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Abstract. We prove that if Y is a closed, oriented 3-manifold with first homology
H1(Y ;Z) of order less than 5, then there is an irreducible representation π1(Y )→ SL(2,C)
unless Y is homeomorphic to S3, a lens space, or RP3#RP3. By previous work it suffices
to consider the case H1(Y ;Z) ∼= Z/4Z, which we accomplish using holonomy perturbation
techniques in instanton Floer homology.

1. Introduction

If we fix an integer n ≥ 4, then a classical construction demonstrates that any finitely
presented group G can be realized as the fundamental group of some closed n-manifold. The
analogous statement is false in three dimensions, leading one to ask which G can actually be
realized as 3-manifold groups. Techniques from both gauge theory and hyperbolic geometry
suggest that representation varieties could be a good source of restrictions on G, and indeed
the third author used these to prove the following:

Theorem 1.1 ([Zen18]). Let Y be an integer homology 3-sphere. If Y is not homeomorphic
to S3, then there is an irreducible representation π1(Y )→ SL(2,C).

In recent work we generalized this to the cases where H1(Y ) is 2-torsion or 3-torsion.

Theorem 1.2 ([GSZ23, Theorem 1.2]). Let Y be a closed, oriented, connected 3-manifold
with H1(Y ;Z) ∼= (Z/2Z)⊕r. If Y is not homeomorphic to #rRP3, then there is an irreducible
representation π1(Y )→ SL(2,C).

Theorem 1.3 ([GSZ23, Theorem 1.3]). Let Y be a closed, oriented, connected 3-manifold
with H1(Y ;Z) ∼= (Z/3Z)⊕r for some r ≥ 1. If Y is not homeomorphic to ±L(3, 1), then
there is an irreducible representation π1(Y )→ SL(2,C).

The main goal of this paper is to generalize the techniques of [GSZ23] and add the
following additional case.

Theorem 1.4. Let Y be a closed, orientable 3-manifold with H1(Y ;Z) ∼= Z/4Z, and suppose
that Y is not homeomorphic to a lens space. Then there is an irreducible representation
π1(Y )→ SL(2,C).

Corollary 1.5. Let Y be a closed, orientable 3-manifold with |H1(Y ;Z)| < 5. Then there is
an irreducible representation π1(Y )→ SL(2,C) unless Y is S3, a lens space, or RP3#RP3.

Proof. When H1(Y ) = 0, this is the main result of [Zen18]. The cases where H1(Y ) is Z/2Z
or (Z/2Z)⊕2 are part of Theorem 1.2, while Theorem 1.3 handles the case H1(Y ) ∼= Z/3Z.
This leaves only Z/4Z, which is Theorem 1.4. �
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1.1. Strategy. The proof of Theorem 1.4 follows the same broad outline as the results
of [Zen18, GSZ23]. We say that Y is SL(2,C)-reducible if every representation π1(Y ) →
SL(2,C) has reducible image, and then our goal is to classify the SL(2,C)-reducible 3-
manifolds Y with H1(Y ;Z) ∼= Z/4Z. By appealing to [Zen18] we see that any such Y
must be irreducible, and then the cases where Y is hyperbolic or Seifert fibered are readily
dispatched by appeals to [CS83] and [SZ22a] respectively. Thus by geometrization it suffices
to assume that Y has an incompressible torus.

Simplification of toroidal counterexamples. We now write our SL(2,C)-reducible, toroidal
manifold as Y = M1 ∪T 2 M2, where M1 and M2 are compact, irreducible 3-manifolds with
incompressible torus boundaries. If there is a degree-1 map of the form f : M1 →M ′1 that

restricts to a homeomorphism ∂M1
∼=−→ ∂M ′1, then we can extend this to a degree-1 map of

the form

Y = M1 ∪T 2 M2 →M ′1 ∪T 2 M2 = Y ′,

where the extension to M2 is by the identity. (To be precise, we can use the gluing map
∂M1

∼= ∂M2 coming from Y and pick an identification ∂M ′1
∼= ∂M2 so that the homeo-

morphism f |∂M1 : ∂M1 → ∂M ′1, read through these identifications, becomes the identity
on ∂M2, and this obviously extends by the identity.) As a degree-1 map, this induces a
surjection π1(Y ) → π1(Y

′), implying that Y ′ must also be SL(2,C)-reducible. The same
holds for degree-1 maps M2 → M ′2, so we may simplify Y by applying as many such maps
as we like.

In favorable situations there is a natural source of degree-1 maps. Each of the Mj comes
equipped with a rational longitude, uniquely defined up to sign, which is a primitive class

λj ∈ H1(∂Mj ;Z)

whose image in rational homology generates the kernel of the rank-1 map H1(∂Mj ;Q) →
H1(Mj ;Q). If we assume that H1(Y ) ∼= Z/4Z, then it turns out that either

(1) λj is nullhomologous, and there is a classical degree-1 “pinching” map Mj → S1×D2

(see [GSZ23, Proposition 4.2] for details);
(2) or λj has order 2 in H1(M ;Z), and then we constructed an analogous pinching map

from Mj onto the twisted I-bundle over the Klein bottle [GSZ23, Proposition 4.5].

We manage to eliminate the second possibility, by using an explicit understanding of the
SU(2) character variety of the twisted I-bundle over the Klein bottle to construct non-
abelian representations π1(Y

′) → SU(2). Thus for the main theorem it ultimately suffices
to assume that both M1 and M2 are homology solid tori, and that the Dehn fillings M1(λ2)
and M2(λ1) are both lens spaces of order 4.

Curves of characters in the pillowcase. Once we have simplified each Mj as above, we can
use techniques from gauge theory to construct a non-abelian representation π1(Y )→ SU(2).
It suffices to find a pair of representations ρj : π1(Mj)→ SU(2) that agree when restricted to
π1(T

2), so we study the images of the SU(2) character varieties X(Mj) inside the pillowcase
X(T 2), the SU(2) character variety of T 2. If these images intersect at a point where at least
one of the corresponding ρj is non-abelian, then these ρj will glue to give the desired non-
abelian ρ : π1(Y )→ SU(2).

Having arranged that each Mj is a homology solid torus with a lens space filling, it follows
that the pillowcase image of Mj must
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(1) avoid certain line segments in the pillowcase, where non-abelian representations
π1(Mj) → SU(2) would otherwise descend to non-abelian representations of the
corresponding lens space;

(2) and contain an essential closed curve in the twice-punctured pillowcase (which is
homeomorphic to an open cylinder).

Claim (2) is Proposition 5.5; to prove it, we argue that the longitudinal filling Mj(λj) must
be irreducible and thus have non-vanishing instanton homology, and then the existence of
the essential curve follows from the techniques of [Zen18] and [LPCZ23].

We now have a pair of simple closed curves γ1 and γ2 in the pillowcase, corresponding
respectively to SU(2) representations of π1(M1) and of π1(M2), and we wish to show that
they intersect. In fact, there is a slight caveat: there is exactly one point p ∈ X(T 2), denoted
(π2 , 0) in our preferred coordinates, that might correspond to abelian representations of both
of the π1(Mj). But if the γi meet at p then they must do so transversely, and then they
must also meet somewhere else, because simple closed curves on X(T 2) ∼= S2 cannot have
a single transverse point of intersection. So it suffices to show that γ1 intersects γ2.

From here the most novel part of the argument, in comparison with our work [GSZ23],
is the case where exactly one of the γj (say, γ2) passes through the distinguished point p.
Writing each Mj as the complement Yj \N(Kj) of a knot in a homology sphere, we used a
non-vanishing theorem of the form

I
wj
∗
(
(Yj)0(Kj)

)
6= 0,

in conjunction with the holonomy perturbation techniques of [Zen18], to deduce the exis-
tence of the curves γj . Here, by contrast, we apply these techniques to a lower bound

dim KHI (Yj ,Kj) > 1

on the instanton knot homology of [KM10]. Specifically, we use γ2, together with the line
avoided byX(M1) as in claim (1) above, to construct a simple closed curve c in the pillowcase
with the properties that

(1) if the irreducible characters of M1 avoid the curve γ2 in the pillowcase, then they
also avoid c;

(2) and c divides the pillowcase into two regions of equal area.

Following [SZ22b, §4], the holonomy perturbation argument says that the representations
π1(M1) → SU(2) along some C1-small approximation of c generate a chain complex for
KHI (Y1,K1), and only one of these generators corresponds to an abelian representation,
so there must be a non-abelian representation ρ1 : π1(M1)→ SU(2) whose image meets γ2
after all. This gives rise to the desired representation ρ of π1(Y ), completing the proof.

1.2. Organization. We begin with a brief review of the pillowcase in §2. In §3 we reduce
Theorem 1.4 to the case of toroidal manifolds Y where one side of the incompressible torus
has a lens space filling, and either the other side is either a homology solid torus with a lens
space filling or its rational longitude has reasonably small order. Then in §4 we rule out the
second possibility by reducing it to the case where that side is the twisted I-bundle over
the Klein bottle. Finally, most of the paper is concentrated in §5, where we use instanton
gauge theory to associate curves of characters in the pillowcase to each piece of Y \N(T 2)
and thus prove that the images of their character varieties must intersect.
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2. The pillowcase

In this section we briefly review some facts about the pillowcase orbifold, as discussed for
example in [LPCZ23, §3.1] or [GSZ23, §3.1].

Given a manifold M , we can define the SU(2) representation and character varieties of
M by

R(M) = Hom(π1(M),SU(2)),

X(M) = R(M)/SO(3),

where SO(3) = SU(2)/{±1} acts on R(M) by conjugation. We write Rirr(M) or X irr(M)
for the subsets of each variety consisting of irreducible representations. If M is the exterior
of a knot K ⊂ Y then we will also write R(Y,K) to mean R(M) and so on. We will say
that M is SU(2)-abelian if R(M) consists entirely of representations with abelian image.

In the case M = T 2, we have π1(T
2) ∼= Z2, say with generators µ and λ. A representation

ρ : π1(T
2)→ SU(2) is then determined by a pair of commuting matrices ρ(µ) and ρ(λ), and

since these are in SU(2) they can be simultaneously diagonalized, so that up to conjugacy
we have

ρ(µ) =

(
eiα 0
0 e−iα

)
, ρ(λ) =

(
eiβ 0
0 e−iβ

)
(2.1)

for some α, β ∈ R/2πZ. This uniquely determines the conjugacy class of ρ up to replacing
(α, β) with (−α,−β), so we have

X(T 2) ∼=
(R/2πZ)× (R/2πZ)

(α, β) ∼ (2π − α, 2π − β)
.

This quotient is homeomorphic to a sphere, but has four orbifold points of order 2 (where
α, β ∈ πZ), so it is known as the pillowcase orbifold. In practice we will use a fundamental
domain for this and write

X(T 2) ∼=
[0, π]α × [0, 2π]β (0, β) ∼ (0, 2π − β)

(π, β) ∼ (π, 2π − β)
(α, 0) ∼ (α, 2π)


.

Now if M is a compact 3-manifold with boundary T 2, the inclusion

i : T 2 ∼= ∂M ↪→M

gives a homomorphism i∗ : π1(T
2)→ π1(M) and hence a pullback map

i∗ : X(M)→ X(T 2).

We refer to the image i∗X(M) or i∗X irr(M) as the pillowcase image of M .

Example 2.1. In the case whereM ∼= Y \N(K) is the complement of a nullhomologous knot
K ⊂ Y , we use the meridian µ and longitude λ of K as our preferred generators of π1(T

2),
giving rise to coordinates (α, β) on the pillowcase as in (2.1). Any abelian representation
ρ : π1(M) → SU(2) will factor through H1(M), where [λ] = 0, and thus satisfy ρ(λ) = 1.
Thus in i∗X(Y,K) the abelian representations will all lie on the line β ≡ 0 (mod 2π), and
conversely any representation off that line must be non-abelian.
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Lemma 2.2 ([LPCZ23, Lemma 3.1]). Let Y be an SU(2)-abelian integer homology sphere,
and let K ⊂ Y be a knot. Then there is some positive δ = δ(K) > 0 such that the pillowcase
image

i∗X irr(Y,K) ⊂ X(T 2)

is contained in the region δ ≤ α ≤ π − δ.

In the situation of Lemma 2.2, we can lift i∗X(Y,K) to the cut-open pillowcase

C = [0, π]α × (R/2πZ),

because Example 2.1 and Lemma 2.2 tell us that the image i∗X(Y,K) only meets the lines
α = 0 and α = π in the pillowcase at the points (α, β) = (0, 0) and (π, 0), both of which
have a unique preimage in C. Lidman, Pinzón-Caicedo, and Zentner [LPCZ23] proved the
following, generalizing a theorem of Zentner [Zen18, Theorem 7.1] in the case Y = S3.

Theorem 2.3 ([LPCZ23]). Let Y be an SU(2)-abelian integer homology sphere, and let
K ⊂ Y be a knot with irreducible, boundary-incompressible exterior. Then the image

i∗X(Y,K) ⊂ C

in the cut-open pillowcase contains a topologically embedded curve in the interior of C that
is homologically nontrivial in H1(C;Z) ∼= Z.

Proof. Since Y is an SU(2)-abelian homology sphere, its instanton homology I∗(Y ) is zero.
Then by [LPCZ23, Theorem 1.3], the fact that Y \ N(K) is irreducible and boundary-
incompressible implies the non-vanishing of Iw∗ (Y0(K)), where w ∈ H2(Y0(K);Z/2Z) ∼=
Z/2Z is nonzero. Now we can apply the “pillowcase alternative” of [LPCZ23, Theorem 3.5]
to find the desired curve γ in i∗X(Y,K).

The only claim that needs further justification is that γ avoids the boundary curves
{α = 0} and {α = π}. We take the constant δ > 0 provided by Lemma 2.2 and note that
by Example 2.1, any point (α, β) ∈ γ with either 0 ≤ α < δ or π − δ < α ≤ π must satisfy
β ≡ 0 (mod π). If the intersection

I1 = γ ∩
(
[0, δ/2]× (R/2πZ)

)
⊂ C

is nonempty and we let

α1 = inf{α ∈ [0, δ/2] | (α, 0) ∈ γ},
then I1 must therefore be precisely the line segment [α1, δ/2]×{0} ⊂ C: we have (α1, 0) ∈ γ
since γ is closed, and if any point of (α1, δ/2] × {0} were missing from γ then γ would be
disconnected. By the same argument the intersection

I2 = γ ∩
(
[π − δ/2, π]× (R/2πZ)

)
⊂ C

must either be empty or have the form [π − δ/2, α2] × {0}. We let fs : [0, π] → [0, π] be a
deformation retraction of [0, π] onto [δ/2, π − δ/2], and then

C = [0, π]× (R/2πZ)
fs×id−−−→ [0, π]× (R/2πZ) = C

is a deformation retraction of C that restricts to a deformation retraction of γ. We replace γ
with its image f1(γ) ⊂ i∗X(Y,K), which is the desired curve because it no longer contains
any point (α, β) with α < δ/2 or α > π − δ/2. �
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3. Decompositions of toroidal manifolds

In this section, which parallels [GSZ23, §7], we show that a toroidal manifold Y with
homology H1(Y ) ∼= Z/peZ of prime power order must be a union of two relatively simple
pieces. Assuming that such a manifold is SL(2,C)-reducible, Proposition 3.5 will provide a
minimal example with respect to the partial ordering given by degree-1 maps. If we further
assume that H1(Y ) ∼= Z/4Z, then we will show in Proposition 4.4 that both pieces must
have nullhomologous rational longitudes, so that we can focus on this case afterward.

Lemma 3.1. Let Y be a closed, connected, orientable, toroidal 3-manifold with H1(Y ;Z) ∼=
Z/peZ for some prime p and integer e ≥ 0. Then we can write

Y = M1 ∪T 2 M2,

where M1 and M2 are compact manifolds with incompressible torus boundary satisfying

H1(M1;Z) ∼= Z,

H1(M2;Z) ∼= Z⊕ Z/pfZ
for some integer f with 0 ≤ f ≤ e.

Proof. A torus in a rational homology sphere must be separating, so we can write Y =
M1 ∪T 2 M2 where M1 and M2 are glued along their incompressible torus boundaries. Since
H2(Y ;Z) ∼= 0, the Mayer–Vietoris sequence for this decomposition reads

0→ H1(T
2)︸ ︷︷ ︸

∼=Z2

i∗−→ H1(M1)⊕H1(M2)
j∗−→ H1(Y )︸ ︷︷ ︸
∼=Z/peZ

→ 0.

Each map H1(T
2)→ H1(Mi) induced by inclusion has rank 1, so b1(Mk) ≥ 1 for each k, but

examining the sequence over Q shows that b1(M1) + b1(M2) = 2 and so in fact b1(Mk) = 1.
This means that we can write

H1(Mk;Z) ∼= Z⊕ Tk (k = 1, 2)

for some torsion groups Tk.

The nonzero elements of T1 ⊕ T2 cannot lie in the image of the injective map i∗, since
that image is free abelian, so by exactness we have an injection

j∗|T1⊕T2 : T1 ⊕ T2 ↪→ H1(Y ) ∼= Z/peZ.
But Z/peZ cannot be written as a direct sum of two nontrivial groups, so we conclude that
one of the Tk must be zero; without loss of generality we label M1 and M2 so that T1 = 0.
Then T2 might be nonzero, but it does inject into Z/peZ, so we must have T2 ∼= Z/pfZ
where 0 ≤ f ≤ e. �

Lemma 3.2. Suppose that Y is SL(2,C)-reducible and that H1(Y ) is a finite cyclic group,
but that Y is not a lens space. Then Y has an incompressible torus.

Proof. Since Y is SL(2,C)-reducible it cannot be hyperbolic [CS83, Proposition 3.1.1]. An
SL(2,C)-reducible rational homology sphere is also SU(2)-abelian, so if Y is not a lens space
then it can only be Seifert fibered with H1(Y ) finite if its base orbifold is either S2(2, 4, 4)
or S2(3, 3, 3) [SZ22a, Theorem 1.2]. We adapt the proof of [GSZ23, Lemma 8.2] to rule
these out: if

Y ∼= S2((2, β1), (4, β2), (4, β3))
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then there is a surjection

H1(Y ) ∼= coker


2 0 0 β1
0 4 0 β2
0 0 4 β3
1 1 1 0

� Z/2Z⊕ Z/4Z

given by sending the respective generators to (1, 2), (1, 1), (0, 1), and (0, 0), while if

Y = S2((3, β1), (3, β2), (3, β3))

then we have a surjection

H1(Y ) ∼= coker


3 0 0 β1
0 3 0 β2
0 0 3 β3
1 1 1 0

� Z/3Z⊕ Z/3Z

sending the generators to (1, 0), (0, 1), (2, 2), and (0, 0). In either case the first homology
can’t be cyclic, so this rules out all of the Seifert fibered possibilities, and now we conclude
by the geometrization theorem that Y must be toroidal. �

Supposing that Y = M1 ∪M2 as in Lemma 3.1 is SL(2,C)-reducible, we wish to arrange
for the manifolds M1 and M2 to be as simple as possible. The following theorem of Rong
will help us achieve this goal:

Theorem 3.3 ([Ron92, Theorem 3.9]). Suppose we have an infinite sequence of closed,
oriented 3-manifolds and degree-1 maps between them, of the form

Y1
f1−→ Y2

f2−→ Y3
f3−→ · · · .

Then the map fi is a homotopy equivalence for all sufficiently large i.

We will also use the following lemma.

Lemma 3.4. Let M1 and M2 be compact 3-manifolds with incompressible torus boundary,
and form

Y = M1 ∪T 2 M2

by gluing them according to some diffeomorphism ∂M1
∼=−→ ∂M2. If Y is SL(2,C)-reducible,

and if H1(Y ;Z) ∼= Z/nZ where n ≥ 1 does not have the form n = 2e for some odd e ≥ 3,
then each of M1, M2, and Y are irreducible.

Proof. If Y were reducible then it would be a connected sum, say Y ∼= Z#Z ′, since it does
not have the same homology as S1×S2. Both Z and Z ′ must be SL(2,C)-reducible if Z#Z ′

is, so neither one is a homology 3-sphere by Theorem 1.1. Now if neither H1(Z) nor H1(Z
′)

were 2-torsion, then we could find an irreducible representation

π1(Z#Z ′) ∼= π1(Z) ∗ π1(Z ′) � H1(Z) ∗H1(Z
′)→ SL(2,C),

exactly as in [GSZ23, Theorem 1.5]. Thus without loss of generality H1(Z) is 2-torsion, and

H1(Y ) ∼= H1(Z)#H1(Z
′) ∼= (Z/2Z)⊕r ⊕H1(Z

′)

for some r ≥ 1. Since H1(Y ) is cyclic we conclude that r = 1 and that H1(Z
′) is cyclic of

odd order e > 1. But then |H1(Y )| = 2e, and we have assumed that this is not the case, so
Y must be irreducible after all.
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Now that we know Y to be irreducible, we suppose that one of the Mi is reducible, say M1

without loss of generality. Then we can write M1
∼= W#M ′1, where W 6∼= S3 is closed and

∂M ′1
∼= T 2 is incompressible. In this case Y ∼= W#(M ′1 ∪T 2 M2) is a nontrivial connected

sum, because M ′1 ∪T 2 M2 is a closed toroidal manifold and hence not S3. This contradicts
the irreducibility of Y , so M1 must have been irreducible after all. �

Proposition 3.5. Suppose that there exists a toroidal, SL(2,C)-reducible 3-manifold with
H1(Y ;Z) ∼= Z/peZ, where pe is a prime power. Then there is such an irreducible 3-manifold
Y with the following additional properties: if we write

Y = M1 ∪T 2 M2

as in Lemma 3.1, and if λi is the rational longitude of Mi, then

(1) both M1 and M2 are irreducible and boundary-incompressible,
(2) H1(M1) ∼= Z,
(3) M2(λ1) is a lens space of order pe,
(4) and either

(a) λ2 is nullhomologous, M1(λ2) is a lens space of order pe, H1(M2) ∼= Z, and
∆(λ1, λ2) = pe;

(b) or λ2 has order pk for some k with 1 ≤ k < e, and ∆(λ1, λ2) divides pe−k.

Proof. The irreducibility of Y and of the Mi is Lemma 3.4, so we will not discuss it further.

Let Y0 be a toroidal, SL(2,C)-reducible 3-manifold with H1(Y0;Z) ∼= Z/peZ. Supposing
that the claimed Y does not exist, we will inductively build an infinite sequence of 3-
manifolds and degree-1 maps between them, of the form

Y0
f0−→ Y1

f1−→ Y2
f2−→ . . . ,

such that the fi are not homotopy equivalences, and this will contradict Theorem 3.3.

Given Yi, which is toroidal with H1(Yi;Z) ∼= Z/peZ, we use Lemma 3.1 to write

Yi ∼= M i
1 ∪T 2 M i

2

with H1(M
i
1)
∼= Z. Letting λij be the rational longitude of M i

j for j = 1, 2, it follows that λi1
has order 1, so there is a degree-1 map that pinches M1 onto a solid torus while sending λi1
to a longitude of that solid torus. (This is a classically known construction, but see [GSZ23,
Proposition 4.2] for details.) This map extends to a degree-1 map

pi : Yi →M i
2(λ

i
1),

which is not a homotopy equivalence because the incompressibility of the separating torus
T 2 guarantees that λi1 is a nontrivial element of the kernel of (p1)∗ : π1(Yi) → π1(Yi+1).
Then M i

2(λ
i
1) satisfies H1(M

i
2(λ

i
1))
∼= H1(Yi) ∼= Z/peZ, since we have constructed it from Yi

by replacing the homology solid torus M i
1 with an actual solid torus in a way that preserves

longitudes. If it is not a lens space then Lemma 3.2 says that it must be toroidal, so we let
Yi+1 = M i

2(λ
i
1) and fi = pi : Yi → Yi+1, and we continue to the next iteration.

If we have reached this point then M i
2(λ

i
1) must be a lens space of order pe, and we now

consider the rational longitude λi2 of M i
2.

Supposing for now that λi2 has order 1, then Lemma 3.1 says that H1(M
i
2)
∼= Z⊕Z/pfZ

for some f ≤ e, with the peripheral subgroup H1(∂M
i
2) generating the Z summand since
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M i
2 is the complement of a nullhomologous knot. If we choose peripheral elements µi1 and

µi2 dual to the longitudes λi1 and λi2, then the µij generate the Z summands of each H1(M
i
j).

Dropping the “i” superscripts for now and writing the gluing map ∂M i
1

∼=−→ ∂M i
2 in the form

µ1 ∼ µa2λb2
λ1 ∼ µc2λd2

with ad− bc = ±1, we then compute that

∆(λ1, λ2) = ∆(µc2λ
d
2, λ2) = |c|,

that λ±12 ∼ µ
−c
1 λa1, and that

Z/peZ ∼= H1(Yi) ∼=
Z⊕ Z

(1,0)∼(0,a)
(0,0)∼(0,c)

⊕ Z/pfZ ∼= Z/cZ⊕ Z/pfZ,

so (∆(λ1, λ2), p
f ) = (|c|, pf ) must be either (1, pe) or (pe, 1).

Now since λ2 has order 1, there is again a degree-1 map pinching M i
2 to a solid torus and

sending λ2 to a longitude of the solid torus; again this map

qi : Yi →M i
1(λ2)

cannot be a homotopy equivalence. Then M i
1(λ2) is SL(2,C)-reducible, with homology

H1(M
i
1(λ2))

∼=
H1(M

i
1)

λ2
∼=
H1(M

i
1)

µ−c1 λa1

∼= Z/|c|Z,

so we have two cases depending on the value of |c| = ∆(λ1, λ2):

(1) if |c| = 1 then H1(M
i
1(λ2)) = 0, so M i

1(λ2) must be S3 [Zen18];
(2) while if |c| = pe then H1(M

i
1(λ2))

∼= Z/peZ.

We use [GSZ23] to rule out the first case as follows: let Z1 = M i
1(λ2)

∼= S3 and Z2 = M i
2(λ1),

which is a lens space; the cores K1 ⊂ Z1 and K2 ⊂ Z2 of these fillings are nullhomologous,
since their meridians µ1 = λ2 and µ2 = λ1 are at distance one from their longitudes λ1
and λ2, and their exteriors M1

∼= Z1 \ N(K1) and M2
∼= Z2 \ N(K2) are irreducible and

boundary-incompressible. We form Yi by splicing the exteriors of K1 and K2, gluing the
meridian of one to the longitude of the other and vice versa, and so [GSZ23, Proposition 9.8]
gives us an irreducible representation ρ : π1(Yi)→ SU(2), contradicting the assumption that
Yi was SL(2,C)-reducible.

We must therefore be in case (2) above, meaning that (|c|, pf ) = (pe, 1) and that

H1(M
i
2)
∼= Z⊕ Z/pfZ ∼= Z.

If M i
1(λ2) is a lens space of order pe, then Yi is the desired Y and we are done. Otherwise

λ2 has order 1 and H1(M
i
1(λ2))

∼= Z/peZ, but M i
1(λ2) is not a lens space, and then it must

be toroidal by Lemma 3.2. We let Yi+1 = M i
1(λ2) and fi = qi : Yi → Yi+1, and we continue

to the next iteration.

The only case left to consider is where M i
2(λ

i
1) is a lens space of order pe, but λi2 is not

nullhomologous in M i
2; since it is a torsion element of H2(M

i
2)
∼= Z ⊕ Z/pfZ where f ≤ e,

it must have order pk, where 1 ≤ k ≤ f ≤ e.
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Identifying H2(M
i
2)
∼= Z⊕ Z/pfZ, we can choose a generator of the torsion summand so

that the peripheral elements of M i
2 have the form

µ2 = (a, b), λ2 = (0, pf−k).

Then as above we have a degree-1 map Yi →M i
2(λ1), which preserves H1 because it replaces

the homology solid torus M i
1 with an actual solid torus in a longitude-preserving way. If

λ1 ∼ µc2λd2 for some integers c and d, then

Z/peZ ∼= H1(M
i
2(λ1))

∼=
Z⊕ Z/pfZ

c(a, b) + d(0, pf−k) = 0
∼= coker

(
ca cb+ dpf−k

0 pf

)
,

so by comparing orders we have

|ac|pf = pe,

or equivalently |ac| = pe−f . In particular, if k = e then these are each equal to f , which is
sandwiched between k and e, so we have |ac| = 1 and thus

µ2 = (±1, b), λ2 = (0, 1)

as elements of Z ⊕ Z/pfZ. But then these elements span a 2-dimensional subspace of
H1(M

i
2;Z/pZ) ∼= Z/pZ⊕ Z/pZ, contradicting the “half lives half dies” theorem which says

that the inclusion-induced map

H1(∂M
i
2;F)→ H1(M

i
2;F)

has rank 1 over any field F. We must therefore have a strict inequality k < e, and moreover

∆(λ1, λ2) = ∆(µc2λ
d
2, λ2) = |c|

divides pe−f and hence pe−k as claimed. �

4. Toroidal manifolds with essential rational longitudes

Having proved Proposition 3.5 for manifolds with homology Z/peZ in general, we now
specialize to pe = 4 in order to rule out the last case of that proposition. We accomplish
this by simplifying our toroidal 3-manifold via [GSZ23, Proposition 1.9], asserting that
a compact 3-manifold with torus boundary and a rational longitude of order 2 admits a
degree-1 map onto the twisted I-bundle over the Klein bottle. We thus begin by describing
the SU(2) representations of the latter manifold in the following lemma, which is a corrected
version of the second half of [GSZ23, Proposition 4.4].

Lemma 4.1. Let N be the twisted I-bundle over the Klein bottle, with peripheral Seifert
fiber σ and rational longitude λ. Then every representation ρ : π1(N)→ SU(2) is conjugate
to one satisfying

(ρ(σ), ρ(λ)) = (eiα,±1) or (ρ(σ), ρ(λ)) = (−1, eiβ)

for arbitrary α, β ∈ R/2πZ, and all such pairs are realized by some ρ. The image of ρ is
non-abelian if and only if ρ(λ) 6= ±1.

Proof. Following [GSZ23, Proposition 4.4], we write

π1(N) ∼= 〈a, b | aba−1 = b−1〉,



HOMOLOGY LENS SPACES AND SL(2,C) 11

with σ = a2 and λ = b. Up to conjugacy any ρ : π1(N) → SU(2) satisfies ρ(σ) = eiα

and ρ(λ) = eiβ for some α, β ∈ R/2πZ, so we will assume throughout the proof that all
representations ρ have this form.

We first suppose that ρ : π1(N) → SU(2) has abelian image, and we claim that it must
then satisfy ρ(λ) = ±1. Indeed, if ρ(λ) = eiβ were different from ±1, then ρ(a) would have
to lie in the unique U(1) subgroup through ρ(λ), so in fact we could write ρ(a) = eit for
some t. But then the relation ρ(aba−1) = ρ(b−1) would become eiβ = (eiβ)−1, so ρ(λ) = eiβ

must have been ±1 after all, a contradiction. At the same time, given any α we can define
a representation ρ : π1(Y )→ SU(2) with abelian image by

ρ(a) = eiα/2, ρ(b) = ±1,

and then we have ρ(σ) = ρ(a2) = eiα and ρ(λ) = ρ(b) = ±1, so all pairs (ρ(σ), ρ(λ)) =
(eiα,±1) are realized by abelian representations.

Now suppose that ρ : π1(N) → SU(2) has non-abelian image. Since the element σ = a2

is central in π1(N), its image ρ(σ) must commute with the entire image of ρ, so then
ρ(σ) = ±1. If we had ρ(σ) = +1 then its square root ρ(a) would have to be ±1, but this is
not possible if ρ has non-abelian image, so in fact ρ(σ) = −1. Up to conjugacy this means
that ρ(a) = j, and then the relation

jρ(b)j−1 = ρ(a)ρ(b)ρ(a)−1 = ρ(b)−1

implies that the j-component of ρ(b) is zero, so we can conjugate again by something of
the form cos(θ) + sin(θ)j to maintain the relation ρ(a) = j while recovering our preferred
form ρ(b) = eiβ. Any such choice of β gives rise to a representation ρ with ρ(σ) = −1 and
ρ(λ) = ρ(b) = eiβ, and it has non-abelian image precisely when j does not commute with
eiβ, i.e., when eiβ 6= ±1. �

Remark 4.2. The abelian representations with ρ(σ) 6= 1 in Lemma 4.1 were mistakenly
omitted from [GSZ23, Proposition 4.4], though this omission does not affect its application
in [GSZ23]. In the proof of that proposition we had claimed that if ρ(a) = ejs for some
s 6∈ πZ, then “the relation ρ(aba−1) = ρ(b−1) implies that ρ(a) = ±j and that ρ(b) has zero
j-component,” when in fact another possibility is that s is arbitrary and ρ(b) = ±1.

We now begin to address case (4b) of Proposition 3.5 for manifolds Y withH1(Y ) ∼= Z/4Z.
The following is a special case, in which we take the simplest possible choice of M2 whose

rational longitude has order 2 and consider a very specific gluing map ∂M1
∼=−→ ∂M2.

Proposition 4.3. Let N denote the twisted I-bundle over the Klein bottle, with peripheral
Seifert fiber µ2 and rational longitude λ2. Form a closed 3-manifold

Y = M1 ∪T 2 N

where

(1) H1(Y ;Z) is finite cyclic and H1(M1;Z) ∼= Z;
(2) M1 is irreducible and has incompressible torus boundary, with longitude λ1;
(3) and the gluing map identifies λ1 ∼ µ±12 λ2.

Then there is a representation

ρ : π1(Y )→ SU(2)

with non-abelian image.
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Proof. We write λ1 ∼ µε2λ2 for some ε ∈ {±1} and choose µ1 ⊂ ∂M1 to be the peripheral
curve satisfying µ1 ∼ λε2, so that{

µ1 ∼ λε2

λ1 ∼ µε2λ2
⇐⇒

{
µ2 ∼ µ−11 λε1

λ2 ∼ µε1.

Then we have

∆(µ1, λ1) = ∆(λε2, µ
ε
2λ2) = 1,

so µ1 is dual to λ1 as curves in ∂M1, and in particular µ1 must generate H1(M1) ∼= Z. This
means that

Y1 = M1(µ1)

is an integer homology sphere. We let K1 ⊂ Y1 be the core of this filling, with exterior
M1
∼= Y1 \N(K1).

We first suppose that Y1 is not SU(2)-abelian. Then there is a representation

ρY1 : π1(Y1)→ SU(2)

with non-abelian image, and this gives rise to a non-abelian

ρM1 : π1(M1) �
π1(M1)

⟪µ1⟫
∼= π1(Y1)

ρY1−−→ SU(2)

satisfying ρM1(µ1) = 1. Now by Lemma 4.1 we can take an abelian representation

ρN : π1(N)→ SU(2)

satisfying ρN (λ2) = 1 and ρN (µ2) = ρM1(λε1), and since ρM1 and ρN satisfy

ρN (µ2) = ρM1(µ−11 λε1)

ρN (λ2) = ρM1(µε1),

they glue together to give a representation ρ : π1(Y ) → SU(2). The image of ρ contains
that of ρM1 , so it is non-abelian and in this case we are done.

For the remainder of the proof we can suppose that Y1 is SU(2)-abelian. Since the
exterior M1 of K1 ⊂ Y1 is irreducible and boundary-incompressible, Theorem 2.3 provides
a topologically embedded curve γ in the cut-open pillowcase image

i∗X(Y1,K1) ⊂ C = [0, π]α × (R/2πZ)β

that is homologically nontrivial in H1(C;Z), and that satisfies

γ ⊂ (0, π)× (R/2πZ) = int(C).
Now for each possible ε ∈ {±1} and each θ ∈ R/2πZ, we define a line segment Lεθ from the
α = 0 component of ∂C to the α = π component of ∂C by setting

Lεθ = {(α, ε(α+ θ)) | 0 ≤ α ≤ π}.
See Figure 1. Each of the paths Lεθ generates the relative homology H1(C, ∂C;Z) ∼= Z, so
the intersection pairing

H1(C)×H1(C, ∂C)→ Z
sends ([γ], [Lεθ]) to ±1, and as such the intersection

γ ∩ Lεθ
must be nonempty.
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0

β

2π

γ

L+1
0

L+1
π

L−1π

L−10

Figure 1. Left: the curve γ meeting each of the paths L+1
0 and L+1

π in the

cut-open pillowcase. Right: same, but with L−10 and L−1π .

Any point (α, β) of γ ∩ Lεθ corresponds to a representation

ρM1 : π1(M1)→ SU(2)

µ1 7→ eiα

λ1 7→ eiβ,

satisfying ρM1(µε1) = ei·εα and

ρM1(µ−11 λε1) = ei(−α+εβ) = eiθ.

We cannot have α = 0 or α = π, because γ does not contain any such points, and so
ρM1(µε1) = ei·εα is not equal to ±1. In other words, for each θ ∈ R/2πZ we have found a
representation ρM1 : π1(M1)→ SU(2) satisfying

ρM1(µ−11 λε1) = eiθ, ρM1(µε1) = ei·εα 6= ±1.

At this point, we specialize to θ = π and use Lemma 4.1 to identify a representation
ρN : π1(N)→ SU(2) satisfying

ρN (µ2) = eiθ = −1

ρN (λ2) = ρM1(µε1) 6= ±1,

which must necessarily be non-abelian. Since µ2 ∼ µ−11 λε1 and λ2 ∼ µε1, and we have

arranged that ρN (µ2) = ρM1(µ−11 λε1) and ρN (λ2) = ρM1(µε1), the representations ρM1 and
ρN glue together to give us a representation

ρ : π1(Y )→ SU(2),

whose image is non-abelian because it contains the non-abelian image of ρN . �

Proposition 4.4. Assume the hypotheses of Proposition 3.5. If pe = 4, then case (4b)
of that proposition does not occur. In other words, case (4a) applies instead: the rational
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longitude λ2 ⊂ ∂M2 is nullhomologous, M1(λ2) is a lens space of order pe = 4, H1(M2) ∼= Z,
and ∆(λ1, λ2) = pe = 4.

Proof. Supposing that we find ourselves in case (4b), the rational longitude λ2 must have
order exactly 2, and the distance

∆(λ1, λ2)

divides 2. Since λ2 has order 2, we apply [GSZ23, Proposition 1.9] to produce a degree-1
map

M2 → N

that preserves rational longitudes, where N is the twisted I-bundle over the Klein bottle.
This gives rise to a sequence of rational-longitude-preserving, degree-1 maps

(4.1) Y = M1 ∪T 2 M2 →M1 ∪T 2 N → N(λ1),

where we first pinch M2 to N and then M1 to a solid torus.

It follows from (4.1) that M1 ∪T 2 N and N(λ1) are both SL(2,C)-reducible, with first
homology a quotient of Z/4Z. In fact, every Dehn filling of N has homology of order at
least 4 and so we must have

H1(N(λ1);Z) ∼= Z/4Z,
which implies in turn that

H1(M1 ∪T 2 N) ∼= Z/4Z.
We can also read from the proof of [GSZ23, Proposition 4.4] that if µ2 is the Seifert fiber
slope on ∂N , then

λ1 ∼ µ±12 λ2

for some choice of sign, since otherwise N(λ1) cannot be SL(2,C)-reducible with homology
Z/4Z. But now Proposition 4.3 provides us with a non-abelian representation

π1(M1 ∪T 2 N)→ SU(2),

so M1 ∪T 2 N cannot be SL(2,C)-reducible and we have a contradiction. �

5. Gluing 3-manifolds with nullhomologous rational longitudes

With Propositions 3.5 and 4.4 in mind, our main goal in this lengthy section is to prove
the following theorem.

Theorem 5.1. Let Y = M1 ∪T 2 M2 be an irreducible 3-manifold with H1(Y ;Z) ∼= Z/4Z,
where

(1) M1 and M2 are irreducible, with incompressible torus boundaries;
(2) H1(M1;Z) ∼= H1(M2;Z) ∼= Z;
(3) and if λj ⊂ ∂Mj denotes the longitude of Mj, then both M1(λ2) and M2(λ1) are

lens spaces of order 4.

Then there is a representation ρ : π1(Y )→ SU(2) with non-abelian image.

We will first deduce Theorem 1.4 from Theorem 5.1 before going on to prove the latter.
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Proof of Theorem 1.4. Let Y be closed and orientable, with H1(Y ) ∼= Z/4Z, and suppose
that Y is not homeomorphic to a lens space. Then Lemma 3.2 says that Y must have
an incompressible torus. Proposition 3.5 subsequently produces another such Y ′ that is
both toroidal and SL(2,C)-reducible, and by Proposition 4.4 it satisfies the hypotheses of
Theorem 5.1. But then Theorem 5.1 gives us a representation

ρ : π1(Y
′)→ SU(2) ↪→ SL(2,C)

with irreducible image, and we have a contradiction. �

We begin in §5.1 by gathering some facts about the pillowcase images of knots with lens
space surgeries. In §5.2 we specialize to the case where the lens space surgery has slope
4, showing that we can form Y up to an overall orientation reversal by a very specific
gluing of knot complements and describing essential curves in the pillowcase images of
these knots. Then in §5.3 we begin to show that such Y admit non-abelian representations
ρ : π1(Y ) → SU(2), using these essential curves to find the desired ρ when neither curve
passes through the point (π2 , 0) in the pillowcase. In §5.4 we apply instanton knot homology
to settle the remaining case, where at least one curve contains (π2 , 0), and this completes
the proof.

5.1. Pillowcase images of knots with lens space surgeries. Motivated by Propo-
sition 3.5, we prove some general facts about the pillowcase images of knots in homology
spheres that admit lens space surgeries. We begin with the observation that a cyclic surgery
forces the pillowcase image to avoid lines of the corresponding slope in the pillowcase.

Lemma 5.2. Let K be a knot in an integer homology sphere Y , with complement EK , and
with meridian and longitude µ, λ ⊂ ∂EK . Suppose that Yr/s(K) is a lens space for some
relatively prime r, s with r 6= 0 and s ≥ 1. Then any representation

ρ : π1(EK)→ SU(2)

such that ρ(µrλs) = ±1 must have finite cyclic image and satisfy ρ(λ) = 1. In other words,
the intersection

i∗X irr(Y,K) ∩ {(α, β) | rα+ sβ ≡ 0 (mod π)} ⊂ X(T 2)

is empty.

Proof. Let ρ be such a representation. Then ad ρ : π1(EK)→ SO(3) sends µrλs to 1, so it
descends to a representation

π1(Yr/s(K)) ∼=
π1(EK)

⟪µrλs⟫ → SO(3)

with the same image, and then ad ρ must have finite cyclic image because π1(Yr/s(K)) is
finite cyclic. The image of ρ is therefore a finite subgroup G ⊂ SU(2) whose image under
ad : SU(2)→ SO(3) is cyclic, and it follows that G is finite cyclic as well. Now since ρ has
abelian image it factors through H1(EK), in which [λ] = 0, and so ρ(λ) = 1 as claimed. �

See Figure 2 for an illustration in the case where r
s = 4.

We can also show that the image i∗X irr(Y,K) avoids an open neighborhood of each point
(kπ|r| , 0). The following generalizes [GSZ23, Lemma 10.4], which addressed the case where

the slope r
s has numerator an odd prime.
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Proposition 5.3. Let K be a knot in a homology sphere Y , with irreducible and boundary-
incompressible complement. Suppose that Yr/s(K) is a lens space, where r 6= 0 and s ≥ 1
are relatively prime. Then there is an open neighborhood of the set

{rα+ sβ ≡ 0 (mod π)} ⊂ X(T 2),

including each point (kπ|r| , 0) with 0 ≤ k ≤ |r|, that is disjoint from the image i∗X irr(Y,K)

of the irreducible representations of π1(EK). In particular, this neighborhood intersects the
pillowcase image i∗X(Y,K) only along the line segment β ≡ 0 (mod 2π).

Proof. If we cannot find such a neighborhood, then some (α0, β0) with rα0 + sβ0 ∈ πZ
is a limit point of i∗X irr(Y,K). There is then a sequence of irreducible representations
π1(EK)→ SU(2) whose images in the pillowcase converge to (α0, β0), and since R(Y,K) is
compact, some subsequence converges in R(Y,K) to a representation ρ : π1(EK) → SU(2)
with pillowcase coordinates i∗[ρ] = (α0, β0). By Lemma 5.2 it follows that ρ has abelian
image and that β0 = 0, and then (α0, β0) = (kπ|r| , 0) for some integer k with 0 ≤ k ≤ |r|. In

other words, up to conjugacy ρ satisfies

ρ(µ) = ei·kπ/|r|, ρ(λ) = 1.

Given that ρ is a reducible limit of irreducible representations, with ρ(µ) = ei·kπ/|r|, we
know once again from [GSZ23, Lemma 3.2] that k is neither 0 nor |r|. Heusener, Porti,
and Suárez Peiró [HPSP01, Theorem 2.7] (cf. Klassen [Kla91]) moreover proved that the
Alexander polynomial of K ⊂ Y must satisfy

∆K

(
ei·2kπ/|r|

)
= 0.

Thus by [BZ03, Theorem 8.21] the branched |r|-fold cyclic cover Ỹ = Σ|r|(K) of K ⊂ Y

has b1(Ỹ ) > 0. If K̃ ⊂ Ỹ is the lift of the branch locus K, then its meridian µK̃ is a lift

of µ
|r|
K while the longitude λK̃ lifts λK , and so the |r|-fold covering Ỹ \N(K̃)→ Y \N(K)

extends to an |r|-fold covering

Ỹsign(r)/s(K̃)→ Yr/s(K).

But Yr/s(K) is a lens space of order |r|, so we must have Ỹ±1/s(K̃) ∼= S3. In particular Ỹ
is actually a homology sphere and we have a contradiction. �

Given a knot K ⊂ Y with a lens space surgery, we will now show, following [Zen18],
that under mild hypotheses the pillowcase image of K must contain an essential simple
closed curve in the twice-punctured pillowcase. This relies on a nonvanishing result for the
instanton homology of the zero-surgery Y0(K), for which by [KM10] it will suffice to know
that Y0(K) is irreducible. We thus prove the following generalization of part of [GSZ23,
Proposition 6.2], referring the reader to [Sco83] for basic facts about Seifert fibered spaces.

Proposition 5.4. Let Y be a homology 3-sphere, and let K ⊂ Y be a knot with irreducible,
boundary-incompressible exterior. Suppose that Yr/s(K) is a lens space for some relatively
prime integers r and s, with |r| ≥ 2 and s ≥ 1. Then Y0(K) is irreducible.

Proof. Suppose instead that Y0(K) is reducible. Then K has a cyclic surgery of slope r
s and

a reducible surgery of slope 0, and the distance between these slopes is ∆( rs ,
0
1) = |r| ≥ 2, so

Boyer and Zhang [BZ98, Theorem 1.2(1)] proved that EK = Y \N(K) is either a simple (i.e.,
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Figure 2. If Y4(K) is a lens space, then the pillowcase image i∗X(Y,K)
must avoid the lines L0 = {4α + β ≡ 0 (mod 2π)} and Lπ = {4α + β ≡ π
(mod 2π)}, except at the points where β ≡ 0 (mod 2π). The curve γ ⊂
i∗X(Y,K) shown here, as provided by Proposition 5.5, only meets these
lines at (π4 , 0) and (π2 , 0).

irreducible and atoroidal) Seifert fibered manifold or a cable on the twisted I-bundle over
the Klein bottle. It cannot be the latter, because the Klein bottle would then represent a
nonzero class in H2(Y ;Z/2Z) = 0 – it does not even separate its own tubular neighborhood,
so there is a closed curve dual to it – so EK must be simple Seifert fibered.

Next, we claim that EK has orientable base orbifold. Indeed, the Seifert fibration of EK
extends over any Dehn filling EK(γ) as long as γ is not the Seifert fiber slope, so it extends
over all but at most one of the surgeries Y1/n(K), where n ∈ Z. If the base orbifold Σ
of some Y1/n(K) were non-orientable, then we could pull the Seifert fibration back along

the orientation double cover Σ̃ → Σ to get a double cover of Y1/n(K), which is impossible
because Y1/n(K) is a homology sphere. Thus Σ must be orientable, and the base orbifold
of EK is orientable as well because it is Σ minus an open disk.

We now show that Y0(K) ∼= S1 × S2. If the longitude λ of K is not the Seifert fiber
slope on ∂EK , then the Seifert fibration on EK extends to EK(λ) ∼= Y0(K), and then
Y0(K) is reducible (by assumption) and Seifert fibered but does not have the homology of
RP3#RP3, so it must be S1 × S2. Otherwise, if λ is the Seifert fiber slope, then since the
base orbifold of EK is orientable we know that Y0(K) will be a connected sum of several
copies of S1×S2 and lens spaces [Hei74, Proposition 2], and then the only way that we can
have H1(Y0(K)) ∼= Z is if Y0(K) ∼= S1 × S2.

To summarize, we now know that EK = Y \ N(K) is Seifert fibered, with orientable
base orbifold; that Yr/s(K) is a lens space; and that Y0(K) ∼= S1 × S2, so EK is also the

exterior of a knot K ′ ⊂ S1 × S2. From these facts, Baker, Buck, and Lecuona [BBL16,
Theorem 1.18] proved that K ′ must be either an (a, b)-torus knot or a (2,±1)-cable of a
torus knot, and K ′ cannot be cabled because we know from the above application of [BZ98]
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that EK ∼= EK′ is atoroidal. As K ′ is a (a, b)-torus knot in S1 × S2, which in [BBL16]
means a cable of S1×{pt} with winding number a, its complement EK′ has first homology
H1(EK′) ∼= Z ⊕ Z/aZ. But we also know that H1(EK) ∼= Z, so |a| = 1 and therefore K ′

is isotopic to S1 × {pt}. Then EK ∼= EK′ must be a solid torus, and this contradicts the
incompressibility of ∂EK , so Y0(K) must have been irreducible after all. �

Proposition 5.5. Let K be a knot in a homology sphere Y , with irreducible, boundary-
incompressible exterior. Suppose that Yr/s(K) is a lens space for some relatively prime

integers r, s with |r| ≥ 2 and s ≥ 1. Then the pillowcase image i∗X(Y,K) ⊂ X(T 2) does
not contain either of the points (0, π) and (π, π), and moreover there is a topologically
embedded, closed curve

γ ⊂ i∗X(Y,K)

that is homologically essential in the twice-punctured pillowcase X(T 2)\{(0, π), (π, π)}, and
that does not contain either (0, 0) or (π, 0).

Proof. Let EK be the exterior of K. If there were a representation ρ : π1(EK) → SU(2)
corresponding to either (α, β) = (0, π) or (α, β) = (π, π) in the pillowcase, then it would
satisfy ρ(µ) = ±1 and ρ(λ) = −1, so that ρ(µrλs) = ±1. Lemma 5.2 says that any such
representation necessarily has ρ(λ) = 1, so the claimed ρ cannot exist.

Now we observe that Y0(K) is irreducible by Proposition 5.4, and so [KM10, Theo-
rem 7.21] says that Iw∗ (Y0(K)) 6= 0, where w is the nonzero element of H2(Y0(K);Z/2Z) ∼=
Z/2Z. Since we have also shown that i∗X(Y,K) avoids (0, π) and (π, π), we can apply
[GSZ23, Proposition 3.1], which is really a slight generalization of results of [Zen18, §7], to
find a homologically essential curve γ ⊂ i∗X(Y,K).

We must now show that γ can be arranged to avoid (0, 0) and (π, 0). To do so, we ob-
serve that since Yr/s(K) is a lens space and therefore SU(2)-abelian, we know by [GSZ23,

Lemma 3.2] that neither (0, 0) nor (π, 0) is a limit point of the image i∗X irr(Y,K) of the
irreducible character variety of K. This means that each of these points has an open neigh-
borhood in the pillowcase whose intersection with i∗X(Y,K) consists only of the line β ≡ 0
(mod 2π), realized by reducible characters. There is therefore a deformation retraction
of i∗X(Y,K) taking it into the complement of these neighborhoods, just as in the proof of
Theorem 2.3, and the image of γ under this deformation retraction will be the desired curve,
since it is still contained in i∗X(Y,K) but does not pass through either (0, 0) or (π, 0). �

5.2. Knots with cyclic surgeries of order 4. We now apply the results of the preceding
subsection to the case where the prime power in question is 4. We must first see how to
decompose a toroidal manifold with homology Z/4Z into a pair of knot exteriors glued along
their boundaries.

Proposition 5.6. Suppose that Y = M1 ∪T 2 M2, where M1 and M2 are compact oriented
3-manifolds with torus boundary satisfying

H1(Y ) ∼= Z/4Z, H1(M1) ∼= H1(M2) ∼= Z.
Then up to possibly reversing the orientation of Y , we can write Mi = Yi \ N(Ki), where
each Yi is a homology sphere, the knot Ki ⊂ Yi has meridian µi and longitude λi, and the
gluing map identifies

(5.1)
µ1 ∼ µ2,
λ−11 ∼ µ

4
2λ2.
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In particular, we have (Y1)4(K1) ∼= M1(λ2) and (Y2)4(K2) ∼= M2(λ1).

Proof. We choose peripheral curves µi ⊂ ∂Mi that are dual to the longitudes λi, where if
λ1 is dual to λ2 then we will take µ1 = λ2 and µ2 = λ1. Then we let

Yi = Mi(µi) (i = 1, 2),

so that each Yi is a homology sphere, and the core of each Dehn filling is a nullhomologous

knot Ki ⊂ Yi with complement Mi. If we write the gluing map ∂M1
∼=−→ ∂M2 as

(5.2)
µ1 ∼ µa2λb2
λ1 ∼ µc2λd2,

with ad− bc = −1, then (Y2)c/d(K2) ∼= M2(λ1) has homology Z/4Z, so |c| = 4.

We can replace Y1 with some 1
k -surgery on K1, and K1 with the core of this surgery; this

preserves the longitude λ1 and the complement M1 but replaces µ1 with µ1λ
k
1, so in these

new coordinates the gluing map is

µ1 ∼ µa+kc2 λb+kd2

λ1 ∼ µc2λd2.

We know that a must be odd since ad− bc = −1 and c = ±4, so a ≡ ±1 (mod 4) and this
means that we can choose k so that a+ kc = ±1. In other words, we can choose µ1 so that
a = ±1 in (5.2). Having done this, we reverse the orientation of K2 if needed to fix a = 1,
so that we have an identification of the form µ1 ∼ µ2λ

b
2; and then we replace Y2 and K2

with 1
b -surgery on K2 and the core of this surgery.

At this point we have arranged for the gluing map (5.2) to have the form

µ1 ∼ µ2
λ1 ∼ µc2λd2

for some integers c = ±4 and d, and the condition ad−bc = −1 means that d = −1. If c = 4
then we can reverse the orientations of both Y1 and Y2 (and hence of Y itself), while fixing
the orientations of the Ki; this fixes µ1 and µ2 while replacing λ1 and λ2 with their inverses,
so that λ1 ∼ µc2λ

−1
2 becomes λ1 ∼ µ−c2 λ−12 , and thus we are left with c = −4 instead. Now

we have µ1 ∼ µ2 and λ1 ∼ µ−42 λ−12 as in (5.1), and moreover

M1(λ
−1
2 ) ∼= M1(µ

4
1λ1)

∼= (Y1)4(K1),

M2(λ
−1
1 ) ∼= M2(µ

4
2λ2)

∼= (Y2)4(K2),

exactly as claimed. �

We introduce a pair of involutions of the pillowcase X(T 2), given in (α, β) coordinates
by

σ(α, β) = (α, 2π − (4α+ β)),(5.3)

τ(α, β) = (π − α, 2π − β).(5.4)
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It is straightforward to check that these are indeed involutions, and that they commute
since

σ(τ(α, β)) = σ(π − α, 2π − β)

= (π − α, 2π − (4(π − α) + (2π − β)))

∼ (π − α, 2π − (2π − (4α+ β)))

= τ(α, 2π − (4α+ β))

= τ(σ(α, β)).

Lemma 5.7. Let K be a knot in a homology sphere Y . Then the pillowcase image i∗X(Y,K)
is fixed setwise by the involution τ of (5.4).

Proof. Letting EK = Y \ N(K), we note that H1(EK) ∼= Z is generated by the meridian
µ of K, and that the longitude λ is nullhomologous. Given a point (α, β) ∈ i∗X(Y,K),
corresponding to a representation ρ : π1(EK)→ SU(2) with

ρ(µ) = eiα, ρ(λ) = eiβ,

we fix the central character χ : π1(EK) � H1(Ek)→ {±1} with χ(µ) = −1 and χ(λ) = 1,
and consider the representation

ρ′ = χ · ρ : π1(EK)→ SU(2).

This satisfies ρ′(µ) = ei(π+α) and ρ′(λ) = eiβ, so its pillowcase image

i∗([ρ′]) = (π + α, β) ∼ (π − α, 2π − β) = τ(α, β)

belongs to i∗X(K) as well. �

With Proposition 5.6 in mind, we now introduce the following refinement of Proposi-
tion 5.5.

Lemma 5.8. Let K ⊂ Y be a knot in a homology sphere, with irreducible, boundary-
incompressible complement, and suppose that Y4(K) is a lens space. Then there is a topo-
logically embedded, closed curve

γ ⊂ i∗X(Y,K)

that is homologically essential in the twice-punctured pillowcase

P = X(T 2) \ {(0, π), (π, π)},
and that contains the point (π4 , 0). This curve γ does not contain any other point (α, β)
with 4α+ β ≡ 0 (mod π), except possibly for (π2 , 0).

Proof. We let γ0 be the curve provided by Proposition 5.5, noting that this curve avoids
both (0, 0) and (π, 0). Since γ0 generates H1(P ) ∼= Z, it has intersection number ±1 with
the curve

Lπ = {4α+ β ≡ π (mod 2π)} = {(α, π − 4α) | 0 < α < π}
that ends at the punctures (0, π) and (π, π), as shown in Figure 2.

According to Lemma 5.2, the curve γ0 can only meet Lπ at those points of Lπ where
β ≡ 0 (mod 2π), namely (π4 , 0) and (3π4 , 0). If γ0 passes through either of these points then
there is a neighborhood of that point where γ0 coincides with the edge {β ≡ 0 (mod 2π)},
by Proposition 5.3, and so γ0 meets Lπ transversely there. This means that the points of

γ0 ∩ Lπ ⊂
{

(π4 , 0), (3π4 , 0)
}
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each contribute ±1 to the intersection number γ0 · Lπ = ±1, and so exactly one of these
must be a point of intersection. If the point is (π4 , 0), then we take γ = γ0 and we are done.

If instead it is (3π4 , 0), then we note that i∗X(Y,K) is closed under the involution τ of (5.4),
by Lemma 5.7, so we take γ = τ(γ0) instead.

As for other points (α, β) ∈ γ with 4α + β ≡ 0 (mod π), Lemma 5.2 says that these
must have β ≡ 0 (mod 2π), and then we have α = kπ

4 for some integer k, with 0 ≤ k ≤ 4
corresponding to 0 ≤ α ≤ π. We have already excluded k = 0, 3, 4 and arranged that (π4 , 0) ∈
γ, so this leaves (π2 , 0) (corresponding to k = 2) as the only remaining possibility. �

5.3. Intersecting curves of characters. The curves γ produced by Lemma 5.8 will be
key to finding representations of closed 3-manifold groups. We will repeatedly use the
following two facts in our arguments:

• any pair of closed curves in the pillowcase has intersection number zero;
• and if γ is an essential, simple closed curve in the twice-punctured pillowcase P ,

then it generates H1(P ) ∼= Z and thus has intersection number ±1 with any arc
connecting the two punctures.

The second of these facts already played a role in the proof of Lemma 5.8. We recall below
that σ denotes the involution (5.3) of the pillowcase.

Lemma 5.9. Let K1 ⊂ Y1 and K2 ⊂ Y2 be knots in homology spheres. Form a closed
3-manifold Y by gluing together their exteriors Mi = Yi \N(Ki) as in (5.1), so that

µ1 ∼ µ2, λ−11 ∼ µ
4
2λ2.

If the intersection

i∗X(Y1,K1) ∩ σ
(
i∗X(Y2,K2)

)
contains a point other than (0, 0), (π2 , 0), and (π, 0), then there is a representation

π1(Y )→ SU(2)

with non-abelian image.

Proof. Let (α, β) be a point of the intersection. Then there are representations

ρi : π1(Mi)→ SU(2)

with ρ1(µ1) = eiα and ρ1(λ1) = eiβ, and with

ρ1(µ1) = eiα ρ2(µ2) = eiα2

ρ1(λ1) = eiβ, ρ2(λ2) = eiβ2

such that (α, β) = σ(α2, β2) = (α2, 2π − (4α2 + β2)). In particular we have

ρ2(µ2) = eiα2 = eiα = ρ1(µ1),

ρ2(µ
4
2λ2) = ei(4α2+β2) = ei(2π−β) = ρ1(λ

−1
1 )

and therefore ρ1 and ρ2 glue together to give a representation ρ : π1(Y ) → SU(2) whose
image contains the images of both ρ1 and ρ2.

Now if β 6≡ 0 (mod 2π) then ρ1 has non-abelian image, and likewise if β2 6≡ 0 (mod 2π)
then ρ2 has non-abelian image. Thus ρ is non-abelian unless both β and β2 are multiples of
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2π. Since σ is an involution we have (α2, β2) = σ(α, β) = (α, 2π− (4α+ β)), so β ≡ β2 ≡ 0
(mod 2π) is equivalent to

β ≡ 4α+ β ≡ 0 (mod 2π)

and this corresponds to the three points (0, 0), (π2 , 0), (π, 0) in the pillowcase. Thus any
intersection point away from these three gives rise to a non-abelian ρ, as desired. �

From now on we will repeatedly use the following hypotheses.

Setup 5.10. Let K1 ⊂ Y1 and K2 ⊂ Y2 be knots in homology spheres, with the properties
that each exterior Mj = Yj \ N(Kj) is irreducible and boundary-incompressible, and that
each 4-surgery

(Yj)4(Kj), j = 1, 2

is a lens space. Form a closed 3-manifold Y by gluing M1 to M2 by the map

µ1 ∼ µ2,
λ−11 ∼ µ

4
2λ2

as in (5.1). Finally, let γj ⊂ i∗X(Yj ,Kj) be the embedded closed curves in the pillowcase
provided by Lemma 5.8, each of which avoids the lines {4α+ β ∈ πZ} except at (π4 , 0) and
possibly (π2 , 0).

Lemma 5.11. Assume Setup 5.10, and let

cj ⊂ i∗X(Yj ,Kj), j = 1, 2

be closed, embedded curves that avoid the points (0, 0) and (π, 0), such as γj or τ(γj). If
the intersection

c1 ∩ σ(c2)

is nonempty, then there is a non-abelian representation ρ : π1(Y )→ SU(2).

Proof. By Lemma 5.9 it suffices to show that c1 and σ(c2) intersect in a point other than
(0, 0), (π2 , 0), or (π, 0). By hypothesis they avoid the first and last of these, so we need only
consider the case where c1 and σ(c2) both pass through (π2 , 0). Since (π2 , 0) is fixed by σ,
this means that both of the ci contain (π2 , 0).

According to Proposition 5.3, there is a neighborhood of (π2 , 0) in the pillowcase on which
each i∗X(Yj ,Kj) coincides with the line β ≡ 0 (mod 2π). This means that on a sufficiently
small neighborhood U of (π2 , 0), we have

c1 ∩ U = U ∩ {β ≡ 0 (mod 2π)}
σ(c2) ∩ U = U ∩ {4α+ β ≡ 0 (mod 2π)},

and so c1 meets σ(c2) transversely at (π2 , 0). In particular, the point (π2 , 0) contributes ±1
to the intersection number

c1 · σ(c2) = 0,

so there must be at least one other point of intersection (α, β) ∈ c1∩σ(c2) and this provides
the desired ρ. �

In what follows, we will repeatedly refer to the pair of arcs

(5.5) Lθ = {(α, β) | 4α+ β ≡ θ (mod 2π)} (θ = 0, π)

in the pillowcase.
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Proposition 5.12. Assume Setup 5.10, and suppose further that neither γ1 nor γ2 contains
the point (π2 , 0). Then there is a non-abelian representation ρ : π1(Y )→ SU(2).

Proof. We recall from Lemma 5.7 that τ(γ1) ⊂ i∗X(Y1,K1); moreover, the points (0, 0) and
(π, 0) in the pillowcase are fixed by τ , so if γ1 avoids them both then so does τ(γ1). Thus by
Lemma 5.11, it suffices to show that either γ1 or τ(γ1) intersects σ(γ2). We will therefore
suppose for the sake of a contradiction that(

γ1 ∪ τ(γ1)
)
∩ σ(γ2) = ∅.

We first record that according to Setup 5.10, the curves γ1 and γ2 can only possibly meet
the line L0 at (π2 , 0). By assumption they both avoid this point, so in fact

γ1 ∩ L0 = γ2 ∩ L0 = ∅.
Applying τ to γ1 ∩ L0 and observing that τ(L0) = L0 tells us that

τ(γ1) ∩ L0 = ∅
as well, while if we apply σ to γ2 ∩ L0 then we see that

σ(γ2) ∩ {β ≡ 0 (mod 2π)} = ∅
since σ sends L0 to the line β ≡ 0.

By Proposition 5.3, the curve γ1 intersects Lπ transversely at their sole point (π4 , 0) of

intersection, and similarly τ(γ1) meets Lπ transversely at (3π4 , 0) and nowhere else. Thus
γ1 and τ(γ1) separate Lπ into three segments, which we label

L`π = {(α, π − 4α) | 0 ≤ α < π
4 },

Lmπ = {(α, 3π − 4α) | π4 < α < 3π
4 },

Lrπ = {(α, 5π − 4α) | 3π4 < α ≤ π}.

The union γ1 ∪ τ(γ1) splits the pillowcase into various path components, and we let

X`, Xm, Xr ⊂ X(T 2) \
(
γ1 ∪ τ(γ1)

)
denote the path components containing L`π, Lmπ , and Lrπ respectively. Since L`π lies in a
different component of X(T 2) \ γ1 than Lmπ and Lrπ, and similarly Lrπ lies in a different
component of X(T 2) \ τ(γ1) than L`π and Lmπ , it follows that the path components X`, Xm,
and Xr are all distinct.

Next, we observe that the curves σ(γ2) and L0 are by assumption disjoint from γ1∪τ(γ1),
so each one lies entirely within some path component of the complement. Since σ restricts
to an involution of the twice-punctured pillowcase, the curve σ(γ2) generates the homology
of the latter just as γ2 does; meanwhile Lπ is an arc with endpoints at the two punctures
(0, π) and (π, π), so we must have

σ(γ2) ∩ Lπ 6= ∅.
At the same time σ(γ2) also contains the point σ(π4 , 0) = (π4 , π) ∈ L0, so it contains a path
with one endpoint on L0 and the other endpoint on Lπ. The endpoint of this path on Lπ
lies in one of the segments L`π, Lmπ , or Lrπ, since the remaining points (π4 , 0) and (3π4 , 0) of
Lπ lie on γ1 and τ(γ1) respectively, so L0 is in the same path component as that segment.
Thus exactly one of

L0 ⊂ X` or L0 ⊂ Xm or L0 ⊂ Xr



24 SUDIPTA GHOSH, STEVEN SIVEK, AND RAPHAEL ZENTNER

must be true.

Since the set γ1 ∪ τ(γ1) is τ -invariant, the involution τ permutes the path components of
their complement, and it moreover fixes the path component containing L0 since τ(L0) = L0.
We observe τ exchanges the points

(0, π) ∈ L`π ⊂ X` and (π, π) ∈ Lrπ ⊂ Xr,

but it fixes the point (π2 , π) ∈ Lmπ , so τ exchanges X` and Xr while fixing Xm and therefore

L0 ⊂ Xm.

Finally, we build another path from (0, π) to (π, π) as the union

L`π ∪
(
[π4 ,

3π
4 ]× {0}

)
∪ Lrπ.

Since σ(γ2) is homologically essential in the twice-punctured pillowcase, it must intersect
this path somewhere. But we saw that σ(γ2) is disjoint from the middle segment, since in
fact it avoids the entire line {β ≡ 0 (mod 2π)}, so it follows that either

σ(γ2) ∩ L`π 6= ∅ or σ(γ2) ∩ Lrπ 6= ∅.
This means that σ(γ2) intersects at least one of the path components X` and Xr, and at
the same time we have also seen that it contains the point

(π4 , π) ∈ L0 ⊂ Xm.

But then the curve σ(γ2) contains a path from Xm to either X` or Xr, contradicting the
fact that each of these path components are distinct. We conclude that σ(γ2) must intersect
either γ1 or τ(γ1) after all, and this provides the desired representation ρ. �

5.4. Instanton knot homology and SU(2) representations. In this subsection we sup-
pose that Y = M1 ∪T 2 M2 is formed as in Setup 5.10, and that Y is SU(2)-abelian. We
will use the curve of characters σ(γ2) for K2 in the pillowcase, and specifically the fact
that it mostly avoids the pillowcase image i∗X(Y1,K1), to conclude that the instanton knot
homology

KHI (Y1,K1)

defined by Kronheimer and Mrowka [KM10] must be small. The following lower bound on
the rank of KHI will then give us a contradiction, from which we can conclude that Y must
not be SU(2)-abelian after all.

Lemma 5.13. Let K ⊂ Y be a knot in a homology sphere with irreducible, boundary-
incompressible complement. Then dim KHI (Y,K) ≥ 2.

Proof. Kronheimer and Mrowka [KM10] define instanton knot homology as the sutured
instanton homology

KHI (Y,K) = SHI (Y (K)),

where the sutured manifold Y (K) is the complementM = Y \N(K) with a pair of oppositely
oriented meridional sutures. Since M = Y \N(K) is irreducible, the sutured manifold Y (K)
is taut, and in particular its sutured instanton homology is nonzero [KM10, Theorem 7.12].

Now we know that H2(M) = 0 and that SHI (Y (K)) is nonzero, so a theorem of Ghosh
and Li [GL23, Theorem 1.2] tells us that

dim SHI (Y (K)) < 2
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if and only if Y (K) is a product sutured manifold, in which case

Y (K) ∼= (Σ× [−1, 1], ∂Σ× {0})
for some compact surface Σ with boundary. (This theorem is in turn a generalization of
[KM10, Theorem 7.18], which required the additional hypothesis that Y (K) is a homology
product.) But since the positive and negative regions R± ⊂ ∂M are annuli, this could only
be possible if Σ were an annulus, in which case M ∼= Σ × [−1, 1] would be a solid torus.
Since ∂M is incompressible, we conclude that dim KHI (Y,K) = dim SHI (Y (K)) is at least
2 after all. �

Our goal will be to use σ(γ2) to construct a curve c̄′ ⊂ X(T 2) and isotopy ht satisfying
the hypotheses of the following theorem, and thus bound dim KHI (Y1,K1) from above.

Theorem 5.14 ([SZ22b, Theorem 4.8]). Let K ⊂ Y be a knot in a homology 3-sphere, and
suppose we have a smooth, simple closed curve c̄′ ⊂ X(T 2) and an area-preserving isotopy

ht : X(T 2)→ X(T 2), 0 ≤ t ≤ 1

that takes c̄′ to the line {α = π
2 } and fixes the four points (0, 0), (0, π), (π, 0), and (π, π).

Suppose moreover that

(1) c̄′ is disjoint from i∗X irr(Y,K),
(2) and c̄′ intersects the line

{β ≡ 0 (mod 2π)} ⊂ X(T 2)

transversely in n points (α1, 0), . . . , (αn, 0), with ∆K(e2iαj ) 6= 0 for all j.

Then dim KHI (K) ≤ n.

Remark 5.15. The statement of Theorem 5.14 in [SZ22b] assumes that Y ∼= S3, but the
proof applies verbatim when Y is an arbitrary homology sphere.

With these prerequisites at hand, we now devote the remainder of this subsection to the
proof of the following proposition.

Proposition 5.16. Assume Setup 5.10, and suppose that (π2 , 0) lies on at least one of the
curves γ1 and γ2. Then there is a representation ρ : π1(Y )→ SU(2) with non-abelian image.

We begin with a special case of the proposition that will simplify our subsequent appli-
cation of Theorem 5.14 in the general case.

Lemma 5.17. Assume Setup 5.10, and suppose in addition that (π2 , 0) ∈ γ2. If σ(γ2)
intersects either of the segments

(5.6)
L`π = {(α, π − 4α) | 0 ≤ α < π

4 }
Lrπ = {(α, 5π − 4α) | 3π4 < α ≤ π}

of the line Lπ = {4α + β ≡ π (mod 2π)}, then there is a representation π1(Y ) → SU(2)
with non-abelian image.

Proof. By hypothesis the image σ(γ2) contains the point σ(π2 , 0) = (π2 , 0). Supposing for

now that σ(γ2) intersects L`π, say at some point p, then the union

L`π ∪ σ(γ2)
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contains a path φ from (0, π) to (π2 , 0), realized by following L`π from (0, π) to p and then
traveling from p to (π2 , 0) along σ(γ2). Now τ(φ) is (up to reversing the direction of travel)
a path from τ(π2 , 0) = (π2 , 0) to τ(0, π) = (π, π), and it is contained in

τ(L`π) ∪ τ
(
σ(γ2)

)
= Lrπ ∪ σ

(
τ(γ2)

)
,

so we concatenate φ and τ(φ) to get a path φ̄ inside

(5.7) L`π ∪ σ(γ2) ∪ σ
(
τ(γ2)

)
∪ Lrπ

from (0, π) to (π, π).

Since γ1 is homologically essential in the twice-punctured pillowcase, the path φ̄ from
one puncture to the other must intersect it somewhere. Lemma 5.2 guarantees that γ1 is
disjoint from both L`π and Lrπ, so we must have either

γ1 ∩ σ(γ2) 6= ∅ or γ1 ∩ σ
(
τ(γ2)

)
6= ∅,

and in either case Lemma 5.11 provides the desired representation π1(Y )→ SU(2).

The case where σ(γ2) intersects Lrπ is nearly identical, except that this leads to a path φ
from (π2 , 0) to (π, π) inside σ(γ2) ∪ Lrπ. In this case the union φ ∪ τ(φ) still gives us a path
from (0, π) to (π, π) inside (5.7) and we proceed exactly as before. �

We are looking for a non-abelian representation ρ : π1(Y )→ SU(2), and if neither curve
γj passes through (π2 , 0) then Proposition 5.12 provides such a ρ, so we will assume that
at least one γj does contain this point. Since the roles of the two (Yj ,Kj) are completely
interchangeable, we will assume without loss of generality that

γ2 ∩ L0 =
{

(π2 , 0)
}
.

With L`π and Lrπ defined as in (5.6), we will also assume that

(5.8) σ(γ2) ∩
(
L`π ∪ Lrπ

)
= ∅,

because otherwise Lemma 5.17 provides a non-abelian representation π1(Y )→ SU(2).

In addition to the above identification of γ2 ∩ L0, we also know from Setup 5.10 that
γ2 ∩ Lπ = {(π4 , 0)}. These claims about each γ2 ∩ Lθ are equivalent to

(5.9)
σ(γ2) ∩ {(α, β) | β ≡ 0 (mod 2π)} =

{
(π2 , 0)

}
,

σ(γ2) ∩ {(α, β) | β ≡ π (mod 2π)} =
{

(π4 , π)
}
.

Moreover, since 4-surgery on K2 ⊂ Y2 is a lens space, Proposition 5.3 says that γ2 coincides
with the line {β ≡ 0 (mod 2π)} on some neighborhood of (π4 , 0) and of (π2 , 0). Applying σ,
we see that there are likewise open neighborhoods of (π4 , π) and of (π2 , 0) on which σ(γ2)
coincides with the line L0 = {4α + β ≡ 0 (mod 2π)}. In particular, the intersections (5.9)
are both transverse.

The line segments L`π, Lrπ, and {β ≡ 0, π (mod 2π)} collectively divide the pillowcase
into a pair of closed disks of equal area: we write

X(T 2) = Dtop ∪Dbot,

where Dtop and Dbot are the regions containing (π2 ,
3π
2 ) and (π2 ,

π
2 ) respectively, so that

τ(Dtop) = Dbot. In both sides of Figure 3 we have shaded the region Dtop. We note that

(5.10) σ(γ2) ∩ ∂Dtop =
{

(π2 , 0), (π4 , π)
}
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c0

L`π

Lrπ
Lmπ

Figure 3. Left: the curve σ(γ2) avoids the line segments L`π and Lrπ and
crosses β ∈ πZ only at (π2 , 0) and (π4 , π), as promised in (5.10). Right: we
build a τ -invariant, essential closed curve c̄ in the pillowcase out of the arc
c0 from (π2 , 2π) to Lmπ , a portion `0 of Lmπ , and the image τ(c0). In both
pictures we have shaded the disk Dtop for clarity.

by (5.8) and (5.9), and that this intersection is transverse.

We now observe that by (5.10), the intersection

σ(γ2) ∩Dtop

defines a path from (π2 , 2π) = (π2 , 0) to (π4 , π) that avoids ∂Dtop except at its endpoints.
This path must then cross the segment

Lmπ = {(α, 3π − 4α) | π4 < α < 3π
4 }

of Lπ, because Lmπ separates (π2 , 2π) from (π4 , π) in the disk Dtop. See the left side of
Figure 3.

With this in mind, we let

c0 ⊂ σ(γ2) ∩Dtop

be the portion of this path (including both endpoints) from (π2 , 2π) to the first point

p0 = (α0, β0) ∈ Lmπ
where this path meets Lmπ ; we note that π < β0 < 2π and thus π

4 < α0 <
π
2 . We then take

the line segment

(5.11) `0 = {(α, 3π − 4α) | α0 ≤ α ≤ π − α0} ⊂ Lmπ
from p0 to τ(p0) = (π − α0, 2π − β0), and define the simple closed curve

c̄ = c0 ∪ `0 ∪ τ(c0)

in the pillowcase, as on the right side of Figure 3. This is indeed a simple curve because by
construction its three sections c0, `0, and τ(c0) intersect each other only at their respective
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endpoints, which are among the points (π2 , 0), p0, and τ(p0). Moreover, since τ(`0) = `0 it
follows that τ(c̄) = c̄.

Lemma 5.18. Suppose that there are no non-abelian representations π1(Y )→ SU(2). Then
there is an open neighborhood U of c̄ ⊂ X(T 2) with the property that the intersection

i∗X irr(Y1,K1) ∩ U

is empty.

Proof. Proposition 5.3 says that there is an open neighborhood V ⊂ X(T 2) of the lines

L0 ∪ Lπ = {(α, β) | 4α+ β ∈ πZ}

that is disjoint from i∗X irr(Y1,K1). Moreover, since Y is SU(2)-abelian, Lemma 5.9 says
that the entire pillowcase image i∗X(Y1,K1) does not meet the subset

c0 ∪ τ(c0) ⊂ σ(γ2) ∪ τ
(
σ(γ2)

)
= σ(γ2) ∪ σ

(
τ(γ2)

)
of the pillowcase, except possibly at some of the points

(0, 0), (π2 , 0), (π, 0) ∈ L0 ⊂ V.

We let V0 ⊂ V be an open neighborhood of these three points, and then we have

i∗X irr(Y1,K1) ⊂ i∗X(Y1,K1) \ V0.

The set on the right is closed and disjoint from the closed set c0 ∪ τ(c0), so it is disjoint
from an entire open neighborhood W of c0 ∪ τ(c0), and then

i∗X irr(Y1,K1) ∩W = ∅.

We now let U = V ∪W , which contains all of c̄ since `0 ⊂ V and c0 ∪ τ(c0) ⊂ W , and we
observe that U is disjoint from i∗X irr(Y1,K1) since both V and W are. �

The curve c̄ may not be smooth in general, but there is some small ε > 0 such that it
coincides with L0 and with Lπ on 2ε-neighborhoods of (π2 , 0) and of (π2 , π), respectively.

Given the neighborhood U of Lemma 5.18, we can thus take a C0-close approximation

(5.12) c̄′ ⊂ U ⊂ X(T 2) \ i∗X irr(Y1,K1)

of c̄ such that

(1) c̄′ is smooth and τ -invariant,
(2) and c̄′ coincides with c̄ in ε-neighborhoods of (π2 , 0) and (π2 , π), i.e.,

c̄′ ∩Dε(
π
2 , 0) = L0 ∩Dε(

π
2 , 0),

c̄′ ∩Dε(
π
2 , π) = Lπ ∩Dε(

π
2 , π).

In particular c̄′ meets {β ≡ 0 (mod 2π)} transversely at (π2 , 0), just as c̄ does.

We achieve the τ -invariance by first constructing the arc c̄′ ∩ Dtop and then using τ to
extend it to Dbot; if the initial arc is sufficiently C0-close to c̄ then both it and its image
under τ will lie in U .

Lemma 5.19. There is an area-preserving isotopy of the pillowcase that fixes the corners
(0, 0), (0, π), (π, 0), and (π, π), and that takes the curve c̄′ of (5.12) to the line {α = π

2 }.
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Figure 4. A τ -equivariant isotopy carrying c̄′ to the straight line {α = π
2 }.

In each picture the disk Dtop is shaded.

Proof. By taking a smaller value of ε > 0 as needed, we can assume that c̄′ only intersects
an ε-neighborhood of ∂Dtop near (π2 , 0) and (π2 , π), where it coincides with L0 and Lπ
respectively.

We build a smooth curve c̄′′ isotopic to c̄′ by taking a piecewise linear path in Dtop from

(π2 , 2π) to (π2 + ε
2 , 2π − 2ε) to (π2 −

ε
2 ,

π
2 + 2ε) to (π2 , π),

rounding corners in an ε
2 -neighborhood of the middle two vertices, and then using τ to

extend this to Dbot. Then c̄′′ agrees with c̄′ in an ε-neighborhood of ∂Dtop, and we can
arrange the corner-rounding process so that c̄′′ intersects every horizontal line of the form
{β = β0}, β0 ∈ R/2πZ, in a single point. See the middle of Figure 4.

We now choose a smooth isotopy of the disk Dtop that fixes the above ε-neighborhood of
∂Dtop and takes the arc c̄′ ∩Dtop to c̄′′ ∩Dtop. We extend this τ -equivariantly across Dbot

to get an isotopy
φt : X(T 2)→ X(T 2), t ∈ [0, 1]

that satisfies φ0 = id and φ1(c̄
′) = c̄′′, and that fixes the corners (0, 0), (0, π), (π, 0), and

(π, π). We then apply another τ -invariant isotopy of the form

ψt(α, β) = (fβ(α), β), t ∈ [0, 1],

supported in the region
π

2
− ε < α <

π

2
+ ε

of the pillowcase, that takes φ1(c̄
′) = c̄′′ to the line {α = π

2 }. Each of these is illustrated in
Figure 4.

The composition of φ and ψ is an isotopy of the pillowcase that fixes each of the four
corners, and that carries c̄′ to {α = π

2 } through τ -invariant curves c̄′t. These curves separate

X(T 2) into components that are exchanged by the isometry τ and must therefore have equal
area. We can therefore use [SZ22b, Lemma 4.9] to promote φ ∗ ψ to a smooth isotopy

ht : X(T 2)→ X(T 2), t ∈ [0, 1],
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fixing a neighborhood of the four corners for all t, such that each ht is a symplectomorphism
satisfying ht(c̄

′
0) = c̄′t. Then ht is the desired isotopy from our original curve c̄′0 = c̄′ to the

line c̄′1 = {α = π
2 }. �

Proof of Proposition 5.16. As above, we assume without loss of generality that (π2 , 0) ∈ γ2.
Assuming that the desired ρ does not exist, Lemma 5.17 says that the curve σ(γ2) is disjoint
from the line segments L`π and Lrπ of (5.6), so we have subsequently used σ(γ2) to construct

(1) A smooth simple closed curve c̄′ in the pillowcase (as in (5.12)) such that
(a) c̄′ is disjoint from i∗X irr(Y1,K1),
(b) and the intersection

c̄′ ∩ {β ≡ 0 (mod 2π)} =
{

(π2 , 0)
}

is transverse.
(2) An area-preserving isotopy ht : X(T 2) → X(T 2) that fixes the four corners of the

pillowcase and sends c̄′ to the line {α = π
2 }, by Lemma 5.19.

Since ∆K1(e2i·π/2) = ∆K1(−1) is nonzero, we can now apply Theorem 5.14 to conclude that

dim KHI (Y1,K1) ≤ 1.

But this contradicts Lemma 5.13, which asserts that

dim KHI (Y1,K1) ≥ 2.

The representation ρ must therefore exist after all. �

We can finally prove the main theorem of this section.

Proof of Theorem 5.1. Proposition 5.6 says that we can write Y = M1 ∪T 2 M2, where each
Mj is the exterior of a knot Kj in a homology sphere Yj and the gluing maps satisfy

µ1 ∼ µ2, λ−11 ∼ µ
4
2λ2

as in (5.1). Then (Y1)4(K1) ∼= M1(λ2) and (Y2)4(K2) ∼= M2(λ1) are both lens spaces of
order 4, so Lemma 5.8 provides us with simple closed curves γj ⊂ i∗X(Yj ,Kj) for j = 1, 2,
and all of the above is exactly as described in Setup 5.10.

Now if neither γ1 nor γ2 contains the point (π2 , 0), then ρ is provided by Proposition 5.12.
Otherwise at least one of the γj contains (π2 , 0), and then Proposition 5.16 tells us that ρ
must exist. �

Since Theorem 5.1 has now been proved, this completes the proof of Theorem 1.4. �
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