehn filling of EK must contain a Klein bottle, but we
know that there are no embedded Klein bottles in RP3 [BW69]. There are also
no Klein bottles in a lens space L(p, q) where p is odd: any Klein bottle B would
be non-separating, hence [B] would be a nonzero class in H2(L(p, q);Z/2Z) ∼= 0.
Thus EK must be Seifert fibered instead. We refer to [Sco83] for the facts about
Seifert fibered 3-manifolds that we will use below.

If we fix a Seifert fibration on EK , then it extends over any Dehn filling of ∂EK
as long as the filling in question is not along the fiber slope. In particular, the
Seifert fibration extends over either Yp(K) ∼= L(p, q) or Y0(K). If it extends over

Y0(K) then we know that the only non-prime Seifert fibered space is RP3#RP3,
so since Y0(K) is not a rational homology sphere it must be prime; then Y0(K)
is reducible by assumption and also prime, so it must be S1×S2. In either case,
every Seifert fibration on L(p, q) and on S1×S2 has base orbifold homeomorphic
to S2, so the fibration on EK has base orbifold homeomorphic to a disk.

Next, we claim that Y0(K) ∼= S1 × S2. We have already argued that this is
the case if the Seifert fibration on EK extends over Y0(K). If it does not, then
the longitude of K must have been the fiber slope, and since the base orbifold
of EK is orientable, it follows that Y0(K) is a connected sum of lens spaces and
copies of S1 × S2 [Hei74, Proposition 2]. Then from H1(Y0(K);Z) ∼= Z we must
have Y0(K) ∼= S1 × S2 as claimed.

We have shown that the core of 0-surgery on K ⊂ Y is a knot K ′ ⊂ S1 × S2

that admits an L(p, q) surgery, and whose exterior is Seifert fibered. Baker,
Buck, and Lecuona [BBL16, Theorem 1.18] showed that the only such knots are
(a, b)-torus knots in S1×S2, and that if a ≥ 2 then the corresponding lens spaces
are L(na2, nab + 1) for n ∈ Z; but these do not have homology of prime order,
hence cannot be L(p, q). Thus K ′ must be isotopic to S1 ×{pt} ⊂ S1 × S2, and
it follows that (Y,K) ∼= (S3, U). �

Corollary 6.3. Let K ⊂ Y be a nullhomologous knot with irreducible comple-
ment in a rational homology sphere, and suppose that Y2(K) ∼= #nRP3 for some
n ≥ 1 but that (Y,K) 6∼= (S3, U). Then Y is not SU(2)-abelian.

Proof. Proposition 6.2 says that Y0(K) is irreducible, so if w ∈ H2(Y0(K);Z) is
Poincaré dual to a meridian of K, then Iw∗ (Y0(K)) 6= 0 by Theorem 2.2. The
homology of Y is 2-torsion since

H1(Y ;Z)⊕ (Z/2Z) ∼= H1(Y2(K);Z) ∼= (Z/2Z)n

is 2-torsion, so if Y were SU(2)-abelian then Theorem 3.5 would give us a non-
abelian representation π1(Y2(K)) → SU(2). But this is impossible, since every
representation of

π1(Y2(K)) ∼= π1(#nRP3) ∼= (Z/2Z) ∗ · · · ∗ (Z/2Z)

into SU(2) must send each Z/2Z factor into {±1} and thus have central image,
so Y must not be SU(2)-abelian after all. �

6.2. The pillowcase image of a knot with a #nRP3 surgery. Suppose that
Y is a rational homology sphere and that K ⊂ Y is a nullhomologous knot with
irreducible complement such that Y2(K) ∼= #nRP3, and that (Y,K) 6∼= (S3, U).
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Since Corollary 6.3 tells us that Y is not SU(2)-abelian, we cannot argue as in
Lemma 3.3 that the pillowcase image

i∗(X(EK)) ⊂ X(T 2)

avoids the lines {α = 0} and {α = π}: there may be a non-abelian representation
π1(Y ) → SU(2) that sends the homotopy class of the longitude λ to something
non-trivial. In particular, it no longer makes sense to talk about the image
j(X(EK)) in the cut-open pillowcase. Thus in what follows we will stick to the
pillowcase, identified as

(6.1) X(T 2) ∼=
(R/2πZ)× (R/2πZ)

(α, β) ∼ (−α,−β)
.

We will also describe it in terms of a fundamental domain for the above quotient,
namely as

(6.2) X(T 2) ∼=
[0, π]× [0, 2π] (0, β) ∼ (0, 2π − β),

(π, β) ∼ (π, 2π − β),
(α, 0) ∼ (α, 2π)


,

which equips it with a quotient map [0, π]× [0, 2π]→ X(T 2).

Proposition 6.4. Let K ⊂ Y be a nullhomologous knot in a rational homology
sphere with Y2(K) ∼= #nRP3 for some n ≥ 0. Then the pillowcase image

i∗(X(EK)) ⊂ X(T 2)

does not contain any points (α, β) with 2α+β ∈ 2πZ, except for (0, 0) and (π, 0).
Moreover, its intersection with the line

{2α+ β ≡ π (mod 2π)} ⊂ X(T 2)

is connected and contains the point (π2 , 0). (See Figure 6.)

Proof. Let ρ : π1(EK) → SU(2) be a representation with i∗([ρ]) = (α, β) and
2α+ β ∈ πZ. Then up to conjugacy we have

ρ(µ2λ) =

(
ei(2α+β) 0

0 e−i(2α+β)

)
= ±1.

We will consider each value separately below.

If ρ(µ2λ) = 1, then 2α+ β ≡ 0 (mod 2π), and ρ factors through

π1(EK)

⟪µ2λ⟫
∼= π1(Y2(K)) ∼= π1(#nRP3) ∼= (Z/2Z)∗n.

Every homomorphism (Z/2Z)∗n → SU(2) has central image, because each Z/2Z
factor must be sent to {±1}, so in particular this means that ρ must have
central image. But then ρ factors through H1(EK ;Z), and thus it sends the
nullhomologous λ to 1. This is equivalent to β ≡ 0 (mod 2π), and then α ∈ πZ
as claimed.

We assume from now on that ρ(µ2λ) = −1, so 2α + β ≡ π (mod 2π). If the
only such representations satisfy (α, β) = (π2 , 0) then there is nothing to show,
so we will assume that (α, β) is different from (π2 , 0). In particular, since β 6≡ 0
(mod 2π) we know that ρ(λ) 6= 1, and thus ρ must have non-abelian image.
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Figure 6. If Y2(K) ∼= #nRP3, then the image i∗(X(EK)) must
avoid the line {2α + β ∈ 2πZ}, except possibly at its endpoints,
and its intersection with the line {2α + β ≡ π (mod 2π)} must
be connected. (Note that the points (π2 , 0) and (π2 , 2π) are in fact
the same.)

In this case, while ρ itself no longer factors through π1(Y2(K)), the represen-
tation

ad ρ : π1(EK)→ SO(3)

does send µ2λ to the identity. This means that ad ρ factors as a composition

π1(EK) �
π1(EK)

⟪µ2λ⟫
∼= (Z/2Z)∗n

φ−→ SO(3).

It must also have non-trivial image, since otherwise the image of ρ would have
been abelian.

Now we let x1, . . . , xn be generators of the Z/2Z factors of (Z/2Z)∗n. The map
φ sends each xi to an element φ(xi) ∈ SO(3) of order at most 2, hence either to
the identity or to a 180-degree rotation about some axis Li; and it sends at least
one xi to such a rotation, since ad ρ is non-trivial. The space of such rotations is
connected and homeomorphic to RP2, since each rotation is uniquely determined
by its axis and vice versa. Thus we can define a family of homomorphisms

φt : (Z/2Z)∗n → SO(3),

with φ0 = φ and φ1 having abelian image, as follows:

• If φ(xi) = 1 then we let φt(xi) = 1 for all t ∈ [0, 1].
• If φ(xi) is a 180-degree rotation around an axis Li, then we choose a path
γi : [0, 1] → RP2 from [Li] to [1 : 0 : 0] and let φt(xi) be the 180-degree
rotation about γi(t).

We see that φ1 has abelian image of order 2, since it sends each xi to either 1
or the 180-degree rotation about the x-axis, and at least one of the φ1(xi) is a
rotation.
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The corresponding continuous family of homeomorphisms

ρ̄t : π1(EK) �
π1(EK)

⟪µ2λ⟫
∼= (Z/2Z)∗n

φt−→ SO(3)

satisfies ρ̄t(µ
2λ) = 1 for all t ∈ [0, 1] by construction. Moreover, we know that

ρ̄0 = ad ρ lifts to a representation π1(EK) → SU(2), so the obstruction w2(ρ̄0)
to lifting must be zero, and then since w2(ρ̄t) = w2(ρ̄0) by continuity, it follows
that all of the ρ̄t lift to a continuous family of representations

ρt : π1(EK)→ SU(2).

We now have ad ρt(µ
2λ) = 1, so ρt(µ

2λ) must be either 1 or −1, and then

ρt(µ
2λ) = ρ0(µ2λ) = −1

for all t. This says that the pillowcase images i∗([ρt]) = (αt, βt) all lie on the line
2α + β ≡ π (mod 2π). Moreover, since the image in SO(3) of ρ̄1 = ad ρ1 has
order 2, it follows that the lift ρ1 has cyclic image of order 4 in SU(2). But then
ρ1 has abelian image, so we must have (α1, β1) = (π2 , 0), and then the points
(αt, βt) trace a continuous path in i∗(X(EK)) from our original (α, β) = (α0, β0)
to (α1, β1) = (π2 , 0).

We conclude that the intersection

i∗(X(EK)) ∩ {2α+ β ≡ π (mod 2π)} ⊂ X(T 2)

is connected, since it contains a continuous path from every one of its points
to (π2 , 0). It must also contain the point (π2 , 0), as claimed, as the image of an
abelian representation

π1(EK) � H1(EK ;Z) ∼= H1(Y )⊕ Z→ SU(2)

which is trivial on H1(Y ) and sends the meridian generating the Z summand to(
i 0
0 −i

)
. �

Proposition 6.5. Let K ⊂ Y be a nullhomologous knot in a rational homology
sphere with Y2(K) ∼= #nRP3 for some n ≥ 1, and suppose that the exterior EK
is irreducible and that (Y,K) 6∼= (S3, U). Then the pillowcase image

i∗(X(EK)) ⊂ X(T 2)

satisfies exactly one of the following:

(1) The image i∗(X(EK)) contains the entire line {2α+ β ≡ π (mod 2π)}.
(2) The image i∗(X(EK)) contains neither P = (0, π) nor Q = (π, π), and

then it contains a homologically essential simple closed curve

C ⊂ i∗(X(EK)) ⊂ X(T 2) \ {P,Q}

that is disjoint from the line {2α+ β ∈ 2πZ}.

Proof. Proposition 6.4 tells us that i∗(X(EK)) contains all of {2α + β ≡ π
(mod 2π)} if and only if it contains both of the endpoints P = (0, π) and Q =
(π, π), since its intersection with this line is connected. We further observe that
it contains P if and only if it contains Q, since we can multiply a representation

ρ : π1(EK)→ SU(2)
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with ρ(µ) = ±1 and ρ(λ) = −1 by a central character

χ : π1(EK) � H1(EK) ∼= H1(Y )⊕ Z→ {±1}
sending the meridian (as a generator of the Z summand) to −1 in order to get
a new representation ρ̃ with ρ̃(µ) = ∓1 and ρ̃(λ) = −1. Thus if i∗(X(EK)) does
not contain the entire line {2α + β ≡ π}, then it cannot contain either of P or
Q.

Now we suppose that P,Q 6∈ i∗(X(EK)). Since EK is irreducible and (Y,K) 6∼=
(S3, U), Proposition 6.2 and Theorem 2.2 tell us that Iw∗ (Y0(K)) 6= 0, where
w ∈ H2(Y0(K)) is Poincaré dual to a meridian of K. Using the assumption that
P,Q 6∈ i∗(X(EK)), we can now apply Proposition 3.1 to get the desired essential
curve C ⊂ i∗(X(EK)) \ {P,Q}.

Finally, suppose that the curve C intersects the line {2α+β ∈ 2πZ}; according
to Proposition 6.4, this can only happen at a point of the form (kπ, 0) where k
is 0 or 1. Parametrizing C by a continuous, injective map

f : R/Z ↪→ i∗(X(EK)) ↪→ X(T 2)

so that f(0) = (kπ, 0), we claim that there must be a sequence tn → 0 such that
f(tn) is not on the line {β = 0}: assuming otherwise, there is some ε > 0 such
that f restricts to a continuous, injective map

f |(−ε,ε) : (−ε, ε) ↪→ [0, π]× {0} ↪→ X(T 2),

with 0 sent to an endpoint (kπ, 0) of the line segment [0, π] × {0}, and this is
impossible. Now since f(tn) ∈ i∗(X irr(EK)) and tn → 0, we see that f(0) =
(kπ, 0) is a limit point of the image i∗(X irr(EK)). But H1(Y ) is 2-torsion, since
H1(Y )⊕(Z/2Z) ∼= (Z/2Z)⊕n, so Lemma 3.2 says this can only happen if Y2(K) ∼=
#nRP3 is not SU(2)-abelian, a contradiction. We conclude that C cannot pass
through (kπ, 0) after all. �

6.3. Symmetries of the pillowcase. We do not need to use instanton homol-
ogy for the remainder of this section, since Propositions 6.4 and 6.5 will suffice
for the proof of Theorem 6.1. Given a nullhomologous knot K ⊂ Y , we will
therefore write

IK = i∗(X(EK)) ⊂ X(T 2)

for the pillowcase image of the SU(2)-character variety of K.

With the gluing map of Theorem 6.1 in mind, we now define a map

σ : X(T 2)→ X(T 2)

in terms of the coordinates (6.1), by the formula

σ(α, β) = (−α, 2α+ β) = (α, 2π − (2α+ β)).

See Figure 7. It is straightforward to check that this is well-defined, that σ2 = Id
and thus σ is a homeomorphism, and that

σ(0, β) = (0, β),

σ(π, β) = (π, β)

for all β. Our goal in this subsection is to understand the image under σ of
the image IK = i∗(X(EK)) in the pillowcase, where K ⊂ Y is a knot as in the
statement of Theorem 6.1. Indeed, the representation promised by Theorem 6.1



RATIONAL HOMOLOGY 3-SPHERES AND SL(2,C) REPRESENTATIONS 33

0
α

π

0

β

2π

0
α

π

0

β

2π

0
α

π

0

β

2π

pillow

-case

τ−→

pillow

-case

σ←−

p
i
l
l
o
w

-
c
a
s
e

p
i
l
l
o
w

-
c
a
s
e

p
i
l
l
o
w

-
c
a
s
e

Figure 7. The involutions σ and τ of the pillowcase X(T 2).

will eventually come from finding a point in the pillowcase where one image IK1

intersects another skewed image σ(IK2).

Lemma 6.6. Define an involution of the pillowcase X(T 2) by

τ(α, β) = (π − α, 2π − β)

in either of the coordinates (6.1) or (6.2), as shown in Figure 7. If K ⊂ Y is a
nullhomologous knot in an arbitrary 3-manifold, then the pillowcase image

IK := i∗(X(EK)) ⊂ X(T 2)

is invariant (as a set) under τ , meaning that τ(IK) = IK , and so is the image
σ(IK).

Proof. We work with (6.1) for convenience. Take a point (α, β) ∈ IK , which
means that there is some representation ρ : π1(EK)→ SU(2) such that

ρ(µ) =

(
eiα 0
0 e−iα

)
, ρ(λ) =

(
eiβ 0
0 e−iβ

)
.

We take a central character

χ : π1(EK) � H1(EK) ∼= H1(Y )⊕ Z→ {±1},

defined by sending H1(Y ) to +1 and the meridian µ (which generates the Z
summand) to −1, and then we get a new representation

ρ̃ = χ · ρ : π1(EK)→ SU(2)

such that i∗([ρ̃]) = (α+ π, β). In X(T 2) we can identify

(α+ π, β) ∼ (−α− π,−β) = (π − α, 2π − β) = τ(α, β),

so τ(α, β) also lies in the image IK . This proves that IK is τ -invariant.
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We now claim that σ ◦ τ = τ ◦ σ, which we can check directly by computing

σ(τ(α, β)) = σ(π − α, 2π − β)

= (π − α, 2π − (2(π − α) + (2π − β)))

= (π − α,−2π + 2α+ β)

= τ(α, 2π − (2α− β))

= τ(σ(α, β)).

But then we apply this to the τ -invariant set IK to get

σ(IK) = σ(τ(IK)) = τ(σ(IK)),

so σ(IK) is τ -invariant as well. �

We can now use the involution τ to study the skewed image σ(IK) of the
character variety of K.

Lemma 6.7. Let K ⊂ Y be a nullhomologous knot in a rational homology
sphere with Y2(K) ∼= #nRP3 for some n ≥ 0, and suppose that K has irreducible
complement and that (Y,K) 6∼= (S3, U). Then exactly one of the following must
be true:

(1) The image σ(IK) ⊂ X(T 2) contains the entire line Lπ = {β ≡ π
(mod 2π)}.

(2) The image σ(IK) ⊂ X(T 2) avoids the points P = (0, π) and Q = (π, π),
and contains a homologically essential simple closed curve

C̃ ⊂ X(T 2) \ {P,Q}

such that C̃ is disjoint from the line L0 = {β ∈ 2πZ}.

Moreover, the intersection σ(IK) ∩ Lπ is connected.

Proof. Proposition 6.5 tells us that either IK contains the line L′π = {2α+β ≡ π
(mod 2π)}, or it avoids P and Q and contains a homologically essential simple
closed curve

C ⊂ IK ⊂ X(T 2) \ {P,Q}

that is disjoint from the line L′0 = {2α + β ≡ 0 (mod 2π)}. In the first case,
σ(IK) contains the line σ(L′π) = {β ≡ π (mod 2π)} = Lπ.

In the second case, we note that σ fixes both P and Q, hence restricts to a
homeomorphism

X(T 2) \ {P,Q}
∼=−→ X(T 2) \ {P,Q}.

But then σ(C) avoids P and Q, just as C does, and it remains homologically

essential in their complement. We take C̃ = σ(C), and note that C̃ is disjoint
from the line σ(L′0), which is precisely {β ∈ 2πZ} = L0.

Finally, in either case Proposition 6.4 tells us that the intersection IK ∩L′π is
connected, so the same is true of its image under σ, which is σ(IK) ∩ σ(L′π) =
σ(IK) ∩ Lπ. �
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6.4. Intersections of pillowcase images. We are now ready to prove the fol-
lowing proposition, which will imply Theorem 6.1, as discussed at the beginning
of the previous subsection.

Proposition 6.8. Let Y1 and Y2 be rational homology spheres, and let K1 ⊂
Y1 and K2 ⊂ Y2 be nullhomologous knots with irreducible exteriors such that
(Y`)2(K`) ∼= #n`RP3 for ` = 1, 2, where n1, n2 ≥ 1. Suppose that neither pair
(Y`,K`) is homeomorphic to (S3, U). Then the subsets

IK1 , σ(IK2) ⊂ X(T 2)

intersect at some point (α, β), where neither 2α+β nor β is an integer multiple
of 2π.

We split the proof of Proposition 6.8 into two cases, which occupy the following
two lemmas.

Lemma 6.9. Proposition 6.8 holds if at least one of the pillowcase images IK1

and IK2 contains the point P = (0, π).

Proof. We note that σ(P ) = P , so if P belongs to both IK1 and IK2 then it also
belongs to σ(IK2) and hence to IK1 ∩ σ(IK2); in this case we have 2α+ β = β =
π 6∈ 2πZ, as desired.

Now suppose that P ∈ IK1 , but that P 6∈ IK2 and hence P = σ(P ) 6∈ σ(IK2).
Then Proposition 6.5 says that IK1 contains the entire line

L′π = {2α+ β ≡ π (mod 2π)},
whose endpoints are at P = (0, π) and Q = (π, π); and Lemma 6.7 says that
σ(IK2) contains a homologically essential simple closed curve

C̃2 ⊂ X(T 2) \ {P,Q}
disjoint from the line {β ∈ 2πZ}. Since X(T 2) \ {P,Q} is topologically a twice-
punctured sphere, with first homology Z, we can measure the homology class
of C̃2 by counting its intersections with any arc from P to Q. The line L′π is

such an arc, and since C̃2 is non-zero in homology we conclude that they must
intersect. We let (α, β) be any point of the intersection L′π ∩ C̃2; then (α, β)

belongs to IK1 ∩ σ(IK2) by definition, and as a point of L′π and of C̃2 it satisfies
2α+ β 6∈ 2πZ and β 6∈ 2πZ respectively, as desired.

The remaining case, where P 6∈ IK1 and P ∈ σ(IK2), is nearly identical. In
this case σ(IK2) contains the entire line Lπ = {β ≡ π (mod 2π)} from P to Q by
Lemma 6.7, while Proposition 6.5 gives us an essential curve C1 ⊂ X(T 2)\{P,Q}
in the image IK1 , with C1 disjoint from {2α+ β ∈ 2πZ}. Since C1 is essential it
must intersect the arc Lπ from P to Q, and at any point (α, β) in the intersection
we have β 6∈ 2πZ since (α, β) ∈ Lπ, and 2α+ β 6∈ 2πZ since (α, β) ∈ C1. �

Lemma 6.10. Proposition 6.8 holds if neither IK1 nor IK2 contains the point
P = (0, π).

Proof. Letting Q = (π, π), Proposition 6.5 tells us that there is a homologically
essential, simple closed curve

C1 ⊂ IK1 ⊂ X(T 2) \ {P,Q}
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that is disjoint from the line {2α+ β ∈ 2πZ}. Similarly, by Lemma 6.7 there is
an essential curve

C̃2 ⊂ σ(IK2) ⊂ X(T 2) \ {P,Q}
that is disjoint from the line {β ∈ 2πZ}. We will let τ : X(T 2) → X(T 2) be
the involution of Lemma 6.6, which exchanges the points P and Q and fixes the
images IK1 and σ(IK2) setwise. (In particular, we note that τ(C̃2) ⊂ σ(IK2) as
well.)

First, we observe that if the intersection(
C1 ∪ τ(C1)

)
∩
(
C̃2 ∪ τ(C̃2)

)
is nonempty, then any point (α, β) in the intersection will suffice. It must satisfy
2α + β 6∈ 2πZ since it lies on either C1 or τ(C1), and then β 6∈ 2πZ since it lies

on either C̃2 or τ(C̃2). Thus we may assume from now on that the sets(
C1 ∪ τ(C1)

)
and

(
C̃2 ∪ τ(C̃2)

)
are disjoint.

Since each of the simple closed curves C1, τ(C1), C̃2, and τ(C̃2) is homo-
logically essential in X(T 2) \ {P,Q}, they must all separate P = (0, π) from
Q = (π, π) and intersect the line segment

Lπ = [0, π]× {π}

from P to Q. Let α0 ∈ [0, π] be the minimal coordinate such that at least one
of these four curves passes through (α0, π), and let γ be the curve in question.
We split the remainder of the proof into two cases.

Case 1: The curve γ is either C̃2 or τ(C̃2).

Letting D be the disk component of X(T 2) \ γ that contains P , we claim
that in this case C1 must be disjoint from D, as shown in Figure 8. Assuming
otherwise, it would be contained in the punctured disk D\{P} (since it is disjoint
from γ = ∂D), and it is disjoint from the arc [0, α0] × {π} from P to ∂D by
assumption, so it would necessarily be nullhomotopic in D \ {P}. This would
mean that C1 bounds a disk D′ ⊂ D that does not contain P , and then D′

cannot contain Q either since Q 6∈ D, so C1 = ∂D′ would not separate P from
Q in X(T 2), a contradiction. Thus we know that the disk D bounded by γ is
disjoint from C1, and by an identical argument it is also disjoint from τ(C1).

Applying the involution τ , we know that the disk τ(D) is bounded by τ(γ)
and contains τ(P ) = (π, π) = Q. This disk must be disjoint from both C1

and τ(C1), since otherwise we could apply τ again to see that either τ(C1) or
τ2(C1) = C1 meets τ2(D) = D, which we know to be impossible. So now the
simple closed curve C1 is disjoint from both D and τ(D), whose boundaries are

C̃2 and τ(C̃2) in some order, and it separates P ∈ D from Q ∈ τ(D). It follows
that D and τ(D) lie in different components of the complement X(T 2)\C1, and

in particular so do their boundaries C̃2 and τ(C̃2).

Now the curves C̃2 and τ(C̃2) both intersect the line segment Lπ: by as-
sumption one of them does at x = (α0, π), and then the other one must meet
Lπ at τ(x) = (π − α0, π). Then x and τ(x) lie in different components of
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Figure 8. The case of Lemma 6.10 where γ is either C̃2 or τ(C̃2).

The curve C1 ⊂ IK1 separates C̃2 from τ(C̃2), so it must meet
a segment of Lπ = [0, π] × {π} connecting one to the other, and
this segment lies in σ(IK2), so the intersection IK1 ∩ σ(IK2) is
non-empty.

X(T 2) \ C1. They also belong to the intersection σ(IK2) ∩ Lπ, which is con-
nected by Lemma 6.7, so there must be some point

(α, β) ∈ σ(IK2) ∩ Lπ
that also lies in C1. Then (α, β) belongs to IK1 ∩ σ(IK2), we have β = π 6∈ 2πZ
since (α, β) ∈ Lπ, and similarly 2α + β 6∈ 2πZ since (α, β) ∈ C1. Thus (α, β) is
our desired point of intersection, and this proves the lemma in the case where γ
is either C̃2 or τ(C̃2).

Case 2: The curve γ is either C1 or τ(C1).

In this case, an identical argument shows that C1 and τ(C1) lie in different

components of the complement X(T 2) \ C̃2. Now the line segment

L′π = {(α, π − 2α) | 0 ≤ α ≤ π}
= {2α+ β ≡ π (mod 2π)}

in X(T 2) has its endpoints at P and Q, so it must intersect any homologically
essential curve in X(T 2)\{P,Q}. This includes the curve C1, so we take a point

x ∈ C1 ∩ L′π
and note that τ(x) ∈ τ(C1) ∩ L′π as well, since τ fixes L′π setwise.

Now Proposition 6.4 says that the intersection IK1 ∩ L′π is connected. This
intersection contains both x and τ(x), which lie in different components of

X(T 2) \ C̃2 since they belong to C1 and τ(C1) respectively. It follows that

IK1 ∩ L′π must intersect C̃2 ⊂ σ(IK2) at some point

(α, β) ∈ IK1 ∩ L′π.
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We have 2α + β 6∈ 2πZ since (α, β) ∈ L′π, and β 6∈ 2πZ since (α, β) ∈ C̃2, so
(α, β) is the desired point and we are done. �

Proof of Proposition 6.8. One of the following must apply: either P = (0, π) lies
in at least one of IK1 and IK2 , or it lies in neither of them. In the first case we
apply Lemma 6.9, and in the second case we apply Lemma 6.10. �

6.5. Constructing a representation. We are finally ready to prove Theo-
rem 6.1, using the information provided by Proposition 6.8. We recall the hy-
potheses of Theorem 6.1 here for convenience: we have nullhomologous knots
K1 ⊂ Y1 and K2 ⊂ Y2, whose exteriors are irreducible and not solid tori, and
these satisfy

(Y1)2(K1) ∼= #kRP3, (Y2)2(K2) ∼= #`RP3.

The closed manifold Y = EK1 ∪∂ EK2 is then formed from their exteriors by
gluing µ1 and λ1 to µ−1

2 and µ2
2λ2, respectively.

Proof of Theorem 6.1. Since the exteriors EK1 and EK2 are not solid tori, Propo-
sition 6.8 tells us that there is a point

(α, β) ∈ i∗(X(EK1)) ∩ σ
(
i∗(X(EK2))

)
in the pillowcase X(T 2) such that β 6∈ 2πZ and 2α+ β 6∈ 2πZ. Since (α, β) lies
in i∗(X(EK1)), this means that there is a representation

ρ1 : π1(EK1)→ SU(2)

such that

ρ1(µ1) =

(
eiα 0
0 e−iα

)
, ρ1(λ1) =

(
eiβ 0
0 e−iβ

)
,

and ρ1 has non-abelian image, since β 6∈ 2πZ implies that ρ1(λ1) 6= 1.

Similarly, since σ is an involution of the pillowcase, there is a unique point
(γ, δ) ∈ X(T 2) such that

σ(γ, δ) = (α, β).

Then since (α, β) lies in σ
(
i∗(X(EK2))

)
we have (γ, δ) ∈ i∗(X(EK2)), so there is

a representation

ρ2 : π1(EK2)→ SU(2)

such that

ρ2(µ2) =

(
eiγ 0
0 e−iγ

)
, ρ2(λ2) =

(
eiδ 0
0 e−iδ

)
.

We have (γ, δ) = σ(α, β) = (−α, 2α+ β) as well, so the condition 2α+ β 6∈ 2πZ
is equivalent to δ 6∈ 2πZ. This means that ρ2(λ2) 6= 1, so ρ2 also has non-abelian
image.

Now from (α, β) = σ(γ, δ) = (−γ, 2γ+δ) we conclude that, up to replacing ρ2

with a conjugate to replace the coordinates (γ, δ) with the equivalent (−γ,−δ),
we have

ρ1(µ1) = ρ2(µ−1
2 ),

ρ1(λ1) = ρ2(µ2
2λ2).
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This says that when we form the closed 3-manifold

Y = EK1 ∪∂ EK2

by gluing µ1 to µ−1
2 and λ1 to µ2

2λ2, the representations ρ1 and ρ2 agree on the
common torus ∂EK1 ∼ ∂EK2 , and so we can glue them together to define

ρ : π1(Y )→ SU(2)

whose restrictions to EK1 and EK2 are the non-abelian representations ρ1 and
ρ2, as desired. �

7. Toroidal manifolds as unions of knot complements

In this section we prepare to prove Theorem 1.2 by studying toroidal 3-
manifolds of the form

Y = M1 ∪T M2,

where H1(Y ;Z) is p-torsion for some prime p and each Mi is a compact orientable
3-manifold with boundary T . Our goal is to express the Mi as complements of
knots in rational homology spheres, which can be glued together in a standard
way so that when p = 2, we will be able to find representations of each π1(Mi)
by using the results of the previous sections.

7.1. Nullhomologous rational longitudes. In this subsection, we suppose
that Y = M1 ∪T M2 has a separating incompressible torus T , and that the
rational longitudes of M1 and M2 are both nullhomologous. Under these as-
sumptions, we will express M1 and M2 as the complements of nullhomologous
knots in closed 3-manifolds, with a short list of standard forms for the gluing
map ∂M1

∼= ∂M2.

Proposition 7.1. Let Y = M1 ∪T M2 be a closed 3-manifold with H1(Y ;Z) ∼=
(Z/pZ)r, for some prime p and integer r ≥ 0, and with separating incompressible
torus T . Suppose that the rational longitudes of M1 and M2 are both nullhomol-
ogous. Then there are closed 3-manifolds Y1 and Y2, with

H1(Y1;Z) ∼= (Z/pZ)k,

H1(Y2;Z) ∼= (Z/pZ)`

for some integers k and `, and nullhomologous knots K1 ⊂ Y1 and K2 ⊂ Y2 with
exteriors

Mi
∼= Yi \N(Ki) (i = 1, 2),

such that one of the following holds.

(1) k + ` = r, and the identification ∂M1
∼= ∂M2 sends (µ1, λ1) to (λ2, µ2).

In this case there are degree-1 maps Y → Yi for each i = 1, 2.
(2) k + ` = r − 1, and the identification ∂M1

∼= T ∼= ∂M2 equates

µ1 = aµ2 + bλ2, λ1 = pµ2 + cλ2

in H1(T ), for some integers a, b, c with ac− bp = −1 and 0 ≤ b < c < p.
Then there are degree-1 maps

Y → (Y1)−p/a(K1) and Y → (Y2)p/c(K2).
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In particular, when p = 2 we must have (a, b, c) = (−1, 0, 1), so that
(µ1, λ1) is sent to (−µ2, 2µ2 + λ2) and there are degree-1 maps Y →
(Yi)2(Ki) for i = 1, 2.

Each of these degree-1 maps induces a surjection on π1 with non-trivial kernel.

To prove Proposition 7.1, we begin by finding candidate pairs (Yi,Ki) some-
what arbitrarily, and then in the subsequent lemma we will use Dehn surgery to
make better choices as needed.

Lemma 7.2. Let Y be a closed 3-manifold satisfying H1(Y ;Z) ∼= (Z/pZ)r for
some prime p and integer r ≥ 0, and suppose that Y has an incompressible
torus T separating it into Y = M1 ∪T M2. Suppose in addition that the rational
longitudes of M1 and M2 are both nullhomologous. Then there is a pair of closed
3-manifolds Y1 and Y2 with

H1(Y1;Z) ∼= (Z/pZ)k, H1(Y2;Z) ∼= (Z/pZ)`,

together with nullhomologous knots K1 ⊂ Y1 and K2 ⊂ Y2 whose exteriors are

M1
∼= Y1 \N(K1), M2

∼= Y2 \N(K2)

respectively, such that if (µi, λi) are meridian-longitude pairs for each Ki then
either

(1) k + ` = r, and the gluing ∂M1
∼= ∂M2 identifies µ1 with λ2 and λ1 with

µ2;
(2) or k + ` = r − 1, and in ∂M1

∼= ∂M2 we have λ1 = pµ2 + cλ2 for some
c ∈ Z that is not a multiple of p.

Proof. Let ji : T ↪→ Mi denote inclusion, and let λ1 and λ2 be the rational
longitudes of M1 and M2, so that the classes (j1)∗(λ1) and (j2)∗(λ2) are both
zero by assumption.

We let M1(λ2) denote the Dehn filling of M1 along the slope λ2. Since λ2 is
nullhomologous in M2, Proposition 4.2 provides a degree-1 pinching map Y →
M1(λ2) that collapses M2 to a solid torus. Degree-1 maps are surjective on
fundamental groups and hence on first homology, so there is a surjection

H1(Y ;Z) � H1(M1(λ2);Z)

and hence H1(M1(λ2);Z) is a quotient of H1(Y ;Z) ∼= (Z/pZ)r. This means that
H1(M1(λ2);Z) ∼= (Z/pZ)s for some s ≤ r.

We now pick a curve µ1 ⊂ T such that {λ1, µ1} is an integral basis of H1(T );
if {λ1, λ2} is an integral basis then we will insist that µ1 = λ2. We then let

Y1 = M1(µ1),

and we take K1 ⊂ Y1 to be the core of this Dehn filling. Then K1 is nullhomolo-
gous, with meridian µ1 and longitude λ1. The manifold M1(λ2) can be built by
Dehn surgery on K1, say with some slope a

b , and then

H1(Y1;Z)⊕ (Z/aZ) ∼= H1(M1(λ2);Z) ∼= (Z/pZ)s

implies that |a| divides p. The homology H1(Y1;Z) must then have the form
(Z/pZ)k, where k is either s or s− 1 depending on whether |a| is 1 or p, respec-
tively.
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By the same argument we can pick a Dehn filling Y2 = M2(µ2), with nullho-
mologous core K2, so that H1(Y2;Z) ∼= (Z/pZ)`. Again, if {λ1, λ2} is an integral
basis of H1(T ) then we will take µ2 = λ1; in this case we have µ1 = λ2 as
well, which is consistent with the fact that the identification ∂M1

∼= ∂M2 is
orientation-reversing.

We now compute that H2(Y ;Z) = 0, so the Mayer-Vietoris sequence for Y =
M1 ∪T M2 consists in part of a short exact sequence

0→ H1(T )︸ ︷︷ ︸
∼=Z2

((j1)∗,(j2)∗)−−−−−−−→ H1(M1)︸ ︷︷ ︸
∼=Z⊕(Z/p)k

⊕ H1(M2)︸ ︷︷ ︸
∼=Z⊕(Z/p)`

→ H1(Y )︸ ︷︷ ︸
∼=(Z/p)r

→ 0.

The image of (j1)∗ is spanned by (j1)∗(µ1) = (1, 0) ∈ Z ⊕ (Z/p)k and by
(j1)∗(λ1) = (0, 0), so it is precisely the Z summand of H1(M1), and likewise
for the image of (j2)∗. Thus H1(Y ) ∼= (Z/pZ)r is homeomorphic to (Z/pZ)k+`

plus the cokernel of the injective map

H1(T )
j−→ Z〈µ1〉 ⊕ Z〈µ2〉,

whose codomain is viewed as a subset of H1(M1)⊕H1(M2).

We observe that coker(j) is cyclic, since the image of j contains j(µ1) = (1, a)
for some a ∈ Z. We also know that coker(j) is p-torsion, as a summand of
H1(Y ) ∼= (Z/pZ)r. Thus either

• coker(j) ∼= Z/pZ and k + ` = r − 1, or
• j is onto and k + ` = r.

If j is onto then it sends some element aµ1 + bλ1 to (0, 1); we must have a = 0,
since (j1)∗(λ1) = 0 in H1(M1), and then bλ1 7→ (0, 1) implies that b = ±1.
This means that λ1 is homologous to ±µ2 as elements of H1(M2), hence λ1 =
±(µ2 + nλ2) in H1(T ). But then in H1(T ) we have

span{λ1, λ2} = span{µ2 + nλ2, λ2}
= span{µ2, λ2}
= H1(T ),

so we must have taken µ1 = λ2 and λ1 = µ2, as claimed.

In the remaining case, where coker(j) ∼= Z/pZ and k + ` = r − 1, we know
that

j(µ1) = (1, a),

j(λ1) = (0, b)

for some a, b ∈ Z, and since {µ1, λ1} is an integral basis of H1(T ) we have
|b| = |coker(j)| = p. Up to changing the orientation of K2, and hence the sign
of µ2, we can take b = p. This means that as classes in H1(T ) we have

λ1 = pµ2 + cλ2

for some c ∈ Z, and since λ1 is primitive we must have p - c. �

In what follows we will always let µ1, λ1 and µ2, λ2 be meridian–longitude
pairs for K1 and K2 respectively. We will suppose that they are identified as
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classes in H1(T ) by the relations

µ2 = aµ1 + bλ1, λ2 = cµ1 + dλ1.(7.1)

Since both (µ1, λ1) and (µ2, λ2) are integral bases of H1(T ) ∼= Z2, and the gluing
map ∂M1 → ∂M2 reverses orientation, we must have ad− bc = −1, and then we
can rewrite these relations as

µ1 = −dµ2 + bλ2, λ1 = cµ2 − aλ2.(7.2)

We now study the case of Lemma 7.2 where k + ` = r − 1.

Lemma 7.3. Suppose that we have Y = M1 ∪T M2 as in Lemma 7.2, with
H1(Y ;Z) ∼= (Z/pZ)r, and that the resulting K1 ⊂ Y1 and K2 ⊂ Y2 satisfy

H1(Y1;Z) ∼= (Z/pZ)k,

H1(Y2;Z) ∼= (Z/pZ)`

where k + ` = r − 1. Then we can arrange the gluing map to identify

(7.3)
µ1 = aµ2 + bλ2

λ1 = pµ2 + cλ2

as elements of H1(T ;Z), where the coefficients satisfy ac − bp = −1 and 0 ≤
b < c < p. In particular, when p = 2 we have (µ1, λ1) = (−µ2, 2µ2 + λ2), or
equivalently (µ2, λ2) = (−µ1, 2µ1 + λ1).

Proof. We already know from Lemma 7.2 that λ1 = pµ2 + cλ2 for some integer
c 6≡ 0 (mod p). We write c = qp + r, with 0 < r < p, and then let Y ′2 be the
result of (1/q)-surgery on K2 ⊂ Y2, with K ′2 ⊂ Y ′2 the core of this surgery. Then
Y ′2 has the same homology as Y2, and K ′2 is still nullhomologous, with longitude
λ′2 = λ2 and meridian

µ′2 = µ2 + qλ2.

In terms of the peripheral curves for K ′2, we have

λ1 = pµ2 + (pq + r)λ2

= p(µ2 + qλ2) + rλ2

= pµ′2 + rλ′2.

We thus replace (Y2,K2) with (Y ′2 ,K
′
2), so now we have λ1 = pµ2 + c′λ2 where

c′ = r is strictly between 0 and p.

Having arranged that 0 < c < p as above, we have an identification

µ1 = aµ2 + bλ2

λ1 = pµ2 + cλ2

for some integers a and b. Since the gluing map ∂M1
∼= ∂M2 is an orientation-

reversing homeomorphism, we have ac − bp = −1. We now write b = nc + s,
where n ∈ Z and 0 ≤ s < c, and let Y ′1 be the result of (− 1

n)-surgery on K1 ⊂ Y1,
with core K ′1. Then K ′1 has meridian µ′1 = µ1 − nλ1 and longitude λ′1, so that
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we identify λ′1 = λ1 = pµ2 + cµ2 and

µ′1 = (aµ2 + bλ2)− n(pµ2 + cλ2)

= (a− np)µ2 + (b− nc)λ2

= a′µ2 + b′λ2

with a′ = a − np and b′ = b − nc = s. We can thus arrange that the coefficient
b′ = s satisfies 0 ≤ b′ < c, as desired.

We now have arranged for the coefficients of (7.3) to satisfy 0 < c < p and
0 ≤ b < c, as desired. The relation ac − bp = −1 is an immediate consequence
of the fact that the identification ∂M1

∼= ∂M2 is an orientation-reversing home-
omorphism. And finally, in the case p = 2 these relations imply one after the
other that c = 1, b = 0, and a = −1, as claimed. �

Putting the above lemmas together now allows us to prove Proposition 7.1.

Proof of Proposition 7.1. Lemma 7.2 combines with Lemma 7.3 (in the case k+
` = r − 1) to show that we can find K1 ⊂ Y1 and K2 ⊂ Y2 as claimed.

Since λ2 is nullhomologous in M2 = Y2 \N(K2), there is a degree-1 map

h : Y →M1(λ2),

built from Proposition 4.2 by preserving M1 but pinching M2 to a solid torus in
which µ1 ⊂ T bounds a disk. The same argument, with the roles of M1 and M2

switched, gives a degree-1 map Y →M2(λ1). Now in the case k+ ` = r we have

M1(λ2) = M1(µ1) ∼= Y1,

M2(λ1) = M2(µ2) ∼= Y2,

so Y admits degree-1 maps onto both Y1 and Y2. Otherwise, we have k+` = r−1,
with identifications

(µ1, λ1) = (aµ2 + bλ2, pµ2 + cλ2)

in H1(T ) where ac− bp = −1, implying that

pµ1 − aλ1 = (pb− ac)λ2 = λ2.

Then we can fill each of M1 and M2 along the rational longitudes λ2 and λ1 to
get

M1(λ2) = M1(pµ1 − aλ1) ∼= (Y1)−p/a(K1),

M2(λ1) = M2(pµ2 + cλ2) ∼= (Y2)p/c(K2),

so there are degree-1 maps from Y onto each of these. In both cases, each of the
maps from Y induce surjections on π1, because they have degree 1; to see that
these surjections have non-trivial kernel, we note that π1(T ) injects into π1(Y ),
and yet either λ2 or λ1 (whichever one is filled to produce the respective maps)
is a homotopically essential curve in T , and hence in Y , that bounds a disk in
the quotient. �

Remark 7.4. In Lemma 7.3, and hence in Proposition 7.1, we can replace the
condition 0 ≤ b < c < p with 0 ≤ b < c ≤ p

2 if we are allowed to possibly reverse
the orientation of Y . Indeed, in the proof of the lemma we wrote c = qp+ r and
replaced c with r by performing 1

q -surgery on K2. We chose the remainder r to
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satisfy 0 < r < p, but suppose that we arrange for −p
2 < r ≤ p

2 instead. In this
case, if c′ = r is negative then we can replace Y with −Y before continuing: we
reverse the orientations of Y1 and Y2, and also reverse the string orientation of
K1 but not that of K2. This reverses the peripheral curves λ1 and µ2, but not
µ1 or λ2, and so the relation

λ1 = pµ2 + c′λ2, −p
2 < c′ < 0

becomes λ1 = pµ2 + (−c′)λ2, where the coefficient −c′ is now positive and less
than p

2 . We then replace c with −c′ and follow the rest of the proof as written
to achieve 0 ≤ b < c ≤ p

2 .

7.2. The homologically essential case. In this subsection, we consider de-
compositions of the form Y = M1 ∪T M2 where at least one of the rational
longitudes of the Mi is homologically essential. Our goal is to prove the follow-
ing.

Proposition 7.5. Let Y = M1 ∪T M2 be a toroidal manifold, where T is an
incompressible torus, and suppose that H1(Y ;Z) ∼= (Z/pZ)r for some prime p
and integer r ≥ 0. Let λ1, λ2 ⊂ T be the rational longitudes of M1 and M2,
respectively, and suppose that λ1 is not nullhomologous in M1. Then there are
closed 3-manifolds Y1 and Y2, with

H1(Y1;Z) ∼= (Z/pZ)k, H1(Y2;Z) ∼= (Z/pZ)`

where k ≥ 2 and k + ` = r, and knots K1 ⊂ Y1 and K2 ⊂ Y2 satisfying the
following.

(1) The knot K1 is homologically essential, of order p, while K2 is nullho-
mologous.

(2) M1 and M2 are the exteriors of K1 and K2, i.e., Mi
∼= Yi \N(Ki).

(3) The identification ∂M1
∼= T ∼= ∂M2 sends µ1 to λ2 and λ2 to µ1.

(4) There is a degree-1 map Y → Y1, inducing a surjection π1(Y )→ π1(Y1)
with non-trivial kernel.

We begin with some lemmas allowing us to find nice bases for H1(M1) and
H1(M2), and to express the rational longitudes for each in these bases.

Lemma 7.6. Let Y = M1 ∪T M2 be a toroidal manifold, with H1(Y ;Z) ∼=
(Z/pZ)r for some prime p and integer r ≥ 0. Let λ1, λ2 ⊂ T be the rational
longitudes of M1 and M2, respectively. If some λj is not nullhomologous in Mj,
then the following are true.

• Exactly one of the λj is not nullhomologous, and it satisfies p·(ij)∗(λj) =
0 in H1(Mj ;Z).
• The curves λ1 and λ2 form an integral basis of H1(T ;Z) ∼= Z2.

Here the maps ij : T ↪→Mj are the respective inclusions of ∂Mj into Mj.

Proof. We examine the Mayer–Vietoris sequence for Y = M1∪TM2, which reads
in part

(7.4) 0→ H1(T )︸ ︷︷ ︸
∼=Z2

i=((i1)∗,(i2)∗)−−−−−−−−−→ H1(M1)⊕H1(M2)
q−→ H1(Y )︸ ︷︷ ︸
∼=(Z/p)r

→ 0



RATIONAL HOMOLOGY 3-SPHERES AND SL(2,C) REPRESENTATIONS 45

since H2(Y ;Z) ∼= 0. Each of the H1(Mj) has rank at least 1 by half lives half
dies, and this sequence shows that their total rank is 2, so we can write

H1(Mj ;Z) ∼= Z⊕Aj (j = 1, 2)

where each Aj is torsion. Moreover, the image of the map i is torsion-free, so q
sends A1 ⊕ A2 injectively into (Z/pZ)r, hence we can write Aj = (Z/pZ)nj for
each j, and we have n1 + n2 ≤ r.

Suppose without loss of generality that (i1)∗(λ1) is non-zero. Since it is torsion
it lies in A1, hence p · (i1)∗(λ1) = 0 as claimed. In fact, it generates a Z/pZ
summand of the (Z/pZ)-vector space A1 = (Z/pZ)n1 , so n1 ≥ 1 and we can
write

H1(M1;Z) ∼= (Z/pZ)⊕ (Z/pZ)n1−1 ⊕ Z
with the first summand generated by the rational longitude, i.e.,

(i1)∗(λ1) = (1, 0, 0).

We pick a class µ1 ⊂ H1(T ;Z) that is dual to λ1, meaning they form an integral
basis of H1(T ;Z), and write (i1)∗(µ1) = (x, y, n) in these coordinates. If x 6= 0
then we can replace µ1 with µ1− xλ1 in order to arrange that x = 0. Moreover,
applying half lives half dies over F = Z/pZ, we see that

spanZ/pZ
(
(i1)∗(λ1), (i1)∗(µ1)

)
= spanZ/pZ

(
(1, 0, 0), (0, y, n mod p)}

is 1-dimensional, so y is zero and n is a multiple of p. And then over F = Z/`Z,
where ` 6= p is prime, we have H1(M1;F) ∼= F and

spanZ/`Z
(
(i1)∗(λ1), (i1)∗(µ1)

)
= spanZ/`Z

(
0, n mod `

)
,

which can only be 1-dimensional if n is not a multiple of `. Thus up to changing
the sign of the Z summand, we can write n = pe for some integer e ≥ 1.

We now consider the pair

z =
(
(0, 0, pe−1), 0

)
∈ H1(M1)⊕H1(M2).

This cannot lie in the image of i: the element (0, 0, pe−1) is not in the image of
(i1)∗, since it does not belong to the span of (i1)∗(λ1) = (1, 0, 0) and (i2)∗(µ1) =
(0, 0, pe). Thus q(z) is nonzero by exactness. Since q(z) 6= 0 lies in H1(Y ) ∼=
(Z/pZ)r, it cannot be a multiple of p, so neither can z and we must therefore
have e = 1. Moreover, we know that q(pz) = p · q(z) = 0, so the pair

pz =
(
(0, 0, pe), 0

)
=
(
(i1)∗(µ1), 0

)
lies in the image of i. In other words, there is a class α ∈ H1(T ;Z) such that

(i1)∗(α) = (i1)∗(µ1),

(i2)∗(α) = 0.

The first relation implies that α = µ1 + pkλ1 for some k ∈ Z, so α and λ1 are
also dual classes. This means that α is primitive, so the second relation now
says that α is a rational longitude for M2, hence α = ±λ2. In particular λ2 is
nullhomologous in M2, and the elements {λ1, λ2} = {λ1,±(µ1 + pkλ1)} form an
integral basis for H1(T ;Z), as claimed. �
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Lemma 7.7. Under the hypotheses of Lemma 7.6, suppose that the rational
longitude λ1 is not nullhomologous. Then we can write

H1(M1;Z) ∼= (Z/pZ)n1 ⊕ Z, H1(M2;Z) ∼= (Z/pZ)n2 ⊕ Z,

with n1 ≥ 1, such that the integral basis λ1, λ2 of H1(T ) satisfies

(i1)∗(λ1) = ((1, 0, . . . , 0), 0), (i2)∗(λ1) = (0, 1),

(i1)∗(λ2) = ((0, 0, . . . , 0), p), (i2)∗(λ2) = (0, 0)

in these coordinates. If H1(Y ) ∼= (Z/pZ)r then we also have n1 + n2 = r − 1,
and Dehn filling either of the Mi along the other rational longitude gives us

H1(M1(λ2);Z) ∼= (Z/pZ)n1+1, H1(M2(λ1);Z) ∼= (Z/pZ)n2 .

Proof. We recall from the proof of Lemma 7.6 that we can take coordinates

H1(M1) ∼= (Z/pZ)⊕ (Z/pZ)n1−1 ⊕ Z

such that n1 ≥ 1 and

(i1)∗(λ1) = (1, 0, 0) ∈ H1(M1),

(i1)∗(λ2) = (0, 0, p) ∈ H1(M1)

up to changing the sign of the Z summand. We also know that we can write

H1(M2) ∼= (Z/pZ)n2 ⊕ Z,

and that the rational longitude λ2 is nullhomologous in M2, so that

(i2)∗(λ2) = (0, 0) ∈ H1(M2)

in these coordinates. Thus by half lives half dies over Q the element (i2)∗(λ1)
must be non-torsion. If we write

(i2)∗(λ1) = (w,m) ∈ H1(M2)

then m must therefore be nonzero; we choose a generator of the Z summand
so that m > 0. If some prime ` 6= p divides m, then we take c ≡ `−1 (mod p)
and we see that (w,m) = ` · (cw, m` ) is ` times an integral class, so (i2)∗ is zero

over F = Z/`Z, contradicting half lives half dies. Thus m = pf for some integer
f ≥ 0.

Returning to the Mayer–Vietoris sequence (7.4), we know that

(Z/pZ)r ∼= coker(i) ∼=
H1(M1)⊕H1(M2)

〈i∗(λ1), i∗(λ2)〉
.

We can define a surjection coker(i)→ Z/pf+1Z in the coordinates

H1(M1)⊕H1(M2) ∼=
(
(Z/pZ)⊕ (Z/pZ)n1−1 ⊕ Z

)
⊕
(
(Z/pZ)n2 ⊕ Z

)
by sending

(
(a, v1,m1), (v2,m2)

)
7→ m2 − pfa (mod pf+1); this is well-defined,

since a ∈ Z/pZ defines a unique residue class pfa ∈ Z/pf+1Z, and since we have

i∗(λ1) =
(
(1, 0, 0), (w, pf )

)
7→ pf − pf · 1 ≡ 0

i∗(λ2) =
(
(0, 0, p), (0, 0)

)
7→ 0.

But coker(i) ∼= (Z/pZ)r can only surject onto Z/pf+1Z if f = 0. Thus (i2)∗(λ1) =
(w, 1) for some w ∈ (Z/pZ)n2 , and by a change of basis we can take this element
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rather than (0, 1) to be the generator of the Z summand of H1(M2), so that
(i2)∗(λ1) = (0, 1).

We have now found coordinates on each H1(Mj ;Z) so that the images (ij)∗(λ1)
and (ij)∗(λ2) have the desired form. The computations of

H1(M1(λ2);Z) ∼=
H1(M1)

〈(i1)∗(λ2)〉
, H1(M2(λ1);Z) ∼=

H1(M2)

〈(i2)∗(λ1)〉
follow immediately. Moreover, in these coordinates we have

coker(i) ∼=
(
(Z/pZ)⊕ (Z/pZ)n1−1 ⊕ Z

)
⊕
(
(Z/pZ)n2 ⊕ Z

)
〈
(
(1, 0, 0), (0, 1)

)
,
(
(0, 0, p), (0, 0)

)
〉

,

which is readily checked to be isomorphic to (Z/pZ)n1+n2+1. But coker(i) ∼=
(Z/pZ)r as well, so we conclude that r = n1 + n2 + 1. �

We now complete the proof of Proposition 7.5.

Proof of Proposition 7.5. Lemma 7.6 says that the rational longitudes λ1 and
λ2 form a basis of H1(T ), and that [λ1] ∈ H1(M1) has order p while λ2 is
nullhomologous in H1(M2). We thus define the Yi by Dehn fillings along these
curves:

Y1 = M1(λ2), Y2 = M2(λ1)

and we take K1 ⊂ Y1 and K2 ⊂ Y2 to be the cores of these Dehn fillings. It
follows that their respective meridians are µ1 = λ2 and µ2 = λ1, which are dual
to their rational longitudes λ1 and λ2 respectively, so then [K1] ∈ H1(Y1) has
order p while [K2] = 0 in H1(Y2).

Lemma 7.7 says that these Yi have homology of the form

H1(Y1) = (Z/pZ)k, H1(Y2) = (Z/pZ)`

where k = n1 + 1 and ` = n2 in the notation of that lemma, and that k + ` =
(n1 + 1) + n2 = r. Since n1 ≥ 1 we have also k ≥ 2, as claimed.

Finally, since λ2 is nullhomologous in M2, Proposition 4.2 gives us a degree-1
pinching map

Y →M1(λ2) ∼= Y1

in which M2 is sent onto a solid torus. The curve λ2 lies in the image of the
map π1(T ) → π1(Y ), which is injective since T is incompressible; thus λ2 is
a nontrivial element of π1(Y ), but it lies in the kernel of the homomorphism
π1(Y ) → π1(Y1) induced by the above pinching map, so that homomorphism
has nontrivial kernel. �

8. Proof of Theorem 1.2

We will now use Proposition 7.1 to prove Theorem 1.2, which we restate here
for convenience.

Theorem 8.1. Let Y be a closed, orientable 3-manifold with H1(Y ;Z) ∼= (Z/2Z)r

for some r ≥ 0. If Y is not homeomorphic to #rRP3, then there is an irreducible
representation π1(Y )→ SL(2,C).
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We first verify Theorem 8.1 in the atoroidal case before going on to prove it
in general.

Lemma 8.2. Suppose that Y is a closed, atoroidal 3-manifold, with H1(Y ;Z) ∼=
(Z/pZ)r for some prime p and some integer r ≥ 0. If Y is SL(2,C)-reducible,
then it must be either #rRP3 or a lens space of order p ≥ 3.

Proof. If Y is a connected sum then each of its summands must also be SL(2,C)-

reducible with first homology (Z/pZ)r
′

for some r′ ≤ r, so we will assume for
now that Y is prime. Then Y is both prime and atoroidal, so by geometrization
it must be either Seifert fibered or hyperbolic. If Y is hyperbolic then it has a
holonomy representation π1(Y ) ↪→ PSL(2,C), and this always lifts to SL(2,C)
[CS83, Proposition 3.1.1], so Y cannot be SL(2,C)-reducible. This leaves only
the Seifert fibered case.

Among Seifert fibered manifolds, we know from [SZ22, Theorem 1.2] that the
only rational homology spheres that are SU(2)-abelian are

(1) S3 and lens spaces,
(2) RP3#RP3,
(3) those with base orbifold S2(3, 3, 3) and with |H1(Y )| even,
(4) and those with base orbifold S2(2, 4, 4).

In case (1), the only Y such that H1(Y ) is p-torsion are S3 and lens spaces of
order p; and we can ignore case (2) since it is not prime. For cases (3) and (4),
we note that given a Seifert fibration

Y ∼= S2((α1, β1), (α2, β2), (α3, β3)),

we then have

(8.1) H1(Y ) = coker


α1 0 0 β1

0 α2 0 β2

0 0 α3 β3

1 1 1 0


and in particular

|H1(Y )| = |α1α2β3 + α1β2α3 + β1α2α3|.

(See [SZ22, Lemma 2.9].) This quickly rules out case (3), since if (α1, α2, α3) =
(3, 3, 3) then |H1(Y )| is always a multiple of 18 (recalling that it must be even),
hence not a prime power. And for case (4), where (α1, α2, α3) = (2, 4, 4), we let
x, y, z, w be the generators specified by the presentation (8.1), and we define a
surjection

H1(Y ) � Z/4Z
x 7→ 2

y, z 7→ 1

w 7→ 0.

Since H1(Y ) surjects onto Z/4Z, it cannot possibly have the form (Z/pZ)r with
p prime. We conclude that the only prime examples are S3 and lens spaces of
order p.
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Finally, we note that if p = 2 then every prime summand of Y is RP3, so
Y ∼= #rRP3 as claimed. If instead p ≥ 3, then each summand is a lens space of
order p; but then there cannot be more than one summand, or else Y would not
be SL(2,C)-reducible by exactly the same construction as in Proposition 1.4, so
we have r ≤ 1 and Y is prime after all. �

Proof of Theorem 8.1. We will suppose in what follows that H1(Y ;Z) ∼= (Z/2Z)r

for some r ≥ 0, but that Y 6∼= #rRP3 is SL(2,C)-reducible. We will also assume
that Y is prime: otherwise, by assumption there must be a prime summand
Y ′ 6∼= RP3, and then Y ′ is also SL(2,C)-reducible with 2-torsion homology, so
we might as well replace Y with Y ′. Lemma 8.2 says that if Y is atoroidal then
Y ∼= #rRP3, so we may also assume that Y contains an incompressible torus.

Since Y is prime and contains an incompressible torus T , we can write

Y = M1 ∪T M2

where each Mi is irreducible and has incompressible boundary. (The torus T
must separate Y because Y is a rational homology sphere.) We split the argu-
ment into three cases, depending on the rational longitudes λi of the Mi: in the
first two we suppose that the λi are nullhomologous, so one of the conclusions
of Proposition 7.1 applies, and we number these cases according to the relevant
conclusion of that proposition. In the remaining case, at least one of the λi is
essential, so Proposition 7.5 applies instead. Propositions 7.1 and 7.5 each give
us closed manifolds Yi and knots Ki ⊂ Yi whose exteriors are the Mi, so we will
refer freely to these pairs (Yi,Ki) in the discussion below.

Case 1. In this case the Mi are complements of non-trivial, nullhomologous
knots that have been spliced together by gluing meridians to longitudes and vice
versa. We apply Theorem 5.1 to get an irreducible representation ρ : π1(Y ) →
SU(2), hence if Y is SL(2,C)-reducible then this case cannot occur.

Case 2. In this case we have degree-1 maps Y → (Y1)2(K1) and Y → (Y2)2(K2),
with

H1((Y1)2(K1)) ∼= (Z/2Z)k+1, H1((Y2)2(K2)) ∼= (Z/2Z)`+1

and k + ` = r − 1. The knots Ki ⊂ Yi are nullhomologous, and the degree-1
maps Y → (Yi)2(Ki) for i = 1, 2 tell us that each of the (Yi)2(Ki) must be
SL(2,C)-reducible as well.

If (Y1)2(K1) ∼= #k+1RP3 and (Y2)2(K2) ∼= #`+1RP3, then Theorem 6.1 tells
us that Y cannot be SL(2,C)-reducible or even SU(2)-abelian, a contradiction.
Thus without loss of generality we must have (Y1)2(K1) 6∼= #k+1RP3. In par-
ticular (Y1)2(K1) is SL(2,C)-reducible with first homology (Z/2Z)k+1, but it is
not homeomorphic to #k+1RP3. We let Y ′ be a prime summand of (Y1)2(K1)
different from RP3 (which may be (Y1)2(K1) itself), and then by collapsing the
other prime summands to S3 we have a degree-1 map

Y → (Y1)2(K1)→ Y ′.

Here Y ′ is prime by construction, it is SL(2,C)-reducible since (Y1)2(K1) is, and
H1(Y ′) is 2-torsion since it is a summand of H1((Y1)2(K1)) ∼= (Z/2Z)k+1.
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Case 3. In this case one of the λi is essential, so we suppose without loss of
generality that λ1 is nonzero in H1(M1;Z). Then Proposition 7.5 applies: we
have

H1(Y1) ∼= (Z/2Z)k, H1(Y2) ∼= (Z/2Z)`

where k ≥ 2 and k + ` = r; the knot K1 is homologically essential in Y1, with
rational longitude of order 2, while K2 ⊂ Y2 is nullhomologous; and the gluing of
∂M1 to ∂M2 identifies µ1 ∼ λ2 and λ1 ∼ µ2. We now apply Theorem 5.2 to see
that Y cannot be SU(2)-abelian, a contradiction. Thus if Y is SL(2,C)-reducible
then this case does not occur.

In each of the three cases above, we have found either a contradiction or a
degree-1 map of the form f : Y → Y ′, where Y ′ 6∼= RP3 is prime and SL(2,C)-
reducible and H1(Y ′) is 2-torsion, and the map

f∗ : π1(Y )→ π1(Y ′)

is a surjection with non-trivial kernel. We can thus replace Y with Y ′ and repeat.

This process produces an infinite sequence of closed, prime 3-manifolds and
degree-1 maps

Y = Y1
f1−→ Y2

f2−→ Y3
f3−→ · · · ,

in which none of the fi are homotopy equivalences because the maps (fi)∗ :
π1(Y )→ π1(Yi+1) are not injective. But Theorem 1.10 says that such a sequence
cannot exist, so we conclude that our original manifold Y 6∼= #rRP3 could not
have been SL(2,C)-reducible after all. �

9. From Z/pZ to p-torsion homology

In this section we consider SL(2,C)-reducible 3-manifolds whose first homol-
ogy is p-torsion for some odd prime p. Our goal is to show the following, which in
favorable situations reduces their classification to the case where the homology
is in fact cyclic.

Theorem 9.1. Let p ≥ 3 be an odd prime with the property that every closed,
SL(2,C)-reducible 3-manifold with first homology Z/pZ is a lens space. If Y is a
closed, SL(2,C)-reducible 3-manifold with H1(Y ;Z) ∼= (Z/pZ)r for some r ≥ 1,
then r = 1 and Y is a lens space.

In practice one has to check even less than the stated hypothesis: in Theo-
rem 9.10 we will give a stronger, but much less concise, version of this theorem.

Remark 9.2. There are many odd primes p that do not satisfy the hypothesis
of Theorem 9.1. Indeed, Motegi [Mot88, §3] produced toroidal, SL(2,C)-abelian
manifolds Y by gluing together the exteriors of any two torus knots Ta,b and Tc,d,
identifying the meridian of one with the Seifert fiber of the other and vice versa;
then H1(Y ) is cyclic of order |abcd − 1|, which may be prime. For example,
taking T2,3 and T−2,3 as our torus knots shows that the hypothesis fails for
p = 37; taking T2,3 and T±2,5 rules out p = 59 and p = 61; and so on.
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One important difference from the case p = 2 is that if p is odd, then SL(2,C)-
reducible manifolds with p-torsion homology are always prime, as the following
lemma shows.

Lemma 9.3. Let p ≥ 3 be an odd prime, and suppose that Y is a closed,
SL(2,C)-reducible 3-manifold such that H1(Y ;Z) is p-torsion. Then Y is prime.

Proof. Suppose not, and write Y = Y1#Y2, where neither summand is S3. Then
neither Y1 nor Y2 can be a homology sphere, since otherwise it would not be
SL(2,C)-reducible by Theorem 1.1 and so neither would Y . This means that
each H1(Yi) is p-torsion and non-trivial, so each π1(Yi) surjects onto H1(Yi) and
hence onto Z/pZ, and then we have a surjection

(9.1) π1(Y ) ∼= π1(Y1) ∗ π1(Y2) � (Z/pZ) ∗ (Z/pZ).

Since p ≥ 3, there is a non-abelian homeomorphism

(9.2) (Z/pZ) ∗ (Z/pZ)→ SU(2)

defined by sending generators of each Z/pZ factor to the unit quaternions exp(2π
p j)

and exp(2π
p k), respectively. Composing (9.1) and (9.2) gives an irreducible rep-

resentation π1(Y )→ SU(2), so we have a contradiction. �

Lemma 9.3 simplifies some parts of the story, because we no longer have
to worry about connected sums of SL(2,C)-reducible manifolds, as we did for
#rRP3 in the 2-torsion case. We already encountered this fact in Lemma 8.2,
where we saw that the only atoroidal examples are lens spaces of order p.

9.1. Zero-surgery on knots in lens spaces. We begin by generalizing The-
orem 2.1 to nullhomologous knots in arbitrary lens spaces.

Proposition 9.4. Let K ⊂ Y be a nullhomologous knot in S3 or a lens space,
and let w ∈ H2(Y0(K);Z) be Poincaré dual to the image in Y0(K) of a meridian
of K. Then Iw∗ (Y0(K)) 6= 0 if and only if K is not an unknot in Y .

Proof. The case Y = S3 is Theorem 2.1, so we can assume that Y is a non-
trivial lens space. Since K is nullhomologous in Y , we know that K is in fact
nullhomotopic in Y . Hom and Lidman [HL22, Corollary 1.2] proved that since
Y is a prime rational homology sphere and K is nullhomotopic, the manifold
Y0(K) contains a non-separating 2-sphere if and only if K is unknotted, and
then the proposition follows from Proposition 9.5 below. �

We devote the remainder of this subsection to proving Proposition 9.5, which
generalizes Theorem 2.2 for manifolds Y with first Betti number 1; the key
difference is that we do not require Y to be irreducible.

Proposition 9.5. Let Y be a closed 3-manifold with b1(Y ) = 1, and let w ∈
H2(Y ;Z) satisfy w · R = 1 for some surface R ⊂ Y . Then Iw∗ (Y ) = 0 if and
only if Y contains a non-separating two-sphere.

The proof of Proposition 9.5 makes use of several basic properties of framed
instanton homology I#(Y, λ) over a field of characteristic zero, including a con-
nected sum theorem relating it to the usual instanton homology of an admissible
bundle; we will refer to [Sca15] for all of the needed results.
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Lemma 9.6. If Y is a rational homology sphere, then I#(Y, λ) 6= 0 for any λ.

Proof. The invariant I#(Y, λ) is equipped with a Z/2Z grading, and its Euler
characteristic with respect to this grading is

χ(I#(Y, λ)) = |H1(Y ;Z)| > 0

according to [Sca15, Corollary 1.4], so we must have dim I#(Y, λ) > 0. �

Lemma 9.7. Let w → Y be an admissible Hermitian line bundle, and λ ∈
H1(Y ;Z) the Poincaré dual of c1(w). Then Iw∗ (Y ) = 0 if and only if I#(Y, λ) =
0.

Proof. Scaduto [Sca15, Theorem 1.3] proved that

I#(Y, λ) ∼= ker(u2 − 64)⊗H∗(S3),

where u = 4µ(pt) is a degree-4 operator on the Z/8Z-graded invariant Iw∗ (Y ), but
only we take the kernel of the action of u2−64 on four consecutive gradings. The
operator u2 − 64 is nilpotent [Frø02], so ker(u2 − 64) = 0 if and only if Iw∗ (Y ) is

zero in those gradings; and then u restricts to an isomorphism Iw∗ (Y )
∼=−→ Iw∗+4(Y ),

so this is equivalent to Iw∗ (Y ) = 0 in all gradings. �

Proof of Proposition 9.5. We write the prime decomposition of Y as

Y ∼= Y0#Y1# . . .#Yk,

where Y0 is the unique summand with b1(Y0) = 1 and then the Yi with i ≥ 1
are all rational homology spheres. If we write the Poincaré dual λ ∈ H1(Y ;Z)
of w as λ = λ0 + · · ·+ λk with λi ∈ H1(Yi) for all i, then I# satisfies a Künneth
formula

I#(Y, λ) ∼=
k⊗
i=0

I#(Yi, λi);

this is explained in [Sca15, §7.7] when the λi are all zero, but the same proof
works in full generality. By Lemma 9.6 we have I#(Yi, λi) 6= 0 for all i ≥ 1, so
I#(Y, λ) 6= 0 if and only if I#(Y0, λ0) 6= 0.

Two applications of Lemma 9.7 now tell us that Iw∗ (Y ) 6= 0 if and only if
Iw0
∗ (Y0) 6= 0, where w0 = w|Y0 is the Poincaré dual to λ0. Since Y0 is prime,

either it is S1×S2 and then Iw0
∗ (Y0) = 0, or it is irreducible and then Iw0

∗ (Y0) 6= 0
by Theorem 2.2. Since Y has a non-separating S2 if and only if one of its prime
summands is S1 × S2, it follows that Y contains such a sphere if and only if
Iw0
∗ (Y0) = 0, hence if and only if Iw∗ (Y ) = 0 as claimed. �

9.2. Splicing knots in lens spaces. This subsection is devoted to proving an
analogue of Theorem 5.1, in which the knots can lie in lens spaces rather than
in 3-manifolds whose first homology is 2-torsion.

Proposition 9.8. Let each of Y1 and Y2 be either S3 or a lens space, and
let K1 ⊂ Y1 and K2 ⊂ Y2 be nullhomologous knots with irreducible, boundary-
incompressible exteriors. Form a closed, toroidal 3-manifold

Y = EK1 ∪∂ EK2
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by gluing the meridian µ1 and longitude λ1 of K1 to the longitude λ2 and merid-
ian µ2 of K2, respectively. Then there is a representation

ρ : π1(Y )→ SU(2)

with non-abelian image.

Proof. Suppose that each Yi is a lens space of order ni ≥ 3. Then we can define
representations

ρi : π1(EKi) �
π1(EKi)

⟪µi⟫
∼= π1(Yi) ∼= Z/niZ ↪→ SU(2),

satisfying ρi(µi) = 1, and we have ρi(λi) = 1 since the image of ρi is abelian.
Each ρi restricts to the trivial representation on π1(T ), so they glue together to
give a representation ρ : π1(Y )→ SU(2), and we can guarantee that ρ has non-
abelian image by choosing to send generators of π1(Y1) ∼= Z/n1Z and π1(Y2) ∼=
Z/n2Z to the unit quaternions exp(2π

n1
j) and exp(2π

n2
k), respectively.

From now on we assume without loss of generality that Y1 is either S3 or RP3;
the proof now follows essentially the same argument as Theorem 5.1. Neither
K1 nor K2 is unknotted, so if w1 ∈ H2((Y1)0(K1)) and w2 ∈ H2((Y2)0(K2)) are
Poincaré dual to meridians of K1 and K2 then we know that

Iw1
∗ ((Y1)0(K1)) 6= 0, Iw2

∗ ((Y2)0(K2)) 6= 0

by Proposition 9.4. Since both Y1 and Y2 are SU(2)-abelian, the character vari-
eties X(EK1) and X(EK2) have well-defined images in the cut-open pillowcase

P = [0, π]× (R/2πZ)

of §3.2 (see Lemma 3.3), and Theorem 3.4 provides us with essential closed curves

C1 ⊂ j(X(EK1)), C2 ⊂ j(X(EK2))

in the cut-open pillowcase images of each.

Just as in the proof of Theorem 5.1, the curves C1 and C2 now give rise to
continuous paths

γ`t = (α`t , β
`
t ) : [0, 1]→ [0, π]× [0, 2π], ` = 1, 2

such that for each ` we have

• β`0 = 0, β`1 = 2π, and 0 < β`t < 2π for 0 < t < 1;
• 0 < α`t < π for 0 < t < 1 by Lemma 3.3, since β`t 6∈ 2πZ;
• and each γ`t is the pillowcase image of some ρ`t : π1(EK`

)→ SU(2) satis-
fying

ρ`t(µ`) =

(
eiα

`
t 0

0 e−iα
`
t

)
, ρ`t(λ`) =

(
eiβ

`
t 0

0 e−iβ
`
t

)
.

In particular ρ`t is irreducible for 0 < t < 1, since ρ`t(λ`) 6= 1.

Lemma 3.2 tells us slightly more about α1
t , namely that

0 < α1
t < π for all t ∈ [0, 1]

since Y1 is SU(2)-abelian and H1(Y1) is either trivial or Z/2Z. The paths{
(α1

t , β
1
t )
}
t∈[0,1]

and
{

(β2
t , α

2
t )
}
t∈[0,1]
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must intersect exactly as before, say at some point (α̃, β̃), where 0 < α̃ < π
since α̃ = α1

t for some t. This point of intersection gives rise to a representation
ρ : π1(Y ) → SU(2), and the restriction ρ|EK2

must have pillowcase coordinates

(β̃, α̃). Then 0 < α̃ < π implies that ρ|EK2
(λ2) 6= 1, so ρ|EK2

cannot have abelian
image and thus neither can ρ. �

9.3. Manifolds with p-torsion homology. We are now ready to prove The-
orem 9.1, which will follow quickly from the next proposition.

Proposition 9.9. Let p ≥ 3 be an odd prime such that every closed, SL(2,C)-
reducible 3-manifold with first homology Z/pZ is a lens space.

If Y is a closed, SL(2,C)-reducible 3-manifold with H1(Y ;Z) ∼= (Z/pZ)r for

some integer r ≥ 2, then there is a closed Y ′ with first homology (Z/pZ)r
′

for
some r′ ≥ 2 and a degree-1 map

Y → Y ′

that is not a homotopy equivalence. Both Y and Y ′ are prime, toroidal, and
SL(2,C)-reducible.

Proof. We know that Y is prime by Lemma 9.3, and that it contains an incom-
pressible torus by Lemma 8.2: indeed, if it were atoroidal then it would have
to be a lens space, but H1(Y ) is not cyclic. By the same argument, once we
have constructed Y ′ with the desired homology and degree-1 map f : Y → Y ′, it
will follow that Y ′ is SL(2,C)-reducible, and then that Y ′ is prime and toroidal.
We thus focus on constructing Y ′ and the map f , which will be a pinch map
of the sort provided by Proposition 4.2; if it collapses a submanifold bounded
by an incompressible torus T to a solid torus, then it will not be a homotopy
equivalence, since the kernel of the induced map f∗ : π1(Y ) → π1(Y ′) contains
non-trivial elements of the subgroup π1(T ) ⊂ π1(Y ).

Since Y is prime and has an incompressible torus T , we can write

Y ∼= M1 ∪T M2

where each Mi is irreducible, with incompressible torus boundary. We let λi ⊂
∂Mi denote the rational longitude of each Mi.

Suppose first that each of the λi is nullhomologous in its respective Mi. Then
Proposition 7.1 says that we can write each Mi as the exterior of some nullho-
mologous knot Ki ⊂ Yi, with H1(Yi;Z) ∼= (Z/piZ)ni , such that one of two cases
occurs:

Case 1: n1 + n2 = r, and we form Y by gluing µ1 to λ2 and λ2 to µ1.

In this case we use Proposition 4.2 to pinch either M2 or M1 to a solid torus,
giving us degree-1 maps

Y →M1(λ2) ∼= M1(µ1) = Y1,

Y →M2(λ1) ∼= M2(µ2) = Y2.

If n1 = n2 = 1 then the manifolds Y1 and Y2 are SL(2,C)-reducible with first
homology Z/pZ, so they are both lens spaces by our assumption on p, but then
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Proposition 9.8 says that Y is not even SU(2)-abelian and we have a contradic-
tion. Now since n1 + n2 = r ≥ 2 but (n1, n2) 6= (1, 1), it follows that ni ≥ 2 for
some i, so we let Y ′ be the corresponding Yi and we are done.

Case 2: n1 + n2 = r − 1.

In this case Proposition 7.1 says that for some a, b, c with ac − bp = −1 we
have a pair of degree-1 maps

Y → (Y1)−p/a(K1) and Y → (Y2)p/c(K2),

neither of which is a homotopy equivalence. The targets of these maps have first
homology (Z/pZ)n1+1 and (Z/pZ)n2+1, respectively, and

(n1 + 1) + (n2 + 1) = r + 1 ≥ 3,

so we must have ni+1 ≥ 2 for some i. We take Y ′ to be the corresponding Dehn
surgery on Ki ⊂ Yi.

We have now proved the proposition except in the case where one of the ratio-
nal longitudes is homologically essential, so we suppose without loss of generality
that λ1 is nonzero in H1(M1). Now we apply Proposition 7.5 to see that we can
write each Mi as the exterior of a knot Ki ⊂ Yi, with meridian µi and rational
longitude λi, such that

• H1(Y1) ∼= (Z/pZ)k for some k ≥ 2;
• λ2 is nullhomologous in M2;
• and the gluing map ∂M1

∼= ∂M2 identifies µ1 with λ2.

Proposition 4.2 then gives us a degree-1 map

Y →M1(λ2) ∼= M1(µ1) ∼= Y1,

so we take Y ′ = Y1 and the proof is complete. �

Proof of Theorem 9.1. Let Y1 = Y be SL(2,C)-reducible with first homology
(Z/pZ)r1 for some r1 ≥ 2. By the hypothesis on p, Proposition 9.9 provides
us with an SL(2,C)-reducible manifold Y2, whose first homology is (Z/pZ)r2 for
some r2 ≥ 2, and a degree-1 map

f1 : Y1 → Y2

that is not a homotopy equivalence. We repeat with Y2 in place of Y1 and so on,
constructing an infinite sequence

Y1
f1−→ Y2

f2−→ Y3
f3−→ · · ·

of degree-1 maps between prime, toroidal manifolds, in which none of the maps
fi is a homotopy equivalence. This contradicts Theorem 1.10, so our initial
manifold Y cannot exist after all. �

9.4. A strengthening of Theorem 9.1. We can deduce the conclusion of
Theorem 9.1 from a seemingly much weaker hypothesis on the prime p, by a
similar appeal to Theorem 1.10.

Theorem 9.10. Fix an odd prime p ≥ 3. For any choice of

• integer homology 3-spheres Y1 and Y2,
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• knots K1 ⊂ Y1 and K2 ⊂ Y2 with irreducible, boundary-incompressible
complements,
• and integers a, b, c satisfying ac− bp = −1 and 0 ≤ b < c < p

2

such that both

(Y1)−p/a(K1) and (Y2)p/c(K2)

are lens spaces, we can form a closed 3-manifold

Y = EK1 ∪∂ EK2

by gluing ∂EK1 to ∂EK2 so that

µ1 = aµ2 + bλ2

λ1 = pµ2 + cλ2

in the homology of the torus ∂EK1 ∼ ∂EK2. Suppose we have chosen p so that
every such Y admits an irreducible representation π1(M)→ SL(2,C).

With the above assumption on p, if Y is a closed 3-manifold such that H1(Y ;Z) ∼=
(Z/pZ)r for some r ≥ 1, then either Y is a lens space of order p or there is an
irreducible homomorphism π1(Y )→ SL(2,C).

Remark 9.11. There are exactly p−1
2 tuples (a, b, c) to consider in the hypothesis

of Theorem 9.10, since once we have fixed c between 1 and p−1
2 inclusive, the

condition ac − bp = −1 implies that b ≡ p−1 (mod c). For any p this includes
(a, b, c) = (−1, 0, 1), and then for example when p = 5 we must also consider
(a, b, c) = (2, 1, 2).

Proof of Theorem 9.10. By Theorem 9.1, it suffices to prove the theorem when
H1(Y ;Z) ∼= Z/pZ, so we will assume from now on that Y is SL(2,C)-reducible
with H1(Y ;Z) ∼= Z/pZ, but that Y is not a lens space. Lemmas 9.3 and 8.2
respectively tell us that Y is prime, and that it contains an incompressible torus
T since it is not a lens space, so we can write

Y = M1 ∪T M2

where each Mi is irreducible with incompressible boundary T . Moreover, Propo-
sition 7.5 guarantees that the rational longitude of each Mi is nullhomologous in
Mi, because otherwise we would have H1(Y ;Z) ∼= (Z/pZ)r for some r ≥ 2.

Following Proposition 7.1 and Remark 7.4, we can therefore write each Mi as
the exterior of a nullhomologous knot Ki in some 3-manifold Yi such that either

(1) H1(Y1)⊕H1(Y2) ∼= Z/pZ, and Y is formed by gluing µ1 to λ2 and λ2 to
µ1;

(2) H1(Y1)⊕H1(Y2) ∼= 0, and Y is formed by some gluing such that

µ1 = aµ2 + bλ2

λ1 = pµ2 + cλ2

in H1(T ), where ac− bp = −1 and 0 ≤ b < c < p
2 .

For the last case, Remark 7.4 may require us to reverse the orientation of Y and
of the Mj in order to achieve c ≤ p

2 rather than c < p, but this does not affect
whether or not Y is SL(2,C)-reducible. We also note that the inequality c ≤ p

2
is strict here because p is odd.
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In the first case, we have degree-1 pinching maps from Y to each of Y1 and
Y2, so Y1 and Y2 must be SL(2,C)-reducible as well. One of them is a homology
sphere, so it must be S3 by Theorem 1.1, and the other has first homology
Z/pZ. If the latter is a lens space then Proposition 9.8 gives us a non-abelian
representation π1(Y )→ SU(2) and hence a contradiction, so it must be toroidal.

In the second case, both Y1 and Y2 are homology spheres, and we have degree-1
pinching maps

Y → (Y1)−p/a(K1) and Y → (Y2)p/c(K2),

so both (Y1)−p/a(K2) and (Y2)p/c(K1) are SL(2,C)-reducible, with first homology
Z/pZ. If neither of these is toroidal then they must both be lens spaces, hence
by hypothesis there is an irreducible representation π1(Y ) → SL(2,C). But we
assumed Y is SL(2,C)-reducible, so at least one of (Y1)−p/a(K1) and (Y2)p/c(K2)
must be toroidal after all.

In both cases, we have found (up to a possible change of orientation) a degree-
1 map Y → Y ′, where Y ′ is SL(2,C)-reducible and toroidal with H1(Y ′;Z) ∼=
Z/pZ, by pinching some submanifold with incompressible torus boundary onto
a solid torus. This is not a homotopy equivalence, so we can repeat this process
indefinitely with Y ′ in place of Y and so on, to get an infinite sequence

Y → Y ′ → Y ′′ → · · ·

of degree-1 maps which are not homotopy equivalences. This contradicts Theo-
rem 1.10, so the claimed Y cannot exist after all. �

10. Manifolds with 3-torsion homology

Our goal in this section is to prove Theorem 1.3, which we restate here.

Theorem 10.1. Let Y be a closed 3-manifold such that H1(Y ;Z) is 3-torsion.
If Y is not homeomorphic to ±L(3, 1), then there is an irreducible representation
π1(Y )→ SL(2,C).

We prove Theorem 10.1 by appealing to Theorem 9.10. We note in the hy-
pothesis of Theorem 9.10 that there is a unique triple of integers (a, b, c) with
ac − 3b = −1 and 0 ≤ b < c < 3

2 , namely (a, b, c) = (−1, 0, 1), so Theorem 10.1
is now an immediate consequence of the following analogue of Theorem 6.1.

Theorem 10.2. Let K1 ⊂ Y1 and K2 ⊂ Y2 be knots such that for each j = 1, 2:

• the manifold Yj is an integer homology sphere,
• the exterior EKj is irreducible with incompressible boundary, and
• the Dehn surgery (Yj)3(Kj) is a lens space of order 3.

We glue the exteriors along their boundaries to form a toroidal manifold

Y = EK1 ∪∂ EK2

by identifying µ1 ∼ µ−1
2 and λ1 ∼ µ3

2λ2. Then there is a representation

ρ : π1(Y )→ SU(2)

with non-abelian image.
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The proof of Theorem 10.2 will be similar in spirit to the content of §6 but
simpler, largely because in Lemma 10.4 below, we will be able to put stronger
restrictions on the pillowcase images of the various character varieties X(EKj )
than we could in the corresponding Proposition 6.4.

To set the stage, given an odd prime p, we define an involution of the pillowcase
by

σp(α, β) = (−α, pα+ β) = (α, 2π − (pα+ β))

by analogy with the map σ of Subsection 6.3. If we let

P = (0, π),

Q = (π, π)

as before, then σp(P ) = P but σp(Q) = (π, 0) 6= Q. (Similarly, the map σp does
not commute with the involution τ of Lemma 6.6, because σp(τ(Q)) = P but
τ(σp(Q)) = (0, 0).)

Lemma 10.3. Suppose under the hypotheses of Theorem 10.2 that the pillowcase
images

i∗(X(EK1)) and σ3 (i∗(X(EK2)))

intersect at some point other than (0, 0) or (2π
3 , 0). Then there is a representation

ρ : π1(Y )→ SU(2)

with non-abelian image.

Proof. Let (α, β) ∈ X(T 2) be the given point of intersection, and write σ3(α, β) =
(γ, δ); since σ3 is an involution, this means that

(α, β) = σ3(γ, δ) = (γ, 2π − (3γ + δ)).

Now since (α, β) ∈ i∗(X(EK1)) and (γ, δ) ∈ i∗(X(EK2)), there are representa-
tions

ρj : π1(EKj )→ SU(2), j = 1, 2

such that

ρ1(µ1) =

(
eiα 0
0 e−iα

)
, ρ1(λ1) =

(
eiβ 0
0 e−iβ

)
and (using the fact that (γ, δ) ∼ (−γ,−δ) in X(T 2))

ρ2(µ2) =

(
e−iγ 0

0 eiγ

)
, ρ2(λ2) =

(
e−iδ 0

0 eiδ

)
.

This means that

ρ2(µ−1
2 ) =

(
eiγ 0
0 e−iγ

)
=

(
eiα 0
0 e−iα

)
= ρ1(µ1),

ρ2(µ3
2λ2) =

(
e−i(3γ+δ) 0

0 ei(3γ+δ)

)
=

(
eiβ 0
0 e−iβ

)
= ρ1(λ1)

and so ρ1 and ρ2 glue together to give us the desired representation ρ.

At this point we need only show that ρ has non-abelian image. But if its
image is abelian then each of ρ1 and ρ2 must have abelian image as well, hence
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β ≡ δ ≡ 0 (mod 2π). If β ∈ 2πZ then we know that δ = 2π − (3α + β) is a
multiple of 2π if and only if 3α is, so we must have

(α, β) = (0, 0) or (2π
3 , 0)

in the pillowcase. Since we have assumed that our given intersection (α, β) is
not either one of these points, we conclude that ρ has non-abelian image after
all. �

The remainder of this section will be devoted to finding a point of intersection
to which we can apply Lemma 10.3. Most of the argument applies equally well
to other odd primes p, so we will not specialize to p = 3 until the end.

To summarize the upcoming argument, each character variety will provide us
with a closed curve γi in the pillowcase. Each γi is homologically essential in the
complement of two points P = (0, π) and Q = (π, π), and is further constrained
by the fact that the corresponding knots have lens space surgeries. If we choose
the γi carefully, this will imply that γ1 and σ3(γ2) must intersect somewhere.
Now if they meet at the point (2π

3 , 0), then Lemma 10.3 seems to say that we are
stuck; but we will show that they must be transverse there, and since any pair of
closed curves in the 2-sphere X(T 2) ∼= S2 have intersection number zero, we can
then deduce the existence of a second, more useful point of intersection. This
last part does not readily generalize to other primes p, unfortunately, because
we have to show that the corresponding curves intersect away from one of the
p−1

2 points of the form (2kπ
p , 0) where 1 ≤ k ≤ p−1

2 , and when p > 3 there are at

least two such points.

We begin with the following analogue of Proposition 6.4, which is illustrated
in Figure 9 when p = 3.

Lemma 10.4. Let K be a knot in an integral homology sphere Y , and suppose for
some prime p ≥ 3 that Yp(K) is a lens space of order p. If ρ : π1(EK)→ SU(2)
has pillowcase coordinates i∗([ρ]) = (α, β) where pα+β ∈ πZ, then ρ is reducible
and β ≡ 0 (mod 2π). In this case there is an open neighborhood of (α, β) ∈
X(T 2) that does not contain the images of any irreducible representations.

Proof. We suppose first that i∗([ρ]) = (α, β) where pα+β is an integral multiple
of 2π. Then ρ(µpλ) = 1, so ρ factors through

π1(EK)

⟪µpλ⟫
∼= π1(Yp(K)) ∼= Z/pZ,

and therefore its image is cyclic. This means that ρ has abelian image, and hence
ρ(λ) = 1 (equivalently, β = 0) as usual.

Now suppose instead that pα + β is an odd multiple of π, so ρ(µpλ) = −1.
Then the central character

χ : π1(EK) � H1(EK) ∼= Z→ {±1}
sending µ to −1 satisfies χ(µpλ) = (−1)p = −1 since p is odd, so χ · ρ is a
representation sending µpλ to 1. We conclude as above that χ · ρ has cyclic
image, hence so does ρ itself, and then ρ(λ) = 1 and β = 0 once again.

Finally, suppose that we have a sequence of irreducible representations ρn ∈
Rirr(EK) whose pillowcase images i∗([ρn]) converge to a point (α, β) with pα+β ∈
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Figure 9. If Y3(K) is a lens space of order 3, then the image
i∗(X(EK)) must avoid the lines {3α + β ∈ πZ}, except where
β ≡ 0 (mod 2π).

πZ. Since R(EK) is compact, we can pass to a convergent subsequence, whose
limit ρ satisfies i∗([ρ]) = (α, β); since pα + β ∈ πZ, we deduce from above that
ρ is abelian, hence β = 0 and α = kπ

p for some integer k with 0 ≤ k ≤ p. In

addition, Lemma 3.2 says that α cannot be 0 or π since Yp(K) is SU(2)-abelian
and ρ is a limit of irreducible representations, and therefore 0 < k < p.

Since ρ is a reducible limit of irreducible representations, Heusener, Porti, and
Suárez Peiró [HPSP01, Theorem 2.7] also proved that the Alexander polynomial
of K satisfies

∆K(e2kπi/p) = ∆K(e2αi) = 0.

(They attribute this to Klassen [Kla91, Theorem 19], who proved it for knots in
S3.) Thus ∆K(t) vanishes at a primitive pth root of unity, so a result of Boyer
and Nicas [BN90, Lemma 1.4] says that the fundamental group

π1(Yp(K)) ∼= Z/pZ

is not cyclically finite. By definition this means that some normal subgroup
of Z/pZ has infinite abelianization, which is absurd, so ρ cannot be a limit of
irreducible representations after all. �

If K is a knot in a homology sphere Y , and Yp(K) is a lens space of order p
for some prime p ≥ 3, then Lemma 10.4 implies that the pillowcase image

i∗(X(EK)) ⊂ X(T 2)

avoids the points P = (0, π) and Q = (π, π). In the following lemmas, we will say
that a closed, embedded curve γ ⊂ i∗(X(EK)) is p-avoiding if it is homologically
essential in X(T 2) \ {P,Q}. Such curves can only intersect the lines pα+ β ≡ 0
(mod π) at points of the form (πkp , 0), where k is an integer and 0 ≤ k ≤ p, and

we are about to show that in fact k cannot be 0 or p.
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Figure 10. If the closed curve γ avoids L0 then it must lie in a
disjoint union of p open disks, shown here for p = 3 and for p = 5
with several of the disks shaded.

Lemma 10.5. Let p ≥ 3 be prime, and let K be a knot in a homology sphere Y
whose exterior is irreducible and has incompressible boundary. If Yp(K) is a lens
space of order p, then the pillowcase image i∗(X(EK)) ⊂ X(T 2) contains a p-
avoiding curve. Any such curve necessarily avoids (0, 0) and (π, 0) but intersects
both of the lines L0 = {β ≡ 0 (mod 2π)} and Lπ = {β ≡ π (mod 2π)}.

Proof. Proposition 6.2 says that Y0(K) is irreducible, so if w ∈ H2(Y0(K)) is
Poincaré dual to a meridian of K, then Theorem 2.2 says that

Iw∗ (Y0(K)) 6= 0.

The image i∗(X(EK)) does not contain P or Q by Lemma 10.4, since these points
both satisfy pα + β ∈ πZ but β = π 6∈ 2πZ. Now Proposition 3.1 gives us the
desired p-avoiding curve γ. Since γ is homologically essential in the complement
of {P,Q}, it must intersect any path from P to Q, and in particular it meets the
line Lπ somewhere.

To see that γ avoids (0, 0) and (π, 0), we argue exactly as in the proof of Propo-
sition 6.5: by Lemma 3.2 these are not limit points of the image i∗(X irr(E(K)))
of irreducible characters, so γ can only approach (nπ, 0) (where n is 0 or 1) along
the arc β ≡ 0 (mod 2π). In particular, if we parametrize γ as a map

γ : R/Z ↪→ X(T 2)

with γ(0) = (nπ, 0), then γ must embed some open interval (−ε, ε) in the arc
[0, π]× {0} as a neighborhood of the endpoint (nπ, 0), and this is impossible.

Now suppose that γ avoids the line L0. In this case, Lemma 10.4 says that γ
is disjoint from both L0 and each of the lines {pα+β ≡ 0 (mod p)}, since it can
only meet the latter along L0. But then γ lies in the complement of all of these
lines, which is a disjoint union of p open disks in X(T 2) \ {P,Q} as illustrated
in Figure 10. Since γ is connected it must lie in one of these disks, which means
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that it is nullhomotopic in the complement of P and Q. This contradicts the
fact that γ is homologically essential, so γ must meet the line L0 after all. �

Lemma 10.6. Let γ ⊂ X(T 2) be a p-avoiding curve for some prime p ≥ 3. If
γ contains a point of the form Ak = (2kπ

p , 0), where k is an integer satisfying

0 < k < p
2 , then there is an ε-neighborhood U of this point such that

γ ∩ U =
(

2kπ
p − ε,

2kπ
p + ε

)
× {0}.

In particular, if γ′ ⊂ X(T 2) is another p-avoiding curve passing through Ak,
then γ and σp(γ

′) intersect transversely at Ak.

Proof. Suppose that γ belongs to the pillowcase image of the character variety
of K ⊂ Y . Then Lemma 10.4 says that Ak has some ε-neighborhood U in the
pillowcase where every point of the corresponding image i∗(X(EK)) is the image
(α, 0) of a reducible representation. Since γ is a subset of i∗(X(EK)), it follows
that the intersection γ ∩U must be the open arc Γ = (2kπ

p − ε,
2kπ
p + ε)×{0}, as

claimed.

Now if γ′ also passes through Ak, then it intersects some ε′-neighborhood U ′

of Ak in the open arc

Γ′ = (2kπ
p − ε

′, 2kπ
p + ε′)× {0},

where ε′ may be different from ε because γ′ may come from a different knot
K ′ ⊂ Y ′. In any case, we have σp(Ak) = Ak, so the image of Γ′ is an arc

σp(Γ
′) = {(α, 2π − pα) | 2kπ

p − ε
′ < α < 2kπ

p + ε′}

of slope −p through Ak. See the left side of Figure 11. The arcs Γ and σp(Γ
′)

intersect transversely at Ak, hence so do the simple closed curves γ and σp(γ
′)

to which they belong. �

Lemma 10.7. Let γ, γ′ ⊂ X(T 2) be p-avoiding curves for some prime p ≥ 3. If
the intersection

γ ∩ σp(γ′)
is empty, then there are integers k and k′ with 0 < k, k′ < p such that γ contains
the point (kπp , 0) and γ′ contains the point (k

′π
p , 0).

Proof. It suffices to prove the desired conclusion for γ′, since we can use the fact
that σp is an involution to write

γ′ ∩ σp(γ) = σp
(
γ ∩ σp(γ′)

)
= ∅

and thus freely exchange the roles of γ and γ′.

According to Lemma 10.5, the simple closed curve γ meets both of the lines

Lπ = {β ≡ 0 (mod π)} and L0 = {β ≡ π (mod 2π)},

so it contains an embedded path Γ from Lπ to L0. Letting P = (0, π) and

Q = (π, π) as usual, we form a path Γ̃ from σp(P ) = P to σp(Q) = (π, 0) by first
following Lπ from P until it meets Γ, then following Γ until it meets L0, and
then following L0 from there to σp(Q). See the right side of Figure 11.
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Figure 11. Left: If the p-avoiding curves γ and γ′ both pass
through Ak = (2kπ

p , 0), then γ and σp(γ
′) must meet transversely

at Ak. Right: Using a path from L0 to Lπ in γ to construct a
path Γ̃ from σp(P ) = P to σp(Q), which must then intersect the
closed, essential curve σp(γ

′) ⊂ X(T 2) \ {σp(P ), σp(Q)}.

Since γ′ is homologically essential in X(T 2) \ {P,Q}, the image σp(γ
′) is also

homologically essential in X(T 2) \ {σp(P ), σp(Q)}, and so it must intersect any
path from σp(P ) = P to σp(Q). In particular, the intersection

Γ̃ ∩ σp(γ′)
is nonempty. But we have assumed that σp(γ

′) is disjoint from γ and hence from

the path Γ ⊂ Γ̃, so σp(γ
′) must intersect Γ̃ along either Lπ or L0. This means

that

σp(γ
′) ∩ {β ∈ πZ} 6= ∅,

and we apply σp to both sets to deduce that the intersection

γ′ ∩ σp ({β ∈ πZ}) = γ′ ∩ {pα+ β ∈ πZ}
is also nonempty. Lemma 10.4 says that any point in this intersection must have
the form (k

′π
p , 0), where 0 < k′ < p by Lemma 10.5, so γ′ contains such a point

after all. �

We are now ready to specialize to p = 3 and thus prove Theorem 10.2.

Proof of Theorem 10.2. In order to find the desired representation π1(Y ) →
SU(2), Lemma 10.3 says that it suffices to prove that

i∗(X(EK1)) and σ3 (i∗(X(EK2)))

intersect at some point of X(T 2) other than A0 = (0, 0) or A1 = (2π
3 , 0).

We use Lemma 10.5 to find a pair of 3-avoiding curves

γj ⊂ i∗(X(EKj )) ⊂ X(T 2) \ {P,Q}, j = 1, 2
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that both avoid the point A0. If they both pass through A1, then Lemma 10.6
says that the simple closed curves γ1 and σ3(γ2) meet transversely at A1. We
view these curves as lying in the pillowcase, which is topologically S2, and then
after orienting them arbitrarily their intersection number must be zero. Their
transverse intersection at A1 contributes ±1 to this intersection number γ1 ·
σ3(γ2) = 0, so there must be at least one other point of intersection. This other
point is neither A0 nor A1, so in this case we are done.

In the remaining case, the curves γ1 and σ3(γ2) do not intersect at A0 or A1.
If they have another point of intersection then we are done, so we can assume
that γ1 and σ3(γ2) are disjoint. But then Lemma 10.7 says that there must be
integers k1, k2 ∈ {1, 2} such that(

k1π

3
, 0

)
∈ γ1 and

(
k2π

3
, 0

)
∈ γ2.

At least one of the kj is equal to 1, since otherwise γ1 and σ3(γ2) both contain
A1 = σ3(A1). For each such j, we use the involution

τ(α, β) = (π − α, 2π − β)

of the pillowcase, which fixes each of the pillowcase images i∗(X(EKj )) ⊂ X(T 2)
setwise by Lemma 6.6, to replace γj with the 3-avoiding curve τ(γj) that passes
through τ(π3 , 0) = (2π

3 , 0). But now we have found 3-avoiding curves in i∗(X(EK1))
and i∗(X(EK2)) that both pass through A1, so by the first case above they also
must intersect at some point other than A0 and A1, completing the proof. �

This completes the proof of Theorem 10.1. �

Appendix A. The surgery exact triangle in irreducible instanton
homology

In this appendix, we verify some details needed for the proof of Theorem 2.5,
which generalizes the surgery exact triangle in instanton homology [Flo90, BD95]
to the irreducible instanton homology of surgery on a nullhomologous knot in
some Y such that H1(Y ;Z) is 2-torsion. We repeat Scaduto’s proof of the surgery
exact triangle [Sca15, §5], in which the maps in the exact triangle are induced
by 2-handle cobordisms

(A.1) Y
(W0,c0)−−−−−→ Y0(K)

(W1,c1)−−−−−→ Y1(K)
(W2,c2)−−−−−→ Y → · · · .

In each case, we write (W, c) to indicate that W is a cobordism, and c ⊂ W
is a properly embedded surface such that [c] ∈ H2(W,∂W ) is Poincaré dual to
the first Chern class of some line bundle, which specifies a SO(3)-bundle on W
as usual. The cobordism map associated to (W, c) is then defined by counting
solutions to the perturbed ASD equation on this bundle.

More generally, the proof of exactness also involves counting instantons on var-
ious compositions of these cobordisms, taken over various 1- and 2-dimensional
families of metrics. Since these define chain maps between various irreducible
instanton homology groups, and chain homotopies between these, the instantons
we count always have irreducible flat limits at either end of their cobordisms.
Scaduto’s proof of exactness works without modification as long as the relevant
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moduli spaces can be compactified without reducible connections appearing in
the middle of a broken flowline, since these would not be counted.

In what follows we will omit K from our notation, writing Yn := Yn(K).
We will also concatenate subscripts to denote the composition of two or more
cobordisms, so that for example W01 = W0∪Y0W1 and W120 = W1∪Y1W2∪Y W0.

We first describe the basic cobordisms in (A.1). We build W0 by attaching a
0-framed 2-handle to Y × [0, 1] along K×{1}. Then W1 is the result of attaching
a −1-framed 2-handle along a meridian of K, and W2 is likewise built out of a
−1-framed 2-handle attached along a meridian of the previous attaching curve.

Lemma A.1. We have b1(Wi) = b+2 (Wi) = 0 for each i = 0, 1, 2, and the Wi

have signatures

σ(W0) = σ(W1) = 0, σ(W2) = −1.

Proof. The claim that b1(Wi) = 0 follows from noting that Y is a rational ho-
mology sphere and the knot K ⊂ Y is nullhomologous. Now the signatures of
W0, W01, and W012 are the same as the signatures of the linking matrices

(
0
)
,

(
0 1
1 −1

)
,

0 1 0
1 −1 1
0 1 −1


for the Kirby diagrams of the respective cobordisms, and these signatures are
0, 0, and −1 respectively, so that σ(W0) = σ(W1) = 0 and σ(W2) = −1 by
additivity of signatures. Since each b2(Wi) is 1, the claim that b+2 (Wi) = 0
follows immediately. �

Each Wi is labeled with a properly embedded surface ci, following [Sca15, §3]:
if the incoming end of Wi is decorated with λ, then ci is (up to orientation) the
union of a cylinder λ× [0, 1] with a meridional disk of the attaching curve for the
2-handle, pushed slightly into the interior of Wi so that it is properly embedded
with boundary on the outgoing end. We note that if for some cobordism (W, c)
the ends of c are nullhomologous in ∂W , as they are when ∂W consists of copies
of Y or Y1, then [c] ∈ H2(W,∂W ) lifts to a class in H2(W ), so that c2 ∈ Z; in
this case the class of c (mod 2) determines uniquely the value of c2 (mod 4).

Lemma A.2. We have c2
2 ≡ 0 (mod 4) and c2

01 ≡ c2
012 ≡ c2

201 ≡ −1 (mod 4).

Proof. We realize c0 ⊂W0 by taking a disk in Y ×{1} with boundary µK ×{1},
where µK is a meridian µK of the attaching curve K × {1}, and pushing its
interior into the interior of Y × [0, 1]. The homology H2(W0) is generated by the
union F0 of a Seifert surface for K and a core of the 2-handle; we have F 2

0 = 0,
and c0 · F0 = 1.

Then W1 is built by attaching a −1-framed 2-handle to Y0 × [0, 1] along µK ,
and c1 is the union of µK × [0, 1] and a disk bounded by a meridian of µK with
some orientation. We observe that W01 is diffeomorphic to a blow-up of the
trace of 1-surgery on K, and then H2(W01) is generated by a capped-off Seifert
surface F1 and the exceptional sphere E, with F 2

1 = 1 and E2 = −1. We have
c01 · E ≡ 1 (mod 2) by [Sca15, §3.4] (see also [Flo90, Lemma 2.1]), and

c01 · F0 ≡ c0 · F0 ≡ 1 (mod 2)
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since F0 ⊂W0, whence

c01 · F1 ≡ c01 · (F0 − E) ≡ 0 (mod 2).

Since c01 has nullhomologous ends in Y and Y1, it lifts to a class in H2(W01).
Then the above intersection numbers tell us that c01 ≡ E (mod 2), and so
c2

01 ≡ −1 (mod 4).

Meanwhile, we have c2 ≡ 0 (mod 2) as in [BD95, §2], so that c2
2 ≡ 0 (mod 4).

And we note that the surfaces c012 and c201 are each homologous to a disjoint
union of closed surfaces in the classes of c01 ⊂ W01 and c2 ⊂ W2 in some order,
so we conclude that

c2
012 ≡ c2

201 ≡ c2
01 + c2

2 ≡ −1 (mod 4). �

Next, we note that a cobordism either to or from Y0, equipped with a bundle
whose restriction to Y0 is the admissible w, does not admit any reducible ASD
connections at all. This is because any such connection must limit at the Y0 end
to a reducible flat connection over Y0, and such limiting connections do not exist
by the admissibility of w. Thus we can restrict our attention to the cobordisms

(A.2) (W2, c2), (W01, c01), (W012, c012), (W201, c201),

which are the only other cobordisms considered in [Sca15, §5]. We note from
Lemma A.1 that these all have b1 = 0, and that by additivity of signature their
signatures are −1, 0, −1, −1 respectively while their second Betti numbers are
1, 2, 3, 3, so that

(A.3) b+2 (W2) = 0, b+2 (W01) = b+2 (W012) = b+2 (W201) = 1.

Moreover, since K is nullhomologous it follows that each of the classes [cs] ∈
H2(Ws, ∂Ws) appearing in (A.2) has nullhomologous boundary in ∂Ws, hence
lifts to a class in the corresponding H2(Ws).

From now on, we focus our attention on reducible connections on each of the
cobordisms (A.2). We will call a reducible instanton central if its holonomy is
central, and abelian if it is not.

An abelian instanton on any of the cobordisms (W, c) of (A.2) limits to a
central connection at either end, because H1(Y ) and H1(Y1) are both 2-torsion
and thus all reducible flat connections on Y and Y1 are central. According to
[ME19, Proposition 1.7], the components of the space of abelian instantons on
(W, c) are parametrized by pairs{

{x, y} ⊂ H2(W ;Z) | x+ y = PD(c), x 6= y
}

;

given a U(2)-bundle E → Y such that λ = det(E) has first Chern class PD(c),
we send a reducible connection that induces a splitting into complex line bundles
E ∼= η ⊕ (λ ⊗ η−1) to the set {x, y} = {c1(η), c1(λ ⊗ η−1)}. Given a perturba-
tion πW on W restricting to perturbations π, π′ on the incoming and outgoing
ends, and given an abelian instanton Λ in the component labeled by {x, y}, the
component Dν

Λ,πW
of the linearized ASD operator at Λ that is normal to the

reducible locus has index N(Λ;π, π′) ∈ 2Z equal to

(A.4) N(Λ;π, π′) = −2(x− y)2 − 2b+2 (W )− 2,
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by [DME22, Proposition 3.23], which in turn comes from [ME19, §4.5] (and is
greatly simplified here because b1(W ) = 0 and because the limiting flat con-
nections at either end of W must be central). We omit perturbations from the
notation from here on, but note that by taking them sufficiently small on the
interior of W , we will always have −2(x− y)2 ≥ 0 by [DME22, Remark 3.28].

We can say more about the −2(x − y)2 term. Working dually in homology,
we note that H2(W ) is free abelian, since W is built by attaching 2-handles to
either Y or Y1 (both of which have H2 = 0) along nullhomologous knots. In fact,
we have a splitting

H2(W,∂W ) ∼= H2(W )⊕ ker
(
i∗ : H1(∂W )→ H1(W )

)
,

whose second term is 2-torsion since H1(∂W ) is. The class c lies in the H2(W )
summand, so if we have x+ y = c then we can write the summands with respect
to this splitting as x = (α, τ) and y = (c− α, τ) for some α ∈ H2(W ) and some
2-torsion element τ ∈ ker(i∗). But then x− y = 2α− c, and both α and c have
integral square since they lift to H2(W ). We can thus compute that

(A.5) −2(x− y)2 ≡ −2c2 (mod 8),

and the right side of this congruence only depends on the mod 2 class of c. We
will use this to bound N(Λ) from below.

Lemma A.3. Fix s ∈ {01, 012, 201}. Then there are no central instantons on
(Ws, cs), and any abelian instanton Λ on (Ws, cs) has normal index N(Λ) ≥ −2.

Proof. To see that there are no central instantons, we note that they restrict to
reducible flat connections over Y0 ⊂ Ws, and the admissibility of w → Y0 rules
such connections out.

If Λ is reducible, then by equations (A.4) and (A.3), we have

N(Λ) = −2(x− y)2 − 4

where the −2(x− y)2 term is nonnegative. We also have −2(x− y)2 ≡ −2c2
s ≡ 2

(mod 8), by (A.5) and Lemma A.2, so we conclude that it is at least 2 and thus
N(Λ) ≥ −2. �

Proof of Theorem 2.5. As described above, we simply repeat the proof of the
exact triangle in [Sca15, §5], and we only have to check that there are no com-
pactness issues caused by broken flowlines with reducible (hence central) flat
connections on a 3-manifold in the middle. If every ASD connection in a broken
flowline is irreducible, but they are glued along flat connections at least one of
which is central, then the index will be at least 3. We can thus restrict our
attention to broken flowlines with at least one reducible instanton.

We have seen that this can only happen on one of the cobordisms (W, c) listed
in (A.2), and the proof does not make use of higher-dimensional families on
(W2, c2), so we really only need to consider

(W, c) = (Ws, cs), s = 01, 012, 201.

We remark that by Lemma A.3, a reducible instanton Λ on one of these (W, c)
must be abelian with normal index at least −2, and by [ME19, Proposition 4.26]
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its index satisfies

ind(Λ) = N(Λ)− (1− b1(W ) + b+2 (W )) = N(Λ)− 2,

so then ind(Λ) ≥ −4.

We now fix a pair of irreducible flat connections a and a′ on the ends Ya
and Ya′ of W . Suppose that some sequence of instantons in the moduli space
M(W ; a, a′) converges to a broken flowline

a
B−→ b

Λ−→ b′
B′−→ a′,

where B and B′ are ASD connections on R× Ya and R× Ya′ , and Λ is abelian;
then generically B and B′ have index at least 1, while ind(Λ) ≥ −4. Then by
standard gluing results, the broken flowline has index

ind(B) + ind(Λ) + ind(B′) + 5 ≥ 3.

(To explain the constant on the left, we first glue B to the abelian Λ along the
central b, with dimH0

b (Ya) = 3, and then similarly glue the irreducible result
of this to B′ along the central b′.) In particular, this broken flowline does not
belong to the compactification of an at most 2-dimensional moduli space.

The same holds for broken flowlines with longer chains of connections over
R × Ya or R × Ya′ . We conclude that the moduli spaces of dimension at most
2 that appear in [Sca15, §5] can be compactified without adding any broken
flowlines with reducible components, so the proof of the exact triangle goes
through as before. �
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