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Abstract. We study knots in S3 with infinitely many SU(2)-cyclic surgeries, which are
Dehn surgeries such that every representation of the resulting fundamental group into
SU(2) has cyclic image. We show that for every such nontrivial knot K, its set of SU(2)-
cyclic slopes is bounded and has a unique limit point, which is both a rational number
and a boundary slope for K. We also show that such knots are prime and have infinitely
many instanton L-space surgeries. Our methods include the application of holonomy per-
turbation techniques to instanton knot homology, using a strengthening of recent work by
the second author.

1. Introduction

The cyclic surgery theorem of Culler, Gordon, Luecke, and Shalen [CGLS87] says that if
a knot in S3 is neither the unknot nor a torus knot, and if both r- and s-surgery on that
knot give manifolds with cyclic fundamental group, then the distance ∆(r, s) between these
slopes is at most 1, and hence there are at most two such nontrivial surgeries. This is the
strongest possible result: Moser [Mos71] showed that torus knots have infinitely many lens
space surgeries, and for example the pretzel knot P (−2, 3, 7) has two lens space surgeries,
of slopes 18 and 19.

In this paper we study a weaker property of surgeries on knots in S3. Following Lin
[Lin16], we say that a 3-manifold Y is SU(2)-cyclic if all representations π1(Y ) → SU(2)
have cyclic image. For example, 37

2 -surgery on the pretzel knot P (−2, 3, 7) is not a lens
space, but it is known to be SU(2)-cyclic. Kronheimer and Mrowka [KM04a] proved that
any SU(2)-cyclic surgery of slope r on a nontrivial knot K ⊂ S3 satisfies |r| > 2, and Lin
[Lin16] proved that any two SU(2)-cyclic slopes ri = pi

qi
(i = 1, 2) for K satisfy the inequality

∆(r1, r2) ≤ |p1|+ |p2|. We will call a nontrivial knot SU(2)-averse if it has infinitely many
SU(2)-cyclic surgeries.

If K is SU(2)-averse, then the slopes of its SU(2)-cyclic surgeries form an infinite subset
of RP1 = R ∪ {∞}, so they must have a limit point. One can deduce from Lin’s inequality
or from Theorem 3.2 below that this limit point is unique; we call this point the limit slope
of K. For example, the torus knot Tp,q has limit slope pq, since (pq + 1

n)-surgery on Tp,q is
a lens space for all integers n 6= 0.

By studying the SU(2) character variety of the exterior S3 rN(K), and its image under
restriction in the character variety of the peripheral torus ∂N(K), we prove the following.

Theorem 1.1. Let K ⊂ S3 be an SU(2)-averse knot. Then its limit slope r(K) is a rational
number, with |r(K)| > 2, and it is a boundary slope for K. Moreover, K is prime, and
the manifold S3

s (K) constructed by s-surgery on K is an instanton L-space for all rational
s ≥ dr(K)e − 1 if r(K) > 0, or for all s ≤ br(K)c+ 1 if r(K) < 0.
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Corollary 1.2. Let K be a nontrivial knot in S3. Then there is a constant N such that
there is an irreducible representation

π1(S3
r (K))→ SU(2)

for all rational r with |r| > N .

Proof. If the set of SU(2)-cyclic slopes for a knot K is unbounded, then K must be SU(2)-
averse with limit slope ∞, contradicting r(K) ∈ Q. �

After the initial version of this paper appeared, Baldwin and the first author [BS19]
proved that if a nontrivial knot K has an instanton L-space surgery of positive slope, then
K is fibered and strongly quasipositive, and the set of instanton L-space slopes for K is
[2g(K)− 1,∞) ∩Q. Thus we have the following.

Corollary 1.3. If K is SU(2)-averse then K is fibered, either K or its mirror is strongly
quasipositive, and the limit slope satisfies |r(K)| > 2g(K)− 1.

We remark that the pretzel P (−2, 3, 7) has infinitely many instanton L-space surgeries,
as does any knot with a lens space surgery, but we will show in Example 6.8 that it is
not SU(2)-averse. Thus being SU(2)-averse is a strictly stronger condition than having
infinitely many instanton L-space surgeries.

In Theorem 1.1, the finiteness and rationality of r(K) are proved as Theorems 4.2 and
5.4 respectively, and the bound |r(K)| > 2 comes from Theorem 3.2 (though r(K) ≥ 2 is
already implied by [KM04a]). The fact that r(K) is a boundary slope is Theorem 6.5; this
means that there is a properly embedded, essential surface in S3rN(K) whose boundary is
a nonempty union of curves of slope r(K). The primeness of K is proved as Theorem 10.4.
The assertion about instanton L-spaces, namely that for each s = a

b in the given range

the singular instanton knot homology I#(S3
a/b(K), ∅) defined in [KM11a] has rank |a|, is

Theorem 9.1.
We can also prove something about the set of SU(2)-cyclic surgery slopes of an SU(2)-

averse knot. Combining Theorem 3.2 and Theorem 8.2, we have:

Theorem 1.4. Let K be an SU(2)-averse knot with limit slope r(K). Then all SU(2)-cyclic
slopes m

n satisfy ∣∣∣m
n
− r(K)

∣∣∣ ≤ |r(K)|
n

,

and there is an integer N ≥ 1 such that r(K) + 1
kN is an SU(2)-cyclic slope for all but

finitely many k ∈ Z.

A knot K ⊂ S3 is said to be small if there are no closed, incompressible surfaces in its
exterior other than boundary-parallel tori; examples include all two-bridge knots [HT85]
and Montesinos knots with at most three rational tangles [Oer84]. In this case we know
even more, as proved in Theorems 7.1 and 7.3 and Proposition 7.5.

Theorem 1.5. If K is a small, SU(2)-averse knot with Alexander polynomial ∆K(t) =∑d
j=−d ajt

j, then the limit slope r(K) is an integer satisfying |r(K)| ≥ 6 and

|r(K)| ≥ 1 +
d∑

j=−d
|aj |.
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In this case, all but finitely many conjugacy classes of irreducible representations

ρ : π1(S3 rK)→ SU(2)

satisfy ρ(µr(K)λ) = ±I, where µ and λ are a meridian and longitude of K.

Finally, by studying how SU(2)-averseness behaves under satellite operations we can also
say something about the potential existence of SU(2)-averse knots other than torus knots.
Notably, we show in Proposition 10.5 that if r(K) = p

q with q ≥ 2, then the (p, q)-cable of K

is SU(2)-averse with limit slope pq. However, by analogy with the cyclic surgery theorem,
we conjecture that this never happens:

Conjecture 1.6. If K is a nontrivial SU(2)-averse knot, then K is a torus knot.

Indeed, in Section 11, we verify Conjecture 1.6 for all alternating Montesinos knots with at
most three rational tangles (including all two-bridge knots) and for all knot types through
11 crossings. The conjecture also holds for algebraic knots.

Outline. The proof of Theorem 1.1 comes from studying the image of the SU(2) char-
acter variety of π1(S3 r N(K)) in the pillowcase, which is the SU(2) character variety of
π1(∂N(K)). Up to conjugacy, every representation ρ : π1(S3 rK)→ SU(2) satisfies

ρ(µ) =

(
eiα 0
0 e−iα

)
, ρ(λ) =

(
eiβ 0
0 e−iβ

)
for some constants α and β, and hence determines a unique point (α, β) of the pillowcase

P ∼=
(R/2πZ)× (R/2πZ)

(α, β) ∼ (−α,−β)
.

A slope m
n is SU(2)-cyclic precisely when there are no images of irreducible characters of

π1(S3 rK) along the line mα+ nβ = 0 in P .
Our key observation, developed in Section 3, is that the line mα+nβ = 0 can only avoid a

given non-constant path γ : [0, 1]→ P through images of irreducibles if −m
n is a reasonable

Diophantine approximation to the slope of the line from γ(0) to γ(1). We deduce that if K
is SU(2)-averse, then any such path must be a straight line of slope −r(K). (Conversely,
we show in Section 8 that if every such path is a straight line of rational slope −r, then K
is SU(2)-averse with r(K) = r.)

In Section 4, we show that r(K) 6= ∞ by finding (in nearly all cases) an arc of images
of irreducibles which is not a vertical line. We do this by making use of Kronheimer and
Mrowka’s instanton knot homology [KM10b], or KHI , which by construction is closely
related to the space of irreducible representations π1(S3 r K) → SU(2) which send a
meridian to a traceless matrix. Using a strengthened version of recent work of the second
author [Zen18], we can perturb the Chern-Simons functional which defines KHI (K) so that
if K has SU(2)-cyclic surgeries and no such arc of irreducibles, then KHI (K) is the same
as KHI of the unknot, which means that K must have been unknotted. More precisely, we
prove the following.

Theorem 4.1. Let K be a nontrivial knot in S3. Then at least one of the following is true:

(1) For every β ∈ R/2πZ, there is an irreducible ρ : π1(S3 rK)→ SU(2) such that

ρ(µ) =

(
i 0
0 −i

)
and ρ(λ) =

(
eiβ 0
0 e−iβ

)
.
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(2) There is a constant ε > 0 and an arc of irreducible representations

ρs : π1(S3 rK)→ SU(2), s ∈
[π

2
,
π

2
+ ε
)

such that ρs(µ) = diag(eis, e−is) for all s.

This may be viewed as a strengthening of [KM10b, Corollary 7.17]; see also related work
of Herald [Her97], Collin–Steer [CS99], or Heusener–Kroll [HK98], in which similar results
are proved under assumptions on the equivariant signatures of K.

Remark 1.7. If K is small then the second case of Theorem 4.1 always applies, since the
other case is ruled out by first arguing as in the proof of Theorem 6.4 that it would force
∞ to be a boundary slope and then applying [CGLS87, Theorem 2.0.3].

We mention here the needed strengthening of the approximation result in [Zen18], which
is of independent interest. Recall that a shearing isotopy (ζt) on the 2-dimensional torus is
an isotopy through area-preserving maps of the form

ζt : (x, y) 7→ (x, y) + tf(w · (x, y)) v , (1.1)

where v, w ∈ Z2 are orthogonal vectors with w nonzero, f : R→ R is a 2π-periodic function,
and · denotes the standard inner product on R2. We say that an isotopy (φt) is a piecewise
isotopy through shearings if there is a partition 0 = t0 < t1 < · · · < tn = 1 such that for
ti ≤ t ≤ ti+1, the map φt is given as

φt = ζ
(i)
t−ti ◦ φti

for some shearing isotopy (ζ
(i)
s )s∈[0,1]. For fixed p ∈ T 2, the path t 7→ φt(p) of a piecewise

isotopy through shearings is continuous but need not be smooth. The case r = 0 of the
following was proved in [Zen18].

Theorem 4.5. Let r ≥ 0. Let (ψt)t∈[0,1] be an isotopy through area-preserving maps ψt :

T 2 → T 2, and let ε > 0. Then there is a piecewise isotopy through shearings (φt)t∈[0,1] such
that φt is ε-close to φt in the Cr-topology for all t ∈ [0, 1].

The rationality of r(K) follows in Section 5 from some foundational results in real al-
gebraic geometry. Using the fact that the pillowcase image of the SU(2) character variety
is a semi-algebraic set defined over the field of real algebraic numbers, and hence many of
its points have algebraic coordinates, we manage to prove that a straight line in this image
must have rational slope. This allows us to further show that if r(K) = p

q , then along any

such path of representations ρ, there is a real constant c such that

ρ(µpλq) =

(
eic 0
0 e−ic

)
up to conjugacy, where eic is an algebraic number.

In Section 6, we study SU(2)-averse knots via the A-polynomial, which describes the
image of the SL2(C) character variety of π1(S3 r K) in the SL2(C) character variety of
the peripheral torus. The results of Section 3 imply that if r(K) = p

q then AK(M,L) is

a multiple of MpLq − eic, and hence by applying deep results from [CCG+94] about the
Newton polygon and edge polynomials of AK(M,L), we see that r(K) is a boundary slope
and that eic is in fact a root of unity. Building on this, Section 7 uses further results of
Boyer and Zhang [BZ98] for small knots to prove Theorem 1.5.
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In Section 8, we use the fact that eic is a root of unity to prove Theorem 8.2, asserting
that if the pillowcase image of the SU(2) character variety consists mainly of line segments
of slope −r ∈ Q, then K must be SU(2)-averse. This allows us to prove in Section 9 that
SU(2)-averse knots have infinitely many instanton L-space surgeries, and our applications
include Theorem 9.3, which says that smoothly slice knots are not SU(2)-averse.

Finally, in Section 10 we investigate when a satellite of a given knot can be SU(2)-averse.
We prove the following, a combination of Propositions 10.2 and 10.3:

Theorem 1.8. Let K be a nontrivial knot, and suppose that some satellite P (K) with
winding number w is SU(2)-averse.

• If P (U) is not the unknot, then it is also SU(2)-averse, and r(P (K)) = r(P (U)).
• If w 6= 0, then K is SU(2)-averse, with r(P (K)) = w2r(K).

In particular, we prove that SU(2)-averse knots are prime (Theorem 10.4) and we completely
determine when a cable of a given knot is SU(2)-averse (Theorem 10.6), leading to a proof of
Conjecture 1.6 for algebraic knots (Corollary 10.9). Similarly, in Section 11 we apply many
of the above results to prove that several other classes of knots (as described following
Conjecture 1.6 above) are not SU(2)-averse. In doing so, we make use of the following
strengthening of a theorem of Crowell [Cro59, Theorem 6.5].

Proposition 11.2. If K is a prime alternating knot, then det(K) ≥ 3c(K) − 8 unless K
is a (2, 2k + 1) torus knot or a twist knot.

Acknowledgments. We thank Hans Boden, Marc Culler, Cynthia Curtis, Nathan Dun-
field, Paul Feehan, Michael Heusener, and Tom Mrowka for helpful conversations. We thank
the anonymous referee for their careful reading of this paper and many comments which
improved the exposition. We are also grateful to the Max Planck Institute for Mathemat-
ics for its hospitality during a significant portion of this work. The second author is also
grateful for support by the SFB ‘Higher invariants’ (funded by the Deutsche Forschungs-
gemeinschaft (DFG)) at the University of Regensburg, and for support by a Heisenberg
fellowship of the DFG.

2. Background

To any space Y we can associate its SU(2) representation variety

R(Y ) = Hom(π1(Y ), SU(2)).

We can realize R(Y ) as a real algebraic subset of some Rn, given a finite presentation

π1(Y ) = 〈g1, g2, . . . , gk | w1, w2, . . . , wl〉.
Namely, we assign to each gj four real variables aj , bj , cj , dj satisfying the relation a2

j + b2j +

c2
j + d2

j = 1, so that we can set

ρ(gj) =

(
aj + ibj cj + idj
−cj + idj aj − ibj

)
, ρ(g−1

j ) =

(
aj − ibj −cj − idj
cj − idj aj + ibj

)
.

Then each 2 × 2 matrix equation ρ(wi) = I gives four additional polynomial relations
among the various a, b, c, d, and the collection of these relations defines R(Y ) ⊂ R4k as the
zero locus of some collection of polynomials with coefficients in Z. (Since Z[a1, . . . , dk] is
Noetherian, we only need finitely many of these relations even if π1(Y ) was merely finitely
generated.) This presents R(Y ) as a closed subspace of (S3)k, hence it is compact.
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A representation π1(Y ) → SU(2) is irreducible if and only if its image does not lie in
some U(1) subgroup, or equivalently if its image is not abelian. The space

R∗(Y ) = {ρ : π1(Y )→ SU(2) | ρ irreducible}

can therefore be cut out from R(Y ) by imposing the additional constraint

ρ(gigj) 6= ρ(gjgi) for some i, j.

Equivalently, we can sum the squares of the magnitudes of the entries of the matrices
ρ(gigj)− ρ(gjgi) over all 1 ≤ i < j ≤ k, and this is positive if and only if ρ is irreducible, so
R∗(Y ) is a semi-algebraic set defined by the polynomial relations appearing in R(Y ) plus
an additional polynomial inequality, again with coefficients in Z.

Dividing out the action of SU(2) by conjugation on the representation variety, we get
the SU(2) character variety and its irreducible part:

X(Y ) = R(Y )/SU(2), X∗(Y ) = R∗(Y )/SU(2).

Since R(Y ) is compact, so is its quotient X(Y ).
In the case of a torus T 2, we can take a pair of elements µ, λ which generate π1(T 2) ∼= Z2,

and since they commute their images under any representation ρ : π1(T 2)→ SU(2) can be
simultaneously diagonalized as

ρ(µ) =

(
eiα 0
0 e−iα

)
, ρ(λ) =

(
eiβ 0
0 e−iβ

)
.

The pairs α, β lie in a torus T = (R/2πZ)×(R/2πZ), but they are not uniquely determined,
since conjugation by

(
0 −1
1 0

)
induces an involution ι sending (α, β) to (2π−α, 2π−β). Each

conjugacy class in SU(2) is completely determined by its trace, so in fact X(T 2) is the
quotient of T by this involution:

X(T 2) =
(
(R/2πZ)× (R/2πZ)

)
/ι. (2.1)

The space X(T 2) is often called the pillowcase: it is homeomorphic to a sphere with
four orbifold points of order 2, since ι has the four fixed points (0, 0), (0, π), (π, 0), and
(π, π). It can be constructed as the quotient of the fundamental domain [0, π] × [0, 2π] by
the identifications

(0, β) ∼ (0, 2π − β), (α, 0) ∼ (α, 2π), (π, β) ∼ (π, 2π − β)

where 0 ≤ α ≤ π and 0 ≤ β ≤ 2π, see Figure 1 below. We can cut the pillowcase open
along the lines α = 0 and α = π to get an annulus [0, π]× (R/2πZ), which we will call the
cut-open pillowcase.

Given a knot K ⊂ S3, we let R(K) = R(S3 rN(K)) and likewise for R∗(K), X(K), and
X∗(K). The inclusion i : ∂N(K) ↪→ S3 rN(K) of the boundary torus induces a restriction
map on the SU(2) character varieties

i∗ : X(K)→ X(T 2).

The image of X(K) inside the cut-open pillowcase [0, π]×(R/2πZ) has canonical coordinates
(α, β) given by taking µ and λ to be a meridian and longitude of the knot. (Explicitly, we
have α = arccos(1

2 tr(ρ(µ))), where 0 ≤ arccos(θ) ≤ π; and then the uniqueness of β will
follow from Proposition 2.1 below.) It is also compact since X(K) is. Figure 1 shows the
image of X(K) in the pillowcase in the case where K is the left-handed trefoil.

The following facts are more or less standard; see e.g. [Lin16, Lemma 2.8].
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i∗X(K)

i∗X(K)

Figure 1. Identifications of the rectangle [0, π]× [0, 2π] yielding the pillow-
case. The image of X(K) is depicted for K the left-handed trefoil.

Proposition 2.1. Let ρ : π1(S3 rK) → SU(2) be a representation and (α, β) the coordi-
nates of its image in the pillowcase.

(1) Every point on the line β ≡ 0 (mod 2π) is the image of a reducible ρ.
(2) If ρ is reducible, then β ≡ 0 (mod 2π).
(3) If ρ is reducible and a limit of irreducible representations, then e2iα is a root of the

Alexander polynomial ∆K(t).
(4) There is a constant ε > 0 depending only on K such that if ρ is irreducible, then

ε < α < π − ε.

Proof. Composing the abelianization π1(S3 r K) → H1(S3 r K) ∼= Z with the map k 7→
diag(eikα, e−ikα) gives a reducible ρ with coordinates (α, 0), since λ is nullhomologous.
Conversely, if ρ is reducible then its image is abelian, so ρ factors through H1(S3 rK) and
hence λ lies in its kernel. The claim about reducible limits of irreducible representations is
a theorem of Klassen [Kla91, Theorem 19].

Finally, if α = 0 or α = π then ρ(µ) = ±I, and thus ρ is reducible with image in {±I}
since µ normally generates the knot group. In these cases ∆K(e2iα) = ∆K(1) = 1, so
some neighborhood of ρ in R(K) consists only of reducibles. Now if there is a sequence
of irreducibles ρn with coordinates (αn, βn) such that αn → 0 (resp. αn → π), then by
compactness some subsequence converges to a representation with α-coordinate 0 (resp. π),
which must then have a neighborhood with no irreducibles, giving a contradiction. �

Remark 2.2. The coordinates on the pillowcase itself are not quite canonical, since (0, β) is
identified with (0, 2π− β) and likewise for (π, β) and (π, 2π− β). However, since the image
of X(K) avoids all such points except for (0, 0) and (π, 0), the coordinates on the image of
X(K) are indeed well-defined, both on the pillowcase and on its cut-open variant, and so
we can safely ignore this ambiguity.

The pillowcase images of character varieties exhibit symmetries, as in the following two
propositions.

Proposition 2.3. The image of X(K) inside the pillowcase is invariant under the involu-
tion (α, β) 7→ (π − α, 2π − β).
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Proof. Suppose that the image of ρ has coordinates (α, β), and hence ρ(µ) = diag(eiα, e−iα)
and ρ(λ) = diag(eiβ, e−iβ) up to conjugacy. We take the central character

χ : π1(S3 rK)
ab−→ Z→ {±I} ⊂ SU(2)

in which the latter map sends k ∈ Z to (−I)k, and note that χ(µ) = −I and χ(λ) = I. The

representation ρ̃ = χρ satisfies ρ̃(µ) = diag(ei(α+π), e−i(α+π)) and ρ̃(λ) = diag(eiβ, e−iβ),
and since ι(α+ π, β) = (π−α, 2π− β) lies in [0, π]× (R/2πZ), it follows that the latter are
the coordinates of ρ̃ in the pillowcase. �

Proposition 2.4. Let K denote the mirror of K. Then the pillowcase image of X(K)
is the reflection of the pillowcase image of X(K) across the line β = π, obtained by the
transformation (α, β) 7→ (α, 2π − β).

Proof. We observe that K has the same knot group as K, but with peripheral data

µK = µ−1
K , λK = λK .

Any representation ρ ∈ R(K) with image (α, β) thus gives rise to an identical ρ ∈ R(K)
with coordinates ι(2π − α, β) = (α, 2π − β). �

Finally, we have the following general facts about the components of the image of X(K)
in the pillowcase.

Proposition 2.5. The image of X(K) inside the cut-open pillowcase C = [0, π]× (R/2πZ)
has finitely many path components. If K is not the unknot, then at least one of these
components is homologically nontrivial in H1(C;Z) ∼= Z.

Proof. The representation varietyR(K) is a semi-algebraic subset of some Rn, so by [BCR98,
Theorem 2.4.5] it has finitely many connected components, each of them semi-algebraic and
semi-algebraically connected and therefore path-connected by [BCR98, Proposition 2.5.13].
Its quotient X(K) then has finitely many path components, and so does its image in the
pillowcase. (In fact, the image is a finite embedded graph, as argued in [Zen18].) Cutting
the pillowcase open along α = 0 and α = π does not change the number of components,
since the image only meets these lines in the points (0, 0) and (π, 0).

The existence of a homologically nontrivial component when K is a nontrivial knot is a
theorem of the second author [Zen18, Theorem 7.1], which relies in turn on the fact that
the result S3

0(K) of zero-surgery on K separates a symplectic 4-manifold with nonvanishing
Donaldson invariants [KM04b, KM10b]. �

Corollary 2.6. If K is nontrivial, then the image of X(K) inside the fundamental domain
[0, π] × [0, 2π] of the cut-open pillowcase contains a path from the line β = 0 to the line
β = 2π.

Proof. Let Z = i∗(X(K)) ⊂ X(T 2) denote the image of X(K), and let z0 ∈ Z be the image
of some reducible representation. If j : Z ↪→ [0, π] × (R/2πZ) denotes inclusion into the
cut-open pillowcase and π : [0, π]× (R/2πZ)→ R/2πZ is projection, then the composition

π1(Z, z0)
j∗−→ π1([0, π]× (R/2πZ), z0)

π∗−→ π1(R/2πZ, 0)

is nonzero, because the abelianization H1(Z) → H1([0, π] × (R/2πZ)) of the first map is
nonzero and the second map is an isomorphism. But π ◦ j sends a point to its β-coordinate,
so if γ ∈ π1(Z, z0) is a path with image 2πn > 0 in π1(R/2πZ, 0) ∼= 2πZ then we can lift its
β-coordinate to R to get a path from 0 to 2πn, and a segment of this path from β = 0 to
β = 2π corresponds to the desired path in the fundamental domain. �
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3. The pillowcase and SU(2)-cyclic surgeries

In this section we use the image of X(K) inside the pillowcase to understand which
surgeries on K do not admit irreducible SU(2) representations. The fundamental group of
m
n -surgery on K is the quotient π1(S3 rK)/〈µmλn〉, so irreducible representations of the
surgered manifold correspond bijectively to irreducible representations ρ of the knot group
satisfying ρ(µmλn) = I.

In this section we will let π : R2 → X(T 2) denote the map

R2 → (R/2πZ)2 → X(T 2),

defined by as the composition of reduction mod 2π with the quotient by the involution ι of
equation (2.1). It is clear that paths in X(T 2) lift via π to paths in R2.

Proposition 3.1. Let γ : [0, 1] → X(T 2) be a path consisting of images of irreducible
characters of π1(S3 rK) in the pillowcase. Choose a lift γ̃ : [0, 1] → R2 of γ to the plane,
so that π ◦ γ̃ = γ. Suppose that γ̃(0) and γ̃(1) are distinct points in R2 with coordinates
(α0, β0) and (α1, β1), and that some m

n -surgery on K is SU(2)-cyclic with n ≥ 1.

• If α0 6= α1 and if r = β1−β0

α1−α0
is the slope of the line segment from γ(0) to γ(1), then∣∣∣m
n
− (−r)

∣∣∣ < cγ
n

where cγ = 2π/|α1 − α0|.
• If α0 = α1, then n < 2π

|β1−β0| .

Proof. Suppose that each γ̃(t) has coordinates (αt, βt) ∈ R2. If m
n -surgery on K is SU(2)-

cyclic, then any representation ρ : π1(S3 r K) → SU(2) such that ρ(µmλn) = I must be
reducible. In particular, if ρ is irreducible with image γ̃(t), then ρ(µmλn) 6= I. But up to
conjugacy we have ρ(µ) = diag(eiαt , e−iαt) and ρ(λ) = diag(eiβt , e−iβt), so since S3

m/n(K)

is SU(2)-cyclic we must have

mαt + nβt 6≡ 0 (mod 2π)

for all t, 0 ≤ t ≤ 1.
At t = 0, the fact that S3

m/n(K) is SU(2)-cyclic tells us that

2πk < mα0 + nβ0 < 2π(k + 1)

for some integer k. Now mαt + nβt varies continuously with t, and it can never equal 2πk
or 2π(k + 1) since these are 0 (mod 2π), so at time t = 1 we must have

2πk < mα1 + nβ1 < 2π(k + 1)

as well. Combining these inequalities, we see that

|(mα1 + nβ1)− (mα0 + nβ0)| < 2π.

If α0 6= α1, then dividing both sides by n|α1 − α0| yields∣∣∣∣mn +

(
β1 − β0

α1 − α0

)∣∣∣∣ < 2π

n|α1 − α0|
.

Otherwise α0 = α1 but β0 6= β1 since γ(0) 6= γ(1), and we have n < 2π/|β1 − β0| as
claimed. �
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Theorem 3.2. Suppose that K admits infinitely many SU(2)-cyclic surgeries. Define

I(K) ⊂ R2

as the preimage under π : R2 → X(T 2) of the pillowcase image of X∗(K). Then every path
component of I(K) is either a point or a line segment, and the line segments all have the
same slope. If in addition K is not the unknot, then at least one path component is a line
segment, and its slope r ∈ R∪{∞} satisfies |r| > 2. If r 6=∞, then the SU(2)-cyclic slopes
m
n all satisfy ∣∣∣m

n
− (−r)

∣∣∣ ≤ |r|
n
,

so only finitely many values of m are possible for any given n, and m
n → −r as n→∞.

Proof. Let I0 ⊂ I(K) be a path component. If I0 is not contained in some straight line,
then it contains three points pi = (αi, βi), i = 0, 1, 2, which are not collinear. The αi cannot
all be the same, so at most two of them are equal; we label the pi so that α0 is different
from both α1 and α2. Letting ci = 2π

|αi−α0| and ri = βi−β0

αi−α0
for i = 1, 2, we know that r1 6= r2

or else the pi would be collinear, and that r1, r2 6=∞.
If m

n is an SU(2)-cyclic surgery slope for K, say with n > 0, then we can apply Proposi-
tion 3.1 to paths from p0 to p1 and from p0 to p2 within I0 to see that∣∣∣m

n
− (−r1)

∣∣∣ < c1

n
,

∣∣∣m
n
− (−r2)

∣∣∣ < c2

n
.

Given a sequence of such slopes mk
nk

with nk → ∞, it would follow that mk
nk

converges to

both −r1 and −r2, which contradicts r1 6= r2. The SU(2)-cyclic slopes m
n therefore satisfy

some uniform upper bound n ≤ C. But from either of these inequalities it follows that for
fixed n there can only be finitely many m such that m

n is an SU(2)-cyclic surgery slope,
so the total number of such slopes is finite, which is a contradiction. We conclude that I0

must be contained in a straight line.
In fact, the above argument shows that the slope r of the straight line is uniquely

determined by the set {mk
nk
} of SU(2)-cyclic slopes. Indeed, Proposition 3.1 shows that

r = ∞ if and only if the nk are bounded, and if they are unbounded then nk → ∞ and

−r = lim
nk→∞

mk

nk
. Thus all nontrivial path components of I(K) have the same slope.

If K is not the unknot, then Corollary 2.6 says that there is a path in

I(K) ∪
(
R× 2πZ

)
⊂ R2,

which is the lift to R2 of the image of all of X(K) (including the reducible characters),
between two points (α0, 0) and (α1, 2π) with 0 < α0, α1 < π. The path must be a straight
line in the region 0 < β < 2π, where every point is a lift of the image of an irreducible
character, and for any small δ > 0 it connects points (α′0, δ) and (α′1, 2π − δ) which project

to the image of two irreducibles, with slope r = 2π−2δ
α′1−α′0

.

By Proposition 2.1, there is some ε > 0 depending only on K such that every irreducible
character has α-coordinate in the open interval (ε, π−ε) in the pillowcase. The line segment
in R2 between (α′0, δ) and (α′1, 2π− δ) consists entirely of lifts of images of characters which
have β 6∈ 2πZ and are thus irreducible, so it follows that kπ + ε < α′0, α

′
1 < (k + 1)π − ε

for some integer k. This gives us |α′1 − α′0| < π− 2ε, so the slope r of this segment satisfies

|r| > 2π−2δ
π−2ε . Taking limits as δ → 0, we see that |r| ≥ 2π

π−2ε > 2. We remark that if r 6=∞
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Figure 2. If the image i∗(X(K)) contains a component which is curved,
as at left, then there are at most finitely many SU(2)-cyclic surgeries by
Theorem 3.2. If there are only vertical segments, as at right, then there
could be an unbounded set of SU(2)-cyclic surgeries, but we will see in
Section 4 that this cannot occur.

then we also have
∣∣m
n − (−r)

∣∣ < 2π/|α′1−α′0|
n for each such (α′0, δ) and (α′1, 2π − δ), and as

δ → 0 the ratio 2π
α′1−α′0

approaches the slope −r, so that
∣∣m
n − (−r)

∣∣ ≤ |r|n . �

Definition 3.3. Suppose that K ⊂ S3 is a nontrivial knot with infinitely many SU(2)-
cyclic surgeries. Then we will say that K is SU(2)-averse, and we define the limit slope
r(K) ∈ R∪{∞} to be −r, where r is the common slope of the line segments in I(K) whose
existence is guaranteed by Theorem 3.2.

Rephrasing Theorem 3.2 in terms of Definition 3.3, we see that an SU(2)-averse knot
with limit slope r(K) satisfies |r(K)| > 2, and if r(K) 6= ∞ then every SU(2)-cyclic slope
m
n for K satisfies ∣∣∣m

n
− r(K)

∣∣∣ ≤ |r(K)|
n

.

In particular, there are only finitely many possible m for a given n, so the denominators
n are unbounded and we have m

n → r(K) as n → ∞. (We will prove in Section 4 that
r(K) 6=∞ always holds.)

Example 3.4. The torus knots Tp,q are SU(2)-averse with limit slope r = pq, since Moser
[Mos71] showed that (pq + 1

n)-surgery on Tp,q is a lens space, and thus SU(2)-cyclic, for all
integers n 6= 0.

Theorem 3.5. If K is a nontrivial SU(2)-averse knot with limit slope r = r(K), and if
r < ∞ (resp. r = ∞), then there are finitely many constants c1, . . . , cn such that every
irreducible ρ : π1(S3 r K) → SU(2) has image on one of the lines β = −rα + ci (resp.
α = ci) in the cut-open pillowcase.

Proof. We lift the pillowcase image of X∗(K) to I(K) ⊂ R2 as in Theorem 3.2, which
guarantees that I(K) is a union of isolated points and line segments of slope −r. Then its
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image I ′ in the cut-open pillowcase C ∼= [0, π]× (R/2πZ), obtained from I(K)∩
(
[0, π]×R

)
by reducing the second coordinate mod 2π, is also a union of such points and line segments.

The set I ′ ⊂ C can be identified with the pillowcase image of X∗(K), since the latter
avoids a neighborhood of the lines α = 0 and α = π in X(T 2). Since R∗(K) is a semi-
algebraic set, it has only finitely many path components, exactly as argued in the proof of
Proposition 2.5, and hence so do its quotient X∗(K) and the image I ′ ⊂ C of this quotient.
Since each of these components of I ′ is contained in a line of the form β = −rα+ ci (resp.
α = ci), we conclude that finitely many ci suffice. �

4. Finiteness of limit slopes

In this section we will show that SU(2)-averse knots have limit slope r(K) 6= ∞. The
result is a straightforward consequence of the following theorem about the SU(2) character
variety of a nontrivial knot.

Theorem 4.1. Let K be a nontrivial knot in S3. Then at least one of the following holds:

(1) The pillowcase image of X∗(K) contains the entire curve α = π
2 , or equivalently for

every β ∈ R/2πZ there is an irreducible ρ : π1(S3 rK)→ SU(2) such that

ρ(µ) =

(
i 0
0 −i

)
and ρ(λ) =

(
eiβ 0
0 e−iβ

)
;

(2) There is a constant ε > 0 and an arc of irreducible representations

ρs : π1(S3 rK)→ SU(2), s ∈
[π

2
,
π

2
+ ε
)

with α-coordinate s, i.e. such that ρs(µ) = diag(eis, e−is).

If case (1) applies, then K has no nontrivial SU(2)-cyclic surgeries.

We do not know of any examples where case (2) does not occur, and we expect (but are
unable to prove) that it always happens. When case (1) holds, however, the last claim of
Theorem 4.1 is immediate: if p

q 6= ∞ is an SU(2)-cyclic slope, then the line pα + qβ ≡ 0

(mod 2π) in the pillowcase intersects the line α = π
2 at the point(

π

2
,−pπ

2q
(mod 2π)

)
,

so there is an irreducible representation π1(S3 r K) → SU(2) with image at this point.
Before proving Theorem 4.1, we explain how the finiteness of r(K) follows.

Theorem 4.2. If K ⊂ S3 is a nontrivial SU(2)-averse knot, then the limit slope r(K) is
finite.

Proof. Since K has SU(2)-cyclic surgeries, it must satisfy case (2) of Theorem 4.1. Thus
we have an arc of irreducible representations

ρs : π1(S3 rK)→ SU(2), s ∈
[π

2
,
π

2
+ ε
)

where each ρs has α-coordinate s in the pillowcase. If r(K) =∞, then by Theorem 3.5 we
can only achieve finitely many α-coordinates along this arc, and this is a contradiction. �

The proof of Theorem 4.1 follows the same lines as the following theorem of Kronheimer
and Mrowka, so we briefly recall its proof here.
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Theorem 4.3 ([KM10b, Corollary 7.17]). Every nontrivial knot K ⊂ S3 admits a non-
abelian representation

ρ : π1(S3 rK)→ SU(2)

such that ρ(µ) is traceless.

Proof (sketch). Kronheimer and Mrowka construct for each knot K ⊂ S3 a closed 3-
manifold

Y1(K) =
(
S3 rN(K)

)
∪
(
F × S1

)
, (4.1)

where F is a genus-1 surface with one boundary component, and the gluing identifies

µ ∼ {p} × S1, λ ∼ ∂F × {q}.
Letting α, β ⊂ F be a pair of curves which intersect transversely in a point, they define a
Hermitian line bundle w → Y1(K) such that c1(w) is Poincaré dual to β × {p} ⊂ F × S1,

and a U(2)-bundle E → Y1(K) equipped with an isomorphism
∧2E → w. We denote by

Xw(Y1(K)) = {ρ ∈ Hom(π1(Y1(K)), SO(3)) | w2(ρ) ≡ c1(w) (mod 2)}/SO(3) (4.2)

the variety of characters of representations π1(Y1(K)) → SO(3) whose second Stiefel-
Whitney class agrees with c1(w) modulo 2. In [KM10b, Lemma 7.15], they show that
Rw(Y1(K)) can be identified with a double cover of the variety

R(K, i) :=

{
ρ : π1(S3 rK)→ SU(2)

∣∣∣∣ ρ(µ) =

(
i 0
0 −i

)}
. (4.3)

The centralizer of diag(i,−i) is a U(1) acting on R(K, i) by conjugation; the orbits are a
point for the unique reducible ρ ∈ R(K, i) and S1 for all irreducible ρ.

Kronheimer and Mrowka define KHI (K) to be a group whose dimension is half that of the
instanton homology I∗(Y1(K))w, which is defined as in [Don02]. If R(K, i) contains only the
reducible representation, then the Chern-Simons functional used to construct I∗(Y1(K))w
has only two critical points, both nondegenerate, and it follows that dim(KHI (K)) ≤ 1.
But they prove that dim(KHI (K)) ≥ 2 whenever K is knotted, and thus R(K, i) must
contain at least one irreducible. �

We will use KHI (K) in a similar way to prove Theorem 4.1. Assuming that the theorem
is false for some knot K, we will describe the pillowcase image of X(K) near the line α = π

2
in Lemma 4.7. Using a generalization of the results of [Zen18], we then perturb the Chern-
Simons functional defining I∗(Y1(K))w so that its critical point set corresponds not to the
curve α = π

2 (i.e., where ρ(µ) is conjugate to
(
i 0
0 −i

)
), which was used to prove Theorem 4.3,

but to some nearby curve in the pillowcase which avoids the image of X∗(K) completely.
This would imply that KHI (K) has rank 1 by the same argument (which we generalize in
Theorem 4.8), and so K must be the unknot. We will now begin the proof of Theorem 4.1
in earnest.

We denote by A the space of SO(3) connections on the adjoint bundle ad(E), or equiv-
alently, the space of U(2)-connections on E which induce some fixed connection in the
determinant line bundle w which we suppress from our notation. The character variety
Xw(Y1(K)) can be identified with the space of flat SO(3) connections on ad(E) modulo
determinant-1 gauge transformations,

Xw(Y1(K)) ∼= {A ∈ A | FA = 0}/Aut(E) .

Equivalently, it can be identified with projectively flat U(2)-connections in E; this is inde-
pendent of the choice of fixed connection in the determinant line bundle.
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The proof of Theorem 4.1 will make use of a variation of Kronheimer and Mrowka’s
argument sketched above by applying holonomy perturbations. In order to use these, we
set up the notation and recall the main technical results about holonomy perturbations of
[Zen18], and we refer to the latter reference for more details on these perturbations. We
define a manifold diffeomorphic to the original Y1(K) from equation (4.1) above by

Y1(K) =
(
S3 rN(K)

)
∪
(
[0, 1]× T 2

)
∪
(
F × S1

)
,

where we have introduced a thickened cylinder M = [0, 1] × T 2 in between the knot com-
plement and (F × S1). We declare that the boundary component {0} × T 2 is the one
glued to S3 rN(K), mapping the circles {0}×S1×{pt} to meridians of K and the circles
{0} × {pt} × S1 to longitudes. The boundary component {1} × T 2 is glued to F × S1 with
the circle {1} × S1 × {pt} mapping to the S1-factors, and with the circles {1} × {pt} × S1

mapping to the boundary of F .
Let Σ = [0, 1]× S1 be the 2-dimensional annulus. For k = 0, . . . , n− 1, let

Ak =

(
ak ck
bk dk

)
∈ SL(2,Z)

be a sequence of matrices. We define a sequence of embeddings ιk : Σ × S1 → M by the
formula (

t,

(
z
w

))
7→
(
k + t

n
,

(
ak ck
bk dk

)(
z
w

))
, (4.4)

where we understand S1 = R/Z and write Σ× S1 as [0, 1]× T 2, so that the matrix multi-
plication is understood in the usual sense. Notice that Im(ιk) = [ kn ,

k+1
n ]× T 2 ⊆M .

Let µ be a 2-form on Σ with support in the interior of Σ and integral 1. The 2-form π∗Σµ
on Σ× S1, defined by pulling back µ by the projection onto the first factor, can be pushed
forward via ιk to obtain a 2-form µk on M . Notice that µk has compact support in the
interior of M , so that µk extends to Y1(K).

For k = 0, . . . , n− 1, let χk : SU(2)→ R be a sequence of class functions. These give rise
to 2π-periodic even functions gk : R→ R via the formula

χk

((
eit 0
0 e−it

))
= gk(t) . (4.5)

To each class function χ : SU(2)→ R we associate a Lie-algebra valued, SU(2)-equivariant
function χ′ : SU(2) → su(2) which is dual, with respect to the trace, to the differential
dχ : TSU(2)→ R.

In the sequel, we suppose we have chosen a trivialization of our bundle E → Y1(K) over
M . In fact, by our choice of the line bundle w, there is no obstruction to such a trivialization
over M . For any point z ∈ Σ there is a loop ιk({z} × S1) passing through it, and there
is precisely one such loop through any point in the image of ιk. For such a point x in the
image, we denote by Holιk(A)x the holonomy of A along the loop through this point. This
way Holιk(A) can be seen as a section of the automorphism bundle Aut(E) over the image
of ιk. For a class function χk we can therefore define

χ′k(Holιk(A))µk

which is a 2-form with values in the bundle ad(E) over Y1(K), and with compact support
in the interior of the image of ιk.

We now define a family, parametrized by t ∈ [0, 1], of perturbations to the flatness
equation on Y1(K).
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Definition 4.4. Let the function θt : A → Ω2(Y1(K); ad(E)) be defined in the following
way. For each k = 0, . . . , n− 1 and k

n ≤ t ≤
k+1
n , we let

θt{ιk,χk}(A) := n

(
t− k

n

)
· χ′k(Holιk(A))µk +

k−1∑
l=0

χ′l(Holιl(A))µl.

This function interpolates between θ0 = 0 and θ1(A) =
∑n−1

l=0 χ
′
l(Holιl(A))µl.

The perturbed flatness equation for a connection A ∈ A now is

FA = θt{ιk,χk}(A) , (4.6)

and we denote by Xw
{ιk,χk}(t)(Y1(K)) the space of connections A ∈ A which solve this equa-

tion, modulo the group of determinant-1 automorphisms of E.

The parameter t is not to be confused with the coordinate t on the thickened torus
M = [0, 1] × T 2, although there is the accidental coincidence that θt has support inside
[0, 1

ndnte] × T
2 ⊆ M . At each time t, the set Xw

{ιk,χk}(t)(Y1(K)) arises as the critical set

modulo gauge transformations of some perturbation of the Chern-Simons functional, which
for t = 1 we write as

CS + Φ : A → R (4.7)

where Φ(A) =
∑n−1

k=0

∫
Σk
χk(Holιk(A))µk(z).

Note that equation (4.6) also makes sense for SU(2)-connections defined over the thick-
ened cylinder M . We denote by X{ιk,χk}(t)(M) the connections which solve this equation

modulo bundle automorphisms. The two inclusions of the boundary components {0} × T 2

and {1} × T 2 into M induce two restriction maps r0 and r1 to the pillowcase X(T 2), to
which we give coordinates α, β just as before.

The main result (Theorem 4.2) of [Zen18] states that given any isotopy through area-
preserving maps ψt of the pillowcase X(T 2), fixing the four singular points, and given some
ε > 0, there is a finite sequence of embeddings {ιk} and there are class functions {χk} as
above, such that the isotopy ψt is ε-close in the C0-topology to an isotopy φt which also
fixes the four singular points. The isotopy φt is described in the following way.

The lift φt of φt to the branched double cover R2/2πZ2 is an isotopy which for k
n ≤ t ≤

k+1
n

is given by

φt = ζ
(k)

n(t− k
n

)
◦ ζ(k−1)

1 ◦ · · · ◦ ζ(0)
1

for any k = 0, . . . , n−1. Here the maps ζ
(k)
s are defined for s ∈ [0, 1], and for k = 0, . . . , n−1

by the equation

ζ(k)
s = Ak ◦ χsfk ◦A

−1
k ,

where the Ak are elements of SL(2,Z) and

χsfk :

(
α
β

)
7→
(
α+ s · fk(β)

β

)
(4.8)

are shearing isotopies. The functions fk are the derivatives of the functions gk defined in

equation (4.5). These isotopies ζ
(k)
s are in fact shearing isotopies, as defined in equation (1.1)

in the introduction.
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Associated to the perturbation data {ιk, χk}, there is the perturbed character variety
X{ιk,χk}(t)(M) for every t ∈ [0, 1], for which the two restriction maps r0 and r1 are related
by the commutative diagram

X{ιk,χk}(t)(M)

r0

xx

r1

''
X(T 2)

φt // X(T 2).

(4.9)

We will need a slight enhancement of the approximation result [Zen18, Theorem 3.3] which
is a part of the statement of [Zen18, Theorem 4.2]. In fact, the approximation holds in
any Ck-topology for k ≥ 0. However, in this article we will only need the fact that we can
approximate area-preserving isotopies by shearing isotopies in the C1-topology.

We defer the slightly technical proof of the following result to Appendix A. We state it
in the Z/2-equivariant case which is needed for our application, but we remark that it also
holds in the non-equivariant version.

Theorem 4.5. Let

ψ : [0, 1]× T 2 → T 2, (t, (x, y)) 7→ ψt(x, y)

be a Z/2-equivariant smooth isotopy through area-preserving maps, which necessarily fixes
the four fixed points of the hyperelliptic involution. Let r ≥ 0 be given. Then for any ε > 0,
there is a Z/2-equivariant map

φ : [0, 1]× T 2 → T 2, (t, (x, y)) 7→ φt(x, y)

which is continuous in t and smooth in (x, y), such that:

(i) If d denotes the Euclidean metric on T 2, then we have

sup
(x,y)∈T 2

d(ψt(x, y), φt(x, y)) +
r∑
l=1

∥∥∥D(l)ψt −D(l)φt

∥∥∥
∞
< ε

for all t ∈ [0, 1] and all (x, y) ∈ T 2.
(ii) There is a partition 0 = t0 < t1 · · · < tn+1 = 1 and a Z/2-equivariant shearing

isotopy (ζ
(i)
s )s∈[0,1] for each i = 0, . . . , n such that for any ti ≤ t ≤ ti+1, we have

φt = ζ
(i)
t−ti ◦ φti

for all (x, y) ∈ T 2.

In other words, the smooth isotopy (ψt) can be Cr-approximated by isotopies (φt) which are
piecewise (in the coordinate t) isotopies through shearings.

The following lemma is the analogue of [KM10b, Lemma 7.15] for the perturbed character
variety Xw

{ιk,χk}(t)(Y1(K)); we will mostly be interested in the case t = 1. We let C be the

circle in X(T 2) defined by α = π/2, and then we define the circle

C̃ ⊂ (R/2πZ)α × (R/2πZ)β

as one of two possible lifts of C to the branched double cover X̃(T 2) ∼= T 2 of X(T 2): for

concreteness, we will take C̃ to be the circle α = π
2 , rather than α = 3π

2 . This is analogous
to a choice implicitly made in [KM10b, Lemma 7.15]: if ρ(µ) is diagonal and traceless then
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it could be either diag(i,−i) or diag(−i, i), and the two choices are equivalent since they
are related by conjugation but Kronheimer and Mrowka choose the former.

Lemma 4.6. The character variety Xw
{ιk,χk}(t)(Y1(K)) is a double cover of the perturbed

representation variety

R(K | (φt)−1(C̃)) :=

ρ ∈ R(K)

∣∣∣∣∣∣ ρ(µ) =

(
eiα 0
0 e−iα

)
, ρ(λ) =

(
eiβ 0
0 e−iβ

)
for some (α, β) ∈ (φt)

−1(C̃).

 .

Proof. Lemma 7.14 of [KM10b] describes the SO(3)-character variety of F × S1 with the
second Stiefel-Whitney class w as specified above, where the restriction map on characters
from F × S1 to its boundary T 2 identifies these conjugacy classes of representations with
the circle which doubly covers the circle C̃ ⊂ X̃(T 2). The representations of T 2 from this
circle which extend to equivalence classes of perturbed representations of Xw

{ιk,χk}(t)(Y1(K))

on the other side of F × S1 are precisely those which correspond to points of (φt)
−1(C̃)

because of the diagram (4.9) from above. �

Having explained how the above perturbations affect the generators of the KHI chain
complex, we now find a convenient choice of curve in X(T 2) to make the generating set as
small as possible. The following lemma, which we will use to prove Theorem 4.1, describes
the pillowcase image of X∗(K) in a neighborhood of the curve α = π

2 .

Lemma 4.7. Suppose that K ⊂ S3 is a nontrivial knot which does not satisfy Theorem 4.1.
Then there are constants b and ε, with 0 < ε < b < π − ε, such that if (α, β) lies in the
pillowcase image of X∗(K) and

π

2
− ε < α <

π

2
+ ε,

then α = π
2 and β 6∈ (b− ε, b+ ε) ∪ (2π − b− ε, 2π − b+ ε).

Proof. Since case (1) of Theorem 4.1 does not apply, there is some point (π2 , b0) which is
not in the pillowcase image of X∗(K). The variety R(K, i) of (4.3) is compact, as it is the
closed subset of the compact varietyR(K) cut out by the matrix equation ρ(µ) = diag(i,−i).
Moreover, since ∆K(−1) = ±det(K) 6= 0, Proposition 2.1 says that the unique reducible
representation in R(K, i) is not a limit of irreducibles, and so the subset

R∗(K, i) ⊂ R(K, i)

consisting of irreducibles is also compact.
The image of the compact set R∗(K, i) in the pillowcase is closed, so it avoids an open

neighborhood U ⊂ {π2 } × R/2πZ of (π2 , b0). Letting b 6∈ {0, π} be the β-coordinate of some
point in U , we can assume that 0 < b < π by Proposition 2.3, and we pick δ > 0 so that
0 < b− δ < b+ δ < π and the interval{π

2

}
× (b− δ, b+ δ)

in the pillowcase is disjoint from the image of X∗(K). The interval{π
2

}
× (2π − b− δ, 2π − b+ δ)

also avoids the image of X∗(K), again by Proposition 2.3.
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Next, since case (2) of Theorem 4.1 is not satisfied, we claim that π
2 is not a limit point

of the set {
α 6= π

2

∣∣∣ ∃ρ ∈ R∗(K) with pillowcase coordinates (α, β) for some β
}
.

This will guarantee for some ε > 0 that any irreducible representation with α-coordinate
between π

2 − ε and π
2 + ε actually has α-coordinate π

2 , and taking ε < δ without loss of
generality, this will complete the proof.

To prove the claim, suppose that there is a sequence of irreducible representations ρn :
π1(S3 rK)→ SU(2) with pillowcase coordinates (αn, βn), such that αn 6= π

2 and

lim
n→∞

αn =
π

2
.

Using Proposition 2.3, we can assume that αn >
π
2 for all n; since R(K) is compact and

has finitely many path components, we can pass to a subsequence to ensure that they all
lie in the same path component C and converge to a limit ρ, with pillowcase coordinates
(π2 , β) for some β. Then ρ is irreducible as argued above, and since C is closed it must also
contain ρ. A continuous semi-algebraic path γ = γt : [0, 1]→ C from ρ to ρ1 (which exists
by [BCR98, Proposition 2.5.13]) must eventually leave the line α = π

2 in the pillowcase,
since α1 >

π
2 . If t0 is the last time at which γt0 meets this line, then for some τ > 0 the

arc γ|[t0,t0+τ) consists of points with distinct α-coordinates; note that here we use the fact

that γ is not just continuous but semi-algebraic, so that cos(αt) = 1
2 tr(γt(µ)) defines a

semi-algebraic map [0, 1] → R. A reparametrization of this arc shows that K must have
satisfied case (2) of Theorem 4.1 after all, which is a contradiction. �

Lemmas 4.6 and 4.7 now point us toward the proof of Theorem 4.1: we find an isotopy
which takes C to some curve in the pillowcase which avoids the image i∗(X∗(K)) of the
irreducible characters of K, so that Xw

{ιk,χk}(t)(Y1(K)) consists of only finitely many points.

If these are irreducible and nondegenerate, then they will generate a complex whose homol-
ogy is KHI (K)⊕2. The following statement is more general than we need for Theorem 4.1,
but we will eventually use it again in a different setting to prove Theorem 7.3.

Theorem 4.8. Let K ⊂ S3 be a knot. Let C ′ be a smooth, simple closed curve in the
pillowcase, and suppose that there is an area-preserving isotopy

ψt : X(T 2)→ X(T 2), 0 ≤ t ≤ 1

which takes C ′ to C =
{
α = π

2

}
and fixes the four orbifold points (0, 0), (0, π), (π, 0), and

(π, π). Suppose that C ′ intersects the line {β ≡ 0 (mod 2π)} transversely in exactly n ≥ 1
points (α1, 0), . . . , (αn, 0), and that e2iαj is not a root of ∆K(t) for any j. If the pillowcase
image i∗(X∗(K)) of the irreducible character variety of K is disjoint from C ′, then KHI (K)
has rank at most n.

Proof. We first claim that C ′ has an open neighborhood U which is disjoint from i∗(X∗(K)).
Supposing otherwise, we can find conjugacy classes [ρn] ∈ X∗(K) such that the distance
from i∗([ρn]) to C ′ goes to zero as n→∞, and since R(K) is compact, some subsequence of
the ρn converges to a representation ρ; since i∗([ρ]) has distance zero from the compact set
C ′, it must lie in C ′. By hypothesis ρ must then be reducible, but it is a limit of irreducibles
and so it must have pillowcase coordinates (α, 0) with ∆K(e2iα) = 0. We have assumed
that C ′ avoids all such points, though, giving a contradiction.

Fixing ε > 0, we now lift ψt to an isotopy ψt : T 2 → T 2 of the branched double cover,
apply Theorem 4.5 to find a composition of Z/2-equivariant shearing isotopies φt : T 2 → T 2
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such that ‖φt − ψt‖C1 < ε for all t ∈ [0, 1], and project this back down to get an isotopy

φt : X(T 2) → X(T 2) which is C1-close to ψt. If we take ε sufficiently small, then this will
guarantee first that (φ1)−1(C) lies in the neighborhood U of C ′ = (ψ1)−1(C), hence remains
disjoint from i∗(X∗(K)); second, that it still avoids the points (α, 0) with ∆K(e2iα) = 0;
and third, that it still intersects the line {β ≡ 0 (mod 2π)} transversely in n points. Thus
we may replace C ′ with (φ1)−1(C) and replace ψt with the isotopy φt which lifts to φt.

We now use the shearing isotopies which make up φt to perturb the flatness equation on

Y1(K) =
(
S3 rN(K)

)
∪
(
[0, 1]× T 2

)
∪
(
F × S1

)
to FA = θt{ιk,χk}(A), exactly as described in Definition 4.4. At time t = 1, we recall that

these perturbed flat connections are equivalently the critical points of a perturbed Chern-
Simons functional CS + Φ, as in (4.7). By Lemma 4.6, the space Xw

{ιk,χk}(1)(Y1(K)) of

solutions to this equation modulo gauge transformations is a double cover of

R(K | (φ1)−1(C̃)) = R(K | C̃ ′),

where C̃ is the lift of C to T 2 satisfying α = π
2 and C̃ ′ = (φ1)−1(C̃) is the corresponding

lift of C ′. Thus by hypothesis Xw
{ιk,χk}(1)(Y1(K)) consists of 2n points A1, . . . , A2n.

Our goal is to associate an instanton Floer homology group I
{ιk,χk}(1)
∗ (Y1(K))w to this

perturbation data and show that it is isomorphic to the usual group I∗(Y1(K))w; then the
rank of the latter will be at most 2n, and hence by definition KHI (K) will have rank at
most n. In order to carry this out, we must first show that all points of Xw

{ιk,χk}(1)(Y1(K))

are irreducible and nondegenerate, and then an additional small perturbation which we
suppress from the notation will fix the set of generators while ensuring that the moduli
spaces of trajectories which define the differential are transversely cut out as well. (See
[Don02, §5.5.1] for discussion of this last perturbation, or [KM11b, Proposition 3.18] for a
concise statement.)

For irreducibility, we note that the 2-forms µk appearing in the definition of θt{ιk,χk}(A)

are supported entirely on [0, 1]×T 2. In particular, any connection A with equivalence class

[A] ∈ Xw
{ιk,χk}(t)(Y1(K))

restricts to a flat connection on both S3 rN(K) and F × S1. But flat connections on the
bundle ad(E)|F×S1 are irreducible by construction, since c1(w) has odd pairing with the
surface α×S1 ⊂ F ×S1 (where E, w, and α are as described in the proof of Theorem 4.3),
and so Xw

{ιk,χk}(t)(Y1(K)) does not contain any reducible connections for any t, 0 ≤ t ≤ 1.

Now we claim that each A = Aj ∈ Xw
{ιk,χk}(1)(Y1(K)), j = 1, . . . , 2n, is nondegenerate.

Writing Y = Y1(K), this is equivalent to the vanishing of the kernel of the operator

KA,Φ =

(
0 d∗A
dA −∗dA,Φ

)
on (Ω0 ⊕ Ω1)(Y ; ad(E)), where dA and d∗A are the exterior derivative twisted by A and its
Hodge dual, and dA,Φ = dA − 4π2 ∗HessA(Φ); see [Flo88, Tau90] or [Her94, Section 6]. By
Hodge theory we can identify

ker(KA,Φ) ∼= H0
A(Y ; ad(E))⊕H1

A,Φ(Y ; ad(E)),

where the groups on the right are cohomology groups of the complex

0→ Ω0(Y ; ad(E))
dA−→ Ω1(Y ; ad(E))

dA,Φ−−−→ Ω2(Y ; ad(E))
dA−→ Ω3(Y ; ad(E))→ 0.
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SinceA is irreducible we haveH0
A(Y ; ad(E)) = 0, so we wish to prove thatH1

A,Φ(Y ; ad(E)) =

0 as well. In the sequel we will drop the ad(E) from our notation.
This cohomology can be computed by a Mayer-Vietoris argument, in which we write

Y = (S3 rN(K)) ∪T 2 V,

where V is a neighborhood of ([0, 1]×T 2)∪(F×S1), so that the perturbation Φ is supported
in V away from a collar neighborhood of ∂V ∼= T 2. Since A is a reducible flat connection
on both S3 rN(K) and T 2 with the same U(1) stabilizer, the restriction map

H0
A(S3 rN(K))→ H0

A(T 2)

is surjective. Thus we have an exact sequence

0→ H1
A,Φ(Y )→ H1

A(S3 rN(K))⊕H1
A,Φ(V )

h−→ H1
A(T 2), (4.10)

and it suffices to show that the map h is injective. (We may drop Φ from two of the above
subscripts because it is zero on S3 rN(K) and on T 2.)

Denoting by ρ = Hol(A) the holonomy representation of A, with restrictions ρT and ρK
to T 2 and S3 rN(K) having centralizers Z(ρT ) and Z(ρK) respectively, we know that

dimTρTR(T 2) = 3 + dimZ(ρT ) = 4, dimTρKR(K) = 3,

by [Gol84, Section 1.2] and [Kla91, Theorem 19] respectively; the latter claim uses the
assertion that ∆K(e2iα) 6= 0. Then we have

dimH1
A(T 2) = dimTρTR(T 2)− (3− dimZ(ρT )),

since the tangent spaces at ρT to R(T 2) and to the SU(2)-orbit of ρT are identified with
ker(dA|Ω1(T 2)) and Im(dA|Ω0(T 2)) respectively, and likewise for ρK . By construction we have
dimZ(ρT ) = dimZ(ρK) = 1, since ρT and ρK are reducible (with image in a U(1) subgroup
of SU(2)) but not central. Thus we have

dimH1
A(T 2) = 2, dimH1

A(S3 rN(K)) = 1.

We will show that dim(H1
A,Φ(V )) = 1. In this case, since each H1 is identified with the

tangent space to the corresponding moduli space at [A], the assumption that C ′ meets the
line β ≡ 0 (mod 2π) transversely at the image of [ρ] = [Hol(A)] will guarantee that the
map h in (4.10) is injective, and hence that H1

A,Φ(Y ) = 0.

We decompose V = ([0, 1]×T 2)∪T 2 (F ×S1), where we have slightly enlarged the interval
[0, 1] so that Φ is supported on the interior of [0, 1]× T 2, and where the intersection T 2 is
identified with {1} × T 2 ⊂ [0, 1]× T 2. Again the Mayer-Vietoris sequence says that

0→ H1
A,Φ(V )

i−→ H1
A,Φ([0, 1]× T 2)⊕H1

A(F × S1)
j−→ H1

A(T 2)

is exact, since the restriction map H0
A([0, 1]×T 2)→ H0

A(T 2) is surjective. But restriction of
connections from [0, 1]×T 2 to T 2 induces an isomorphism of the respective (perturbed) flat
moduli spaces, hence the map H1

A,Φ([0, 1] × T 2) → H1
A(T 2) between their tangent spaces

at [A] is an isomorphism. It follows that ker(j) is isomorphic to H1
A(F × S1), which is

1-dimensional, and since Im(i) ∼= H1
A,Φ(V ) we conclude that dimH1

A,Φ(V ) = 1, as desired.
The above argument has shown that each connection in the moduli space

Xw
{ιk,χk}(1)(Y ) = {A1, . . . , A2n}

is irreducible and nondegenerate. Thus by standard methods, the perturbed Chern-Simons

functional CS + Φ gives rise to an instanton Floer homology group I
{ιk,χk}(1)
∗ (Y )w, and we



SU(2)-CYCLIC SURGERIES AND THE PILLOWCASE 21

have shown that its rank is at most 2n. Since there are no reducible connections in any
of the moduli spaces Xw

{ιk,χk}(t)(Y ) for 0 ≤ t ≤ 1, the cobordism argument presented in

[Don02, Section 5.3] carries over to our situation and shows that I
{ιk,χk}(1)
∗ (Y )w ∼= I∗(Y )w.

Then KHI (K) is by definition the +2-eigenspace of the operator µ(pt) : I∗(Y )w → I∗(Y )w,
which is isomorphic to the −2-eigenspace of µ(pt) and hence has rank at most n. �

Here we remark on some points arising in the proof of Theorem 4.8. First, we could make
the moduli space of perturbed flat connections regular by a generic holonomy perturbation,
but such a perturbation cannot necessarily be confined to the [0, 1] × T 2 region of Y1(K):
in general, one may need to introduce holonomy perturbations along a collection of curves
which generates π1(Y1(K)) (see [Don02, Section 5.5.1]), and this destroys the relationship
of Lemma 4.6 between the perturbed moduli space and the pillowcase image of R(K). Thus
we prefer to check directly that the relevant moduli space is already regular.

Second, in constructing instanton homology groups over 3-manifolds equipped with non-
trivial bundles, one usually only allows small perturbations of the Chern-Simons functional
in order to ensure that all critical points remain irreducible. However, this is not a concern
for us since our perturbed flat connections are still flat on ad(E)|F×S1 and hence irreducible.
Instanton homology groups defined with large perturbations have occasionally appeared in
the literature before, e.g. in Floer’s proof of the surgery exact triangle [BD95].

Third, the statement of the theorem requires us to have an area-preserving isotopy taking
C to C ′, and if we only know that there is an isotopy such that the image of C divides the
pillowcase in half by area at all times, then it is not obvious that we can find an isotopy
which preserves area. The following lemma provides the desired isotopy; the proof is a bit
long but mostly standard, so we postpone it to Appendix B.

Lemma 4.9. Let Σ be a compact surface with area form ω, and let K be a compact subset of
Σ. Let Ct ⊂ Σ (0 ≤ t ≤ 1) be a smooth isotopy of smoothly embedded curves (not necesarily
connected), and suppose that

(1) the union
⋃
t∈[0,1]Ct is contained in the interior of a compact, connected subsurface

Σ′ with smooth boundary, such that Σ′ is disjoint from K;
(2) each component γ ⊂ Ct is separating in Σ \ (Ct \ γ);
(3) the areas of the respective components of Σ \ Ct are independent of t.

Then there is a smooth isotopy ψt : Σ→ Σ with ψ0 = idΣ such that

(1) ψt(C0) = Ct for all t;

(2) ψt is constant on Σ \ Σ′, and hence on a neighborhood of K, for all t ∈ [0, 1];
(3) each ψt is a symplectomorphism, i.e., ψ∗t ω = ω for all t.

In the application to Theorem 4.8, we take (Σ, ω) to be the pillowcase with its usual area
form. Then K ⊂ Σ is the set of orbifold points, and Σ′ is the complement of sufficiently
small open disks around these points.

We can now complete the proof of Theorem 4.1.

Proof of Theorem 4.1. Suppose that K is a non-trivial knot and neither property (1) nor
(2) in the statement of Theorem 4.1 holds. By Lemma 4.7, there are some b ∈ (0, π) and
ε > 0 such that the line segment

L =
{(π

2
, β
) ∣∣∣β ∈ (b− ε, b+ ε)

}
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c0Z

β

0

2π

α
π0

Figure 3. The curves Z and c0 =
{
α = π

2

}
in the pillowcase.

of the pillowcase does not meet either of the lines β = 0 and β = π, and it contains no
element of the image of R∗(K, i). (The same statement holds for the image of L under
the involution (α, β) 7→ (π − α, 2π − β) of Proposition 2.3.) Furthermore, any irreducible
character in X∗(K) whose image in the pillowcase X(T 2) has α-coordinate satisfying π

2−ε <
α < π

2 + ε must actually have α-coordinate equal to π
2 .

We may suppose that ε is smaller than π/2. Let δ = ε2

4π−2ε . Let C ⊂ X(T 2) be the

embedded circle in the pillowcase defined by α = π
2 , and let Z ⊂ X(T 2) be the piecewise

linear closed curve which passes through the successive points

z0 =
(π

2
− δ, 0

)
,

z1 =
(π

2
− δ, b− ε

2

)
,

z2 =
(π

2
+
ε

2
, b− ε

2

)
,

z3 =
(π

2
+
ε

2
, b+

ε

2

)
,

z4 =
(π

2
− δ, b+

ε

2

)
,

z5 =
(π

2
− δ, 2π

)
= z0.

The value of δ is chosen such that the curve Z separates the pillowcase X(T 2) into two
halves of equal area with respect to the standard Euclidean area measure. See Figure 3.

It is clear that we can continuously approximate Z arbitrarily well by rounding the
corners z1, z2, z3, and z4 and fixing an open neighborhood of z0 = z5 to get a new curve
C ′, which by Lemma 4.9 is isotopic to C through an area-preserving isotopy which fixes an
open neighborhood of the corners of the pillowcase. Then C ′ still intersects the line {β ≡ 0
(mod 2π)} transversely in the single point (α, 0) = (π2 − δ, 0), and for ε sufficiently small we

must have ∆K(e2iα) 6= 0, since ∆K(e2i·π/2) 6= 0. We now apply Theorem 4.8 to the curve
C ′ to conclude that rank(KHI (K)) ≤ 1. But this is a contradiction just as in the proof of
Theorem 4.3, since KHI (K) has rank strictly greater than 1 unless K is unknotted. �

5. Rationality of limit slopes

In this section we prove that limit slopes of SU(2)-averse knots are always rational
numbers, having already shown in Theorem 4.2 that they are finite. In what follows we will
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let Q ⊂ C denote the field of algebraic numbers, and Ralg = Q ∩ R will denote the field of
real algebraic numbers.

Proposition 5.1. Let K be nontrivial and SU(2)-averse with limit slope r = r(K), and let
(α0, β0) be a point in the pillowcase image of X∗(K).

(1) If eiα0 is algebraic, then eiβ0 is algebraic.
(2) If eiβ0 is algebraic, then eiα0 is algebraic.
(3) If (α0, β0) is an isolated point in the image of X∗(K), then eiα0 and eiβ0 are both

algebraic numbers.

Proof. Certainly eiα0 and eiβ0 are algebraic if and only if ei(π−α0) and ei(2π−β0) are, so by
Proposition 2.3 we can replace (α0, β0) with (π − α0, 2π − β0) as needed to ensure that
0 ≤ β0 ≤ π. We will take ρ0 : π1(S3 rK)→ SU(2) to be an irreducible representation with
ρ0(µ) = diag(eiα0 , e−iα0) and ρ0(λ) = diag(eiβ0 , e−iβ0).

Theorem 3.5 implies that any sufficiently small neighborhood of (α0, β0) intersects the
pillowcase image of X∗(K) only in the point (α0, β0) if it is isolated, or in a connected
segment ` of the line of slope −r through (α0, β0) otherwise. Therefore for sufficiently small
rational ε > 0, if (α, β) is in the image of X∗(K) and

|cos(α)− cos(α0)|2 + |cos(β)− cos(β0)|2 < 2ε2,

then either β > π, or (α, β) = (α0, β0), or (α, β) ∈ `. We then pick rational numbers a and
b so that

|a− 2 cos(α0)| < ε and |b− 2 cos(β0)| < ε,

and we define a semi-algebraic subset R0 of R∗(K) by imposing the inequalities

(tr(ρ(µ))− a)2 < ε2 and (tr(ρ(λ))− b)2 < ε2,

as well as the relations ρ(µ) = ( ∗ 0
0 ∗ ) and ρ(λ) = ( ∗ 0

0 ∗ ), and the additional inequalities
Im(ρ(µ)1,1) ≥ 0 and Im(ρ(λ)1,1) ≥ 0. Here Im(ρ(g)i,j) denotes the imaginary part of
the (i, j)-entry of the matrix ρ(g); this is always a polynomial with Z-coefficients in the
variables used to construct R∗(K). The relations on ρ(µ) and ρ(λ) require them to have
the form diag(eiα, e−iα) and diag(eiβ, e−iβ) respectively. Then Im(ρ(µ)1,1) = sin(α) and
Im(ρ(λ)1,1) = sin(β), both of which must be nonnegative, so we can take 0 ≤ α, β ≤ π at
any such ρ ∈ R0, and then ρ has pillowcase coordinates (α, β).

We will also impose one additional relation on R0 in cases (1) and (2). If we are in
case (1), so that eiα0 is algebraic, we also impose the relation tr(ρ(µ)) = 2 cos(α0) on
R0. Similarly, in case (2) we impose tr(ρ(λ)) = 2 cos(β0). We note that 2 cos(α0) (resp.
2 cos(β0)) is algebraic whenever eiα0 (resp. eiβ0) is.

In each case R0 is defined over the real closed field Ralg, and R is a real closed extension
of Ralg, so the Tarski-Seidenberg principle implies that R0 has an Ralg-point if and only if it
has an R-point [BCR98, Proposition 4.1.1]. But R0 contains the R-point ρ0 by construction,
so R0 must also have an Ralg-point ρalg, for which the real and imaginary parts of the entries
of every matrix ρalg(g), g ∈ π1(S3 rK), are real algebraic numbers. In particular, if ρalg

has image (α, β) in the pillowcase, then we have

ρalg(µ) =

(
eiα 0
0 e−iα

)
, ρalg(λ) =

(
eiβ 0
0 e−iβ

)
where 0 ≤ α, β ≤ π, and eiα and eiβ are both algebraic numbers.
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Since ρalg ∈ R0, we have |2 cos(α) − a| = |tr(ρ(µ)) − a| < ε and |a − 2 cos(α0)| < ε,
so |cos(α) − cos(α0)| < ε by the triangle inequality; likewise |cos(β) − cos(β0)| < ε. Since
we ensured that β ≤ π, it follows that if (α0, β0) is an isolated point then we must have
(α, β) = (α0, β0), and that otherwise (α, β) ∈ `. The latter only applies to cases (1) and (2)
of the proposition, and then we know that (α0, β0) is the only point of ` satisfying α = α0

or β = β0, so again we must have (α, β) = (α0, β0). In each case we conclude that eiα0 and
eiβ0 are algebraic, since this is true of eiα and eiβ. �

Proposition 5.2. Let K be a nontrivial SU(2)-averse knot with limit slope r = r(K),
and suppose that the pillowcase image of X(K) contains a nontrivial segment of the line
β = −rα+ c. Then eiπr and eic are both algebraic numbers.

Proof. We pass to a fundamental domain [0, π]× [0, 2π] for the cut-open pillowcase. Since
r 6= ∞, we can pick two points (α1, β1) and (α2, β2) in this domain, with α1 < α2, such
that the image of X(K) contains the entire line segment ` connecting these points.

If we fix an integer n > 2π
α2−α1

and let m = dα1n
π e, then ` contains two points of the form

p = (mn π, β−) and p′ = (m+1
n π, β+), and its slope is

−r =
n(β+ − β−)

π
.

Both eimπ/n and ei(m+1)π/n are algebraic numbers, so Proposition 5.1 says that eiβ− and
eiβ+ are algebraic as well, and hence so is(

eiβ−

eiβ+

)n
= e−in(β+−β−) = eiπr.

Finally, we rearrange β− = −r(mn π) + c and apply x 7→ exp(ix) to both sides to get

eic = eiβ− ·
(
eiπr

)m/n
,

and since both eiβ− and eiπr are algebraic it follows that eic is as well. �

Remark 5.3. We will eventually show in Theorem 6.4 that the constants eic appearing in
Proposition 5.2 are in fact roots of unity. The proof will require the fact that r is rational,
which we are about to prove.

Theorem 5.4. Let K be a nontrivial SU(2)-averse knot with limit slope r = r(K). Then
r is a rational number.

Proof. As in the proof of Proposition 5.2, we take two points p = (mn π, β−) and p′ =

(m+1
n π, β+) in the fundamental domain [0, π]× [0, 2π] of the pillowcase (so that 0 ≤ m < n)

such that the entire line segment ` from p to p′ lies in the pillowcase image of X∗(K); we
recall that the existence of p and p′ follows from Theorem 3.2. The line containing ` has
the form β = −rα+ c, and both eiπr and eic are algebraic.

Given any α such that eiα is algebraic and m
n π < α < m+1

n π, we know that ` con-

tains a point (α, β) = (α,−rα + c) in the image of X∗(K), and that eiβ is algebraic by
Proposition 5.1. But then

eirα = ei(c−β) =
eic

eiβ

is also an algebraic number, so we have shown for α in the range (mn π,
m+1
n π) that if eiα is

algebraic then so is (eiα)r. In fact, given any a ∈ R such that eia is algebraic, we can let
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α = a+ qπ for some rational q such that m
n π < α < m+1

n π; then eiα is also algebraic, so it

follows from the above that (eia)r = eiαr · (eiπr)−q is as well.
Finally, if x1, x2, x3 are nonzero, multiplicatively independent algebraic numbers (mean-

ing that if integers n1, n2, n3 are not all zero, then xn1
1 xn2

2 xn3
3 6= 1), and if each xrj is algebraic,

then r must be rational [Lan66, §II.1, Corollary 1]. According to Proposition 5.5, we can
take xj = eiaj for some a1, a2, a3 ∈ R such that the numbers a1, a2, a3, π are linearly in-

dependent over Q; then xrj is also algebraic, as argued above. The condition
∏
x
nj

j = 1 is

equivalent to
∑
njαj = 2kπ for some integer k, and then n1 = n2 = n3 = 0 by the assumed

linear independence, so the xj are algebraically independent and hence r is rational. �

The following proposition, which completes the proof of Theorem 5.4, is surely known to
experts, but we could not find a proof in the literature so we include one for completeness.

Proposition 5.5. Let V denote the Q-vector space of all x ∈ R such that eix is an algebraic
number. Then V has infinite dimension over Q.

Proof. Suppose that V has a finite basis a1, . . . , an, and let K = Q(eia1 , . . . , eian). Since
each eiaj is algebraic, K is a finite extension of Q. Any nonzero x ∈ V can be written as a
Q-linear combination of the ai, so upon clearing denominators we have integers q ≥ 1 and
c1, . . . , cn such that qx = c1a1 + c2a2 + . . . ,+cnan, and then

(eix)q = (eia1)c1(eia2)c2 . . . (eian)cn ∈ K.

So for every algebraic number z ∈ C with |z| = 1, there is a positive integer q such that zq

has degree at most [K : Q] over Q. If for any d ≥ 1 we can find an algebraic number z such
that |z| = 1 and every power zq (q ≥ 1) has degree at least d, then taking d > [K : Q] will
give a contradiction, proving that dimQ(V ) =∞.

In order to find such z, we turn to Salem numbers, for which we refer to the survey
[Smy15]. These are real algebraic integers s > 1 all of whose Galois conjugates satisfy
|z| ≤ 1, and such that at least one conjugate satisfies |z| = 1. It follows from these
properties that if s has minimal polynomial p(t) ∈ Z[t] of degree d, then p(s) = p(1

s ) = 0
and all other roots of p lie on the unit circle [Smy15, Lemma 1]; and that sq is also an
algebraic integer of degree d for all q ≥ 1 [Smy15, Lemma 2].

Let s be a Salem number with minimal polynomial p(t) and splitting field L. Letting z
be a root of p with |z| = 1 and taking σ ∈ Gal(L/Q) for which σ(s) = z, we know that
zq = σ(sq) has the same minimal polynomial as sq, since if f ∈ Z[t] is irreducible and
f(sq) = 0 then f(zq) = f(σ(sq)) = σ(f(sq)) = 0 as well. We conclude that zq is algebraic
of degree deg(p) for all integers q ≥ 1, so the proof will be complete if we can take deg(p)
arbitrarily large, i.e. if there are Salem numbers of arbitrarily large degree.

Given any fixed c > 0, the set of Salem numbers s ≤ c of degree at most d is finite. This is
because if s is a Salem number with minimal polynomial p(t) = td+a1t

d−1 + · · ·+ad ∈ Z[t],
then each coefficient ak is (up to sign) the sum of all k-fold products of distinct roots of p;

there are
(
d−1
k−1

)
such products which involve s and

(
d−1
k

)
which only involve the other roots,

and since the other roots all have modulus at most 1, we get bounds |ak| ≤ c
(
d−1
k−1

)
+
(
d−1
k

)
.

But the set of Salem numbers has limit points, including what are called Pisot numbers
[Smy15, Section 3.1] (which include

√
2 + 1, for concreteness), so a bounded neighborhood

of any limit point contains infinitely many Salem numbers and hence Salem numbers of
arbitrarily high degree, as desired. �
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6. The A-polynomial of an SU(2)-averse knot

The A-polynomial of a knot K ⊂ S3, defined by Cooper, Culler, Gillet, Long, and Shalen
[CCG+94], is a polynomial which captures the appropriate analogue of the pillowcase image
of X(K) for SL2(C) representations of π1(S3 rK). Since SU(2) ⊂ SL2(C), it is possible
to use what we know about X(K) for an SU(2)-averse knot K to say something about
its A-polynomial, and by deep results of [CCG+94] we can then in turn understand the
geometry of the complement of K. Our goals are to show that the limit slope r(K) is
always a boundary slope for K, meaning that there is an essential surface in the exterior of
K which intersects ∂N(K) in parallel curves of slope r(K) – the set of such slopes for any
fixed knot is finite [Hat82] – and to study the constants cj which appear in Theorem 3.5.

We begin by recalling the construction of the A-polynomial, borrowing our notation from
[DG04]. We define the SL2(C) character variety of a manifold M to be the quotient

XSL2(M) = Hom(π1(M), SL2(C))/SL2(C),

in which SL2(C) acts by conjugation. Given a knot K ⊂ S3 and writing XSL2(K) in place
of XSL2(S3rN(K)), the inclusion map i : T 2 = ∂N(K) ↪→ S3rN(K) induces a restriction
map

i∗ : XSL2(K)→ XSL2(T 2).

The part of XSL2(T 2) consisting of conjugacy classes of diagonal representations ρ has
C∗ × C∗ as a branched double cover, where we take peripheral elements µ, λ ∈ π1(T 2) and
identify a point (M,L) ∈ C∗ × C∗ with the conjugacy class of ρ such that

ρ(µ) =

(
M 0
0 M−1

)
, ρ(λ) =

(
L 0
0 L−1

)
.

(The covering map identifies (M,L) with (M−1, L−1), exactly as in the SU(2) case.)

We let V be the union of the closures i∗(X) over all irreducible components X ⊂ XSL2(K)
such that i∗(X) has complex dimension 1; by [DG04, Lemma 2.1], we know that dimC(i∗(X))
is always either 0 or 1. We then let V be the preimage of V in C∗×C∗. Then V is a complex
algebraic plane curve, so it is defined by a single polynomial in C[M,L], which is uniquely
determined up to a choice of normalization and can even be taken with integer coefficients.
The A-polynomial AK(M,L) ∈ Z[M,L] is this defining polynomial.

In what follows we will also make use of the Newton polygon Nf ⊂ R2 of a polynomial
f ∈ C[M,L]: this is the convex hull in the (M,L)-plane of the lattice points (a, b) ∈ Z2 for
which the MaLb-coefficient of f is nonzero. The following fact about Newton polygons is
standard, but we include a proof for completeness.

Lemma 6.1. Given two nonzero polynomials f, g ∈ C[M,L], the Newton polygon Nfg is
the Minkowski sum of Nf and Ng, defined as the set of points p + q where p ∈ Nf and
q ∈ Ng.

Proof. To prove that Nfg ⊂ Nf + Ng, we note that any vertex (a, b) of Nfg comes from

a monomial cMaLb of fg with c nonzero, and this means that there must be nonzero
monomials c1M

a1Lb1 and c2M
a2Lb2 of f and g respectively with a = a1 +a2 and b = b1 +b2.

Then (a1, b1) ∈ Nf and (a2, b2) ∈ Ng, and so (a+ b) = (a1 + b1, a2 + b2) belongs to Nf +Ng.
Since Nf +Ng is convex and contains every vertex of Nfg, it contains all of Nfg.

For the opposite inclusion, we pick a vertex v = (a, b) of Nf +Ng. We claim that if we
write v = vf + vg where vf = (af , bf ) ∈ Nf and vg = (ag, bg) ∈ Ng, then vf and vg are
vertices of Nf and Ng and are uniquely determined by v. Since they are vertices, we know
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that the coefficients of MafLbf in f and of MagLbg in g are nonzero. The uniqueness implies
that if we write fg as a sum of monomials of the form cf,a1,b1cg,a2,b2M

a1+a2Lb1+b2 , where

cf,a1,b1M
a1Lb1 is a nonzero monomial of f and cg,a2,b2M

a2Lb2 is a nonzero monomial of g,

then exactly one summand is a scalar multiple of MaLb, and its coefficient is cf,af ,bf cg,ag ,bg 6=
0. But then v = (a, b) also belongs to Nfg, and since Nfg contains all of the vertices of
Nf +Ng we conclude that Nf +Ng ⊂ Nfg.

To prove the claim, suppose we have written the vertex v = (a, b) of Nf +Ng as a sum
of two points vf = (af , bf ) ∈ Nf and vg = (ag, bg) ∈ Ng. If vf is not a vertex of Nf , then
there is a nonzero w ∈ R2 and an ε > 0 such that Nf contains the line segment vf + tw,
−ε < t < ε, and then Nf +Ng contains the line segment

{(vf + tw) + vg = v + tw | −ε < t < ε} .
But this contradicts the claim that v is a vertex of Nf +Ng, so vf must have been a vertex
of Nf , and likewise for vg ∈ Ng. Now if we can write v as a sum of elements of Nf and Ng
in two different ways, say

v = vf + vg = v′f + v′g, vf , v
′
f ∈ Nf , vg, v′g ∈ Ng,

then by the convexity of Nf and Ng we also have

v =

(
vf + v′f

2

)
+

(
vg + v′g

2

)
∈ Nf +Ng.

But
vf+v′f

2 cannot be a vertex of Nf , since it is the midpoint of a line segment in Nf , so
this is a contradiction and we conclude that the representation v = vf + vg is unique. �

Lemma 6.1 works equally well for Laurent polynomials f, g ∈ C[M±1, L±1], and we will
generally consider the A-polynomial in this setting.

Lemma 6.2. If p, q are relatively prime integers which are not both zero and k is a nonzero
complex number, then the polynomial f(M,L) = MpLq − k ∈ C[M±1, L±1] is irreducible.

Proof. The Newton polygonNf is the line segment from (0, 0) to (p, q), which only intersects
Z2 at its two endpoints; there are no lattice points on its interior since p and q are relatively
prime. If f = gh where g and h are not monomials, then Ng and Nh each contain at least
two lattice points as well, so their Minkowski sum Ngh = Nf must have at least three lattice
points and this is impossible. �

Proposition 6.3. Let K be a nontrivial knot, and suppose that the pillowcase image of
X∗(K) contains a nontrivial line segment of slope −r ∈ Q; we write r = p

q , where p and

q are relatively prime integers and q ≥ 1. If this segment belongs to the line β ≡ −rα + c
(mod 2π), then MpLq − eiqc divides AK(M,L).

Proof. By hypothesis there are infinitely many ρ ∈ R∗(K) whose conjugacy classes have dis-
tinct images in the pillowcase X(T 2), and which satisfy ρ(µpλq) = diag(eiqc, e−iqc). We view
these classes [ρ] as points of XSL2(K) via the inclusion SU(2) ⊂ SL2(C). Since XSL2(K)
has finitely many irreducible components, some irreducible component X ⊂ XSL2(K) con-
tains infinitely many of the conjugacy classes [ρ], whose images under i∗ are all distinct.
Then i∗(X) cannot be 0-dimensional, so dimC(i∗(X)) = 1.

Suppose that the preimage of i∗(X) in C∗×C∗ has defining polynomial P (M,L), and let
f(M,L) = MpLq−eiqc. Then the equation f(M,L) = 0 is satisfied by infinitely many points
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of the plane curve P (M,L) = 0, namely each of the i∗([ρ]) described above, and so f(M,L)
and P (M,L) have a common factor. This factor must be f(M,L) = MpLq − eiqc itself,
since Lemma 6.2 says that f is irreducible, and so f divides P . But P divides AK(M,L)
by definition, so f(M,L) does as well. �

Theorem 6.4. Let K be a nontrivial knot, and suppose for some r ∈ Q that the pillowcase
image of X∗(K) contains a nontrivial segment of the line β ≡ −rα+ c (mod 2π). Then

• r is the boundary slope of an essential surface in S3 rN(K); and
• eic is a root of unity, or equivalently c ∈ 2πQ.

Proof. Write r = p
q as usual. From Proposition 6.3 we know that f(M,L) = MpLq − eiqc

divides the A-polynomial of K, so we can write AK(M,L) = f(M,L) · g(M,L) for some
nonzero polynomial g. The Newton polygon NAK

is the Minkowski sum of Nf and Ng, and

Nf is a line segment of slope q
p = 1

r .

Let h(M,L) be the sum of all monomials of g(M,L) which correspond to points of the
vertex or side of Ng on which −qM + pL is maximized. Then Nh is either a point or a
line segment of slope q

p = 1
r on the boundary of Ng, and NAK

also has a side E of slope 1
r ,

namely the Minkowski sum Nfh of Nf and Nh.
Now [CCG+94, Theorem 3.4] says that the slopes of the sides of NAK

are all boundary
slopes of essential surfaces. Their result is stated in the (L,M)-plane whereas we have
described NAK

in the (M,L)-plane, so the side E of NAK
with slope 1

r actually produces a
surface with boundary slope r, as desired.

In fact, if we write AK(M,L) =
∑

m,n bmnM
mLn and define the edge polynomial

ΘE(z) =
∑

(m,n)∈E

bmnz
m,

then [CCG+94, Proposition 5.10] asserts that ΘE(z) is a product of cyclotomic polynomials.

Writing h(M,L) =
∑k

j=0 ajM
pj+m0Lqj+l0 for some integers k,m0, l0 and constants aj , and

recalling that E is the Newton polygon of fh, we have

ΘE(z) = (zp − eiqc)

 k∑
j=0

ajz
pj+m0

 .

In particular, the factor zp − eiqc divides a product of cyclotomic polynomials, so its roots
are all roots of unity. But these roots are rational powers of eic, and therefore eic must be
a root of unity as well. �

Theorem 6.5. Let K be a nontrivial SU(2)-averse knot. Then the limit slope r = r(K)
is a boundary slope for K, and the pillowcase image of X∗(K) consists of finitely many
isolated points together with finitely many nontrivial segments of lines β ≡ −rα+ cj, where
cj ∈ 2πQ for all j.

Proof. Theorem 3.2 guarantees the existence of a nontrivial segment of slope −r in the
image of X∗(K), and r ∈ Q by Theorems 4.2 and 5.4. Theorem 6.4 now says that r is a
boundary slope, and that for all such segments the corresponding constant cj is a rational
multiple of 2π. �

Theorem 6.5 gives us a criterion in terms of Alexander polynomials by which we can
show that many knots are not SU(2)-averse.
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Proposition 6.6. Let K ⊂ S3 be a knot with Alexander polynomial ∆K(t), normalized so
that ∆K(t) = ∆K(t−1) and ∆K(1) = 1. If ∆K(t) has a root z = eiθ of odd order which is
not a root of unity, then K is not SU(2)-averse. In particular, if ∆K(t) has no cyclotomic
factors and ∆K(t0) < 0 for some t0 = eiθ0, then K is not SU(2)-averse.

Proof. We first check that the given conditions on the factorization and values of ∆K(t)
suffice to produce a root z of the desired form. Since ∆K(t) has real coefficients and
∆K(t) = ∆K(t−1), we have

∆K(eiθ) = ∆K

(
eiθ
)

= ∆K(e−iθ) = ∆K(eiθ)

for all real θ, and so ∆K(eiθ) ∈ R. The continuous function f : R → R defined by
f(θ) = ∆K(eiθ) satisfies f(0) = ∆K(1) = 1 and f(θ0) = ∆K(t0) < 0 by hypothesis, so
the total multiplicity of the zeroes of f in the interval [0, θ0] must be odd, and hence some
θ ∈ [0, θ0] is a zero of odd multiplicity. Then z = eiθ is a zero of ∆K(t) with odd multiplicity,
and by assumption it is not a root of unity.

In general, given the odd-order root z = eiθ and letting γ = θ
2 , it now follows as in work of

Heusener and Kroll [HK98] that the abelian representation ργ : π1(S3 rK)→ SU(2) with
ργ(µ) = diag(eiγ , e−iγ) is a limit of irreducible representations. In fact, one can adapt their
proof of [HK98, Proposition 3.8] to show that the pillowcase image of X∗(K) has (γ, 0) as a

limit point. The rough idea is that the equivariant signatures σK(e2i(γ±ε)) are signed counts
of points in the spaces of irreducible ρ with tr(ρ(µ)) = 2 cos(γ ± ε), and if (γ, 0) is not a

limit point then these spaces are cobordant as in [HK98], hence σK(ei(θ−2ε)) = σK(ei(θ+2ε)).
We briefly indicate the details below, adopting the same notation as in [HK98].

Let σ ∈ Bn be a braid with closure K and take ε > 0 sufficiently small, so that in
particular γ is the only root of ∆K(e2it) in the interval γ − ε ≤ t ≤ γ + ε. We define

R2n = {(A1, A2, . . . , A2n) ∈ SU(2)2n | tr(Ai) = tr(Aj) ∀i, j} \ {±(1, 1, . . . , 1)},

and then define several subspaces of R2n by

Hn = {(A1, . . . , An, B1, . . . , Bn) | A1 . . . An = B1 . . . Bn},
Hα
n = {(A1, . . . , An, B1, . . . , Bn) ∈ Hn | tr(A1) = 2 cos(α)},

Λn = {(A1, . . . , An, A1, . . . , An)},
Γσ = {A1, . . . , An, σ(A1), . . . , σ(An)}.

(In the last case we use the fact that the action of σ on the free group of rank n induces an
action of σ on SU(2)n, which we write σ(A1, . . . , An) = (σ(A1), . . . , σ(An)) as in [HK98].)
For each Θ ∈ {Hn, H

α
n ,Λn,Γσ} there is a diagonal action of SU(2) by conjugation on Θ,

and we write Θ̂ to denote the quotient Θ/SU(2), minus the orbits of tuples (A1, . . . , A2n)
such that all Ai and Aj commute.

Having set this up, Heusener and Kroll identify the intersection

Ĥ :=
(

Λ̂n ∩ Γ̂σ

)
∩

⋃
α∈[γ−ε,γ+ε]

Ĥα
n

in Ĥn with the space of conjugacy classes of irreducible representations ρ : π1(S3 rK) →
SU(2) satisfying

2 cos(γ − ε) ≤ tr(ρ(µ)) ≤ 2 cos(γ + ε).
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The set Ĥ is not quite compact because it contains a sequence which limits to the conjugacy
class [ργ ] 6∈ Ĥ. Supposing that (γ, 0) is an isolated point, however, its preimage in Ĥ is

a union of connected components of Ĥ and is contained in Ĥγ
n , so we let Ĥ ′ ⊂ Ĥn be the

complement of these components. Then Ĥ ′ is a compact cobordism from

Λ̂γ−εn ∩ Γ̃γ−εσ ⊂ Ĥγ−ε
n to Λ̂γ+ε

n ∩ Γ̃γ+ε
σ ⊂ Ĥγ+ε

n ,

which implies as in [HK98] that hγ−ε(K) = hγ+ε(K). Now [HK98, Theorem 1.2] gives us

σK(e2i(γ−ε)) = σK(e2i(γ+ε)), where σK denotes equivariant signature, and since ∆K(t) has
a root of odd order at e2iγ , we have a contradiction.

Finally, we suppose that K is SU(2)-averse with limit slope r(K) = p
q . As shown above,

we can find a sequence of distinct points in the pillowcase image of X∗(K) which limit
to (γ, 0), and by passing to a subsequence we can take them all to lie in the same path
component. This path component must then be a nontrivial segment of the line of slope
−p
q passing through (γ, 0), namely

pα+ qβ ≡ pγ (mod 2π),

but pγ is not a rational multiple of 2π since z = e2iγ is not a root of unity. This contradicts
Theorem 6.5, so K cannot be SU(2)-averse after all. �

Corollary 6.7. If K has Alexander polynomial ∆K(t) = at − (2a − 1) + at−1 for some
integer a ≥ 2, then K is not SU(2)-averse.

Proof. We have ∆K(−1) < 0, and ∆K(t) is irreducible and not cyclotomic. �

Example 6.8. The pretzel knot K = P (−2, 3, 7) has Alexander polynomial

∆K(t) = t5 − t4 + t2 − t+ 1− t−1 + t−2 − t−4 + t−5,

which has a root of odd order on the unit circle since ∆K(i) = −3. Then ∆K(t) is irreducible
and not cyclotomic (in fact, −t5∆K(−t) is the minimal polynomial of the smallest known
Salem number: see [Smy15, Section 2]), so this root is not a root of unity. Proposition 6.6
thus ensures that P (−2, 3, 7) is not SU(2)-averse.

7. Small knots

We recall that a knot K ⊂ S3 is small if its complement does not contain any closed
incompressible surfaces other than boundary-parallel tori. In this section we use the results
of Section 6, together with work of Boyer and Zhang [BZ98], to develop further restrictions
on the limit slopes of small SU(2)-averse knots.

Theorem 7.1. If K is a small, SU(2)-averse knot, then its limit slope r(K) is an integer.

In this case, we have ρ(µr(K)λ) = ±I for all but finitely many conjugacy classes of irreducible
representations ρ : π1(S3 rK)→ SU(2).

Proof. We write r(K) = p
q with p and q relatively prime. Since K is small, every irreducible

component of the SL2(C) character variety XSL2(K) is a curve [CCG+94, Proposition 2.4].
One of these components, say X0, contains infinitely many distinct points which are the
images of SU(2)-representations on a line of the form pα + qβ = c but with distinct β-
coordinates in the pillowcase, so tr(ρ(µpλq)) = 2 cos(c) at infinitely many points on the
curve X0, hence tr(ρ(µpλq)) is constant on X0. The image of X0 in the PSL2(C) character
variety of K is then a p

q -curve in the terminology of Boyer-Zhang [BZ98] – we note that

the traces of other slopes cannot also be constant on X0, since for example tr(ρ(λ)) is not
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n
1 =

Figure 4. The twist knot Kn.

constant – and the meridian of K is not a boundary slope [CGLS87, Theorem 2.0.3], so by
[BZ98, Corollary 6.7], the slope p

q = r(K) must be integral.

Letting r = r(K), any nontrivial segment of a line β = −rα + c in the pillowcase image
of X∗(K) produces an r-curve X0 as above, and clearly X0 contains the character of an
irreducible representation. Since the exterior of K is small and admits a cyclic filling of
slope ∞ 6= r, we apply [BZ98, Proposition 5.7(2)] to see that tr(ρ(µrλ)) = ±2 on all of X0,
hence the SU(2)-representations which contribute to X0 must satisfy ρ(µrλ) = ±I. Thus
ρ(µrλ) = ±I for every ρ with pillowcase image on the line β = −rα+ c.

All but finitely many isolated points in the pillowcase image of X∗(K) belong to a non-
trivial line segment, so it remains to be seen that an isolated point in the pillowcase can
only be the image of finitely many conjugacy classes of SU(2) representations. Suppose
that infinitely many conjugacy classes [ρn] ∈ R∗(K) have the same image (α, β). The ρn
remain pairwise non-conjugate as SL2(C) representations by [Kla91, Proof of Proposition
15], so they produce infinitely many points in XSL2(K) and hence in some irreducible com-
ponent X1 of the PSL2(C) character variety. By [BZ98, Proposition 5.7], the function
fγ = tr(ρ(γ))2 − 4 : X1 → C cannot be constant for two different slopes γ, but it is clearly
constant for the slopes µ and λ and this is a contradiction. �

The claim in Theorem 7.1 that ρ(µr(K)λ) = ±I for representations along a nontrivial seg-
ment of β = −rα+ c can also be proved using the A-polynomial as follows. Proposition 6.3
says that M rL − eic divides AK(M,L), so eic is a root of AK(1, L). Since K is small, the
latter is equal to ±(L+ 1)α(L− 1)βLγ for some integers α, β, γ by [CL96, Corollary 4.5], so
its nonzero root eic must be ±1.

Example 7.2. Let Kn denote the twist knot shown in Figure 4, where n ∈ 1
2Z. Then Kn is

a two-bridge knot, hence small, and moreover Kn is hyperbolic for all n other than −1, −1
2 ,

0, and 1
2 , for which it is the right-handed trefoil, unknot, unknot, and left-handed trefoil,

respectively. We claim that no hyperbolic twist knot is SU(2)-averse; since Kn is the mirror
of K− 1

2
−n, it suffices to consider n ∈ Z.

Indeed, suppose for some integer n 6∈ {−1, 0} that Kn is SU(2)-averse with limit slope
r = r(Kn). Then just as in the proof of Theorem 7.1 we see that the SL2(C) character
variety XSL2(Kn) has an irreducible component X0, containing irreducible characters, for
which the function tr(ρ(µrλ))|X0 is constant. Burde [Bur90, Section 3] showed that all
irreducible SL2(C) characters of π1(S3 rKn) lie on a single irreducible curve in XSL2(K),
so this curve must be X0; then since Kn is hyperbolic we see that X0 must also contain
the character of a discrete faithful SL2(C) representation, which exists by a theorem of
Thurston [CS83, Proposition 3.1.1]. But then [CS84, Proposition 2] says that if γ is any
nontrivial peripheral curve then the function tr(ρ(γ)) cannot be constant on X0, so we have
a contradiction.
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Theorem 7.3. Let K be a small, SU(2)-averse knot with boundary slope r(K) and with
Alexander polynomial

∆K(t) =

d∑
j=−d

ajt
j ,

normalized so that ∆K(t) = ∆K(t−1) and ∆K(1) = 1. Then

det(K) ≤
d∑

j=−d
|aj | ≤ rank(KHI (K)) ≤ |r(K)| − 1,

where KHI (K) is the instanton knot homology of K.

Proof. The leftmost two inequalities come from the fact that KHI (K) categorifies the
Alexander polynomial [KM10a, Lim10], meaning that it has a decomposition

KHI (K) =
⊕
j∈Z

KHI (K, j)

into canonically Z/2Z-graded summands satisfying

∆K(t) = −
∑
j∈Z

χ(KHI (K, j))tj ,

and so det(K) = |∆K(−1)| ≤
∑

j |aj | ≤
∑

j rank(KHI (K, j)) = rank(KHI (K)). Thus we

only need to prove that rank(KHI (K)) ≤ |r(K)| − 1.
This last inequality will be proved by an application of Theorem 4.8. It suffices to

find an area-preserving isotopy of the pillowcase which fixes the four corners and carries
C = {α = π

2 } to a curve C ′ which avoids both the image of X∗(K) and the points (α, 0)

where ∆K(e2iα) = 0. If C ′ intersects the line β ≡ 0 (mod 2π) transversely in at most
|r(K)| − 1 points, then this will prove the desired inequality.

Since K is small, all but finitely many conjugacy classes of irreducible representations
ρ : π1(S3 r K) → SU(2) satisfy ρ(µrλ) = ±I where r = r(K), and hence their images
(α, β) in the pillowcase satisfy rα + β ≡ 0 (mod π). We take ε > 0 so that the irreducible
characters all satisfy ε < α < π − ε. We then let U be a δ-neighborhood of the set{

(α, β)
∣∣∣ rα+ β ∈ πZ, ε

2
≤ α ≤ π

2

}
∪
{(π

2
, β
) ∣∣∣ β ∈ R/2πZ

}
,

where 0 < δ < ε
2 , and let Z0 denote the component of ∂U contained in the region α < π

2 .
The curves corresponding to different choices of δ are all disjoint, so only finitely many of
them can pass through the images of irreducible characters or through points (α, 0) where
∆K(e2iα) = 0. Taking δ sufficiently small thus ensures that Z0 avoids all such points.

Next, we perturb Z0 to a smooth curve Z which separates X(T 2) into two components
of equal area, by rounding corners and then pushing some segment of Z0 slightly into
the α > π

2 region of the pillowcase away from the lines rα + β ≡ 0 (mod π) and β ≡ 0
(mod 2π), as shown in Figure 5. This is possible because the difference in area between the
two components of X(T 2) r Z0 approaches zero as δ does, and once again it can easily be
arranged to avoid all images of irreducible characters. We also arrange that Z crosses the
line β ≡ 0 (mod 2π) transversely. It does so twice near each point (α, 0) on the pillowcase
with rα ∈ πZ and 0 < α < π

2 , and once near (π2 , 0), for a total of |r| − 1 points if r is even
and |r| points if r is odd.
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C

Z
β

0

2π

α

π0

C

Z
β

0

2π

α

π0

Figure 5. A perturbation Z of the line C =
{
α = π

2

}
in the pillowcase,

shown for r = 4 (left) and r = 5 (right). The diagonal dotted lines are the
points where rα+ β ≡ 0 (mod π).

In the case where r is odd, we can perturb Z further to remove two of its points of
intersection with β ≡ 0 (mod 2π), as shown in Figure 6. The idea is that in a fundamental
domain [0, π]× [0, 2π] for the pillowcase, if we assume for convenience that r > 0 (the case
r < 0 is nearly identical), then there is a triangle with vertices(

r − 1

2r
π, 2π

)
,

(π
2
, 2π
)
,

(
π

2
,
3π

2

)
,

whose area is π2

8r , and an arc of Z which intersects this triangle in two points along the line
β = 2π. We can push this arc up across the line β = 2π to remove these two points, and

the total area lost on that side of Z (i.e., the side incident to α = 0) is less than π2

8r . We
then offset this change in area by simultaneously pushing Z further into the interior of the
quadrilateral bounded by the points(

r + 1

2r
π, 0

)
,

(π
2
,
π

2

)
,

(
π

2
,
3π

2

)
,

(
r + 3

2r
π, 0

)
,

whose area is π2

r , so that Z still divides X(T 2) into two halves of equal area.
The end result is that the curve C ′ = Z intersects β ≡ 0 (mod 2π) in |r| − 1 points if r

is even and |r| − 2 points if r is odd, and Lemma 4.9 gives us an area-preserving isotopy of
X(T 2) which fixes a neighborhood of the four corners and carries C ′ to C, so we conclude
that rank(KHI (K)) ≤ |r| − 1. �

Although Proposition 6.6 does not say anything useful about knots whose Alexander
polynomials have zeros at roots of unity, we can use such zeros to deduce useful information
for small knots as follows.

Proposition 7.4. Let K be a small knot which is SU(2)-averse. If the Alexander poly-

nomial ∆K(t) has a root of odd order at t = ei·2πp/q, where p and q are relatively prime
integers, then the limit slope r(K) is a multiple of q.

Proof. Let r = r(K), and note that the line rα+β ≡ r· πpq (mod 2π) has slope −r and passes

through the image (πpq , 0) of the character of the reducible representation ρ : π1(S3 rK)→



34 STEVEN SIVEK AND RAPHAEL ZENTNER

C

Z
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0

2π

α

π0

;

C

Z
β

0

2π

α

π0

Figure 6. If r is odd, we can perturb the curve Z from Figure 5 so that it
only intersects the curve β ≡ 0 (mod 2π) in |r| − 2 points.

SU(2) with ρ(µ) = diag(eiπp/q, e−iπp/q). Arguing exactly as in the proof of Proposition 6.6,
we see that the pillowcase image of X∗(K) contains a nontrivial segment of this line. By
Theorem 7.1, we have r · πpq ≡ 0 (mod π), and so q divides r as claimed. �

Proposition 7.5. If K is a small, SU(2)-averse knot, then |r(K)| ≥ 6.

Proof. Suppose that |r(K)| ≤ 5. Then Theorem 7.3 says that rank(KHI (K)) ≤ 4, and
in fact the rank of KHI (K) is odd (since it categorifies the Alexander polynomial and
∆K(1) = 1 is odd), so we have rank(KHI (K)) ≤ 3. By assumption K is not the unknot, so
we must have rank(KHI (K)) = 3.

Kronheimer and Mrowka proved that rank KHI (K, g) ≥ 1 [KM10b, Proposition 7.16],
where g ≥ 1 is the Seifert genus of K. Since KHI (K, j) ∼= KHI (K,−j) for all j, it follows
that KHI (K, j) has rank one for each of j = −g, 0, g and rank zero for all other j, and this
immediately implies that

∆K(t) = tg − 1 + t−g.

But then ∆K(t) has a simple root at t = ei·2π/(6g), so Proposition 7.4 tells us that |r(K)|,
which is an integer between 1 and 5, is a multiple of 6g ≥ 6, which is absurd. �

We remark that Proposition 7.5 is sharp, since the right- and left-handed trefoils are
SU(2)-averse with limit slope ±6.

8. SU(2)-cyclic surgeries from the pillowcase

In this section we prove a converse to Theorem 3.5. Our goal is to say that if the pillowcase
image of X∗(K), the irreducible part of the character variety, is contained in finitely many
lines of rational slope −r, then K must be SU(2)-averse with limit slope r. We will use the
following lemma to prove such a result.

Lemma 8.1. Let r, c ∈ R be constants, and fix a rational number p
q 6= r with q > 0 and p

relatively prime to q. Let {x} = x− bxc denote the fractional part of x. If

0 ≤ q

2

(
p

q
− r
)

+
{ qc

2π

}
≤ 1,
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then no point on the line β = −rα+ c, 0 < α < π, satisfies pα+ qβ ≡ 0 (mod 2π).

Proof. Let k = b qc2π c. Then the given inequalities are equivalent to

k ≤ q

2

(
p

q
− r
)

+
qc

2π
≤ k + 1,

which can be rearranged to get

−pπ + 2πk

q
≤ −rπ + c ≤ −pπ + 2π(k + 1)

q
.

Thus we have a pair of linear inequalities in α of the form

−pα+ 2πk

q
≤ −rα+ c ≤ −pα+ 2π(k + 1)

q
,

which are satisfied at α = 0 (since our choice of k implies that 2πk
q ≤ c < 2π(k+1)

q ) and at

α = π, and hence for all α in between. In fact, each of these inequalities must be strict
for 0 < α < π: otherwise, since p

q 6= r, the corresponding inequality would be violated on

one side of the α in question. Thus β = −rα + c lies strictly between β = −pα+2πk
q and

β = −pα+2π(k+1)
q for 0 < α < π, and so it cannot contain any point on the lines pα+ qβ ≡ 0

(mod 2π), as claimed. �

Theorem 8.2. Let K be a nontrivial knot, and suppose that there is a constant r ∈ Q
such that the pillowcase image of X∗(K) is contained in the union of finitely many isolated
points and finitely many nontrivial segments of lines β = −rα + ci. Then there is some
N ≥ 1 such that (r + 1

kN )-surgery on K is SU(2)-cyclic for all but finitely many k ∈ Z. In
particular, K is SU(2)-averse.

The hypotheses of Theorem 8.2 are satisfied by all SU(2)-averse knots: this is guaranteed
for some r ∈ RP1 by Theorem 3.5, and then Theorems 4.2 and 5.4 assert that r is rational.

Proof. According to Theorem 6.4, the constants ci are all rational multiples of 2π. Let
n ≥ 1 be an integer such that nr and each of the nci

π are integers, and let m = nr and

N = n2. For a given slope p
q ∈ Q not equal to r, with q > 0 and p relatively prime to q, if

the inequalities

0 ≤ q

2

(
p

q
− r
)

+
{qci

2π

}
≤ 1

are satisfied for all i, then Lemma 8.1 says that no point (α, β) on one of the lines β =
−rα+ci which is the image of an irreducible ρ : π1(S3rK)→ SU(2) can satisfy pα+qβ ≡ 0
(mod 2π) (recall that 0 < α < π, by Proposition 2.1). We will take (p, q) = (knm+ 1, kn2)
for any integer k ≥ 1, noting that p and q are relatively prime since km2q− (knm−1)p = 1.
We compute for each i that

q

2

(
p

q
− r
)

+
{qci

2π

}
=
kn2

2

(
knm+ 1

kn2
− m

n

)
+
{
kn · nci

2π

}
=

1

2
+

{
1

2
· kn · nci

π

}
,

which is either 1
2 or 1, so the irreducible representations on the lines β = −rα + ci do not

produce irreducible representations of the kmn+1
kn2 -surgery on K.
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We are left with finitely many isolated points (αj , βj); letting c′j = βj + rαj , we may

assume without loss of generality that c′j 6∈ 2πQ, since otherwise we could have just added

the line β = −rα + c′j to the collection of lines considered above, possibly at the cost of

taking a larger value of n. If for some k ≥ 1 we have (kmn+ 1)αj + kn2βj ∈ 2πZ, then this
together with kn2(mn αj + βj − c′j) = 0 implies that αj + kn2c′j ∈ 2πZ. For fixed j, there is

at most one k for which this can be satisfied since c′j is not a rational multiple of 2π, and

hence each (αj , βj) produces an irreducible representation of at most one kmn+1
kn2 -surgery on

K. Therefore the surgery on K of slope kmn+1
kn2 = r+ 1

kN is SU(2)-cyclic for all but finitely
many k ≥ 1.

Next, the mirror K satisfies the same hypotheses with −r and 2π− ci in place of r and ci
by Proposition 2.4, so we can take the same value of n (and hence N) as above and conclude
that all but finitely many (−r + 1

lN )-surgeries on K are SU(2)-cyclic when l ≥ 1. These

are the (r − 1
lN )-surgeries on K up to reversing orientation, so taking k = −l we see that

all but finitely many (r + 1
kN )-surgeries on K with k ≤ −1 are SU(2)-cyclic as well. �

If K is small and SU(2)-averse, then by Theorem 7.1 we have r(K) ∈ Z and ci ∈ πZ,
so if there are no isolated points in the pillowcase image of X∗(K) then we can take n = 1
and hence N = 1 in the proof of Theorem 8.2. In this case, we conclude that every slope
r(K) + 1

k (with k ∈ Z nonzero) is an SU(2)-cyclic slope for K.

Corollary 8.3. If K1,K2, . . . ,Km are SU(2)-averse knots which all have the same limit
slope, then they have infinitely many SU(2)-cyclic surgery slopes in common.

Proof. Let r ∈ Q be the common limit slope and take N1, N2, . . . , Nm ≥ 1 such that for
each i, all but finitely many of the (r+ 1

kNi
)-surgeries on Ki are SU(2)-cyclic. Then for all

but finitely many k, all of the (r+ 1
kN )-surgeries on the various Ki are SU(2)-cyclic, where

N = lcm(N1, N2, . . . , Nm). �

9. Relation to instanton L-spaces

Let Y be a closed, connected, oriented 3-manifold, and let I#(Y ) be the singular instan-
ton knot homology I#(Y, ∅) = I\(Y,U) of the empty link in Y , as defined by Kronheimer
and Mrowka [KM11a]. This is a Z/4Z-graded abelian group, and if Y is a rational ho-
mology sphere then it has Euler characteristic |H1(Y ;Z)|, as shown by Scaduto [Sca15,
Corollary 1.4]. Thus we have a rank inequality

rank(I#(Y )) ≥ |H1(Y ;Z)|,
and if equality holds then we say that Y is an instanton L-space.

Theorem 9.1. If K is SU(2)-averse with limit slope r = r(K), then S3
s (K) is an instanton

L-space for all rational

s ∈

{[
dre − 1,∞

)
, r > 0(

−∞, brc+ 1
]
, r < 0.

In either case, S3
r (K) is an instanton L-space.

Remark 9.2. A knot K with instanton L-space surgeries is fibered, and either K or its mirror
is strongly quasipositive [BS19]. Conjecturally, being an instanton L-space is the same as
being an L-space in Heegaard Floer homology; if true, this conjecture would further imply
that all of the nonzero coefficients of ∆K(t) are ±1 [OS05].
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Proof of Theorem 9.1. Assume for now that r(K) > 0, and write r(K) = p
q for coprime

positive integers p and q. Theorem 8.2 provides an integer N > 0 such that for all but
finitely many k > 0, r(K)− 1

kN is an SU(2)-cyclic surgery slope for K. (It is also at least
r(K)− 1 > 1, hence positive.) In particular, this is true for all but finitely many multiples
k = qi of q, in which case the slopes in question are

p

q
− 1

qi ·N
=
pNi− 1

qNi

for some i > 0. The numerator pNi−1 is prime for infinitely many values of i by Dirichlet’s
theorem on primes in arithmetic progressions, so K must have a positive SU(2)-cyclic
surgery slope of the form a

b <
p
q , where a is prime.

If S3
a/b(K) is not an instanton L-space, then [BS18, Corollary 4.8] says that either S3

a/b(K)

is not SU(2)-cyclic or some zero ζ of ∆K(t2) is an ath root of unity. The former is false
by construction, and the latter cannot hold either: the minimal polynomial Φa(t) = 1 + t+
t2 + · · · + ta−1 of ζ also divides ∆K(t2), and so Φa(1) = a must divide ∆K(12) = 1, which
is impossible. Thus S3

a/b(K) is an instanton L-space.

Now if n = bab c, then S3
s (K) is an instanton L-space for all s ≥ n by [BS18, Theorem 4.20].

Since n is an integer which is strictly less than r(K), we have n ≤ dr(K)e − 1, and this
completes the proof in the case r(K) > 0.

If instead K has negative limit slope, then the mirror K satisfies r(K) = −r(K) > 0.
The above argument shows that S3

s (K) = −S3
−s(K) is an instanton L-space whenever

s ≥ d−r(K)e − 1 = −br(K)c − 1,

or equivalently whenever −s ≤ br(K)c+1. Since the property of being an instanton L-space
is preserved under orientation reversal, this proves the case r(K) < 0. �

It is generally hard to show that a knot does not have any instanton L-space surgeries, but
when we can do so it follows by Theorem 9.1 that the knot in question is not SU(2)-averse.

Theorem 9.3. If a nontrivial knot K ⊂ S3 is smoothly slice, then it has no nontrivial
instanton L-space surgeries. In particular, K is not SU(2)-averse.

Proof. Suppose that K is slice and that S3
r (K) is an instanton L-space for some rational r;

by taking mirror images as needed we can assume that r > 0. Then [BS18, Theorem 4.20]
says that S3

n(K) is an instanton L-space for all integers n ≥ r.
Letting m ≥ 1 be an integer, we now apply Floer’s surgery exact triangle

· · · → I#(S3)→ I#(S3
m(K))→ I#(S3

m+1(K))→ . . .

as stated in [Sca15, Section 7.5], cf. also [Flo90, BD95]. (This sequence involves twisted
coefficients, but following the third row of [Sca15, Figure 1] we can place the nontrivial
coefficients in the first term; the twisted group I#(S3;µ) is isomorphic to I#(S3), since
[µ] = 0 in H1(S3;Z/2Z).) Each of these maps is induced by a 2-handle cobordism, and the
cobordism from S3 to S3

m(K) contains a smoothly embedded 2-sphere S of self-intersection
m ≥ 1, obtained by gluing a slice disk for K to the core of the 2-handle.

Since the sphere S has positive self-intersection, the map I#(S3) → I#(S3
m(K)) neces-

sarily vanishes. This can be proved directly from the results of [MMR94], or indirectly from
[MMR94, Corollary 16.0.2] by using S to construct a torus of self-intersection at least 2:
first, if m = 1 then we patch two copies of S together to get a sphere S′ of self-intersection
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4, and then we attach a handle to either S or S′ to get the desired torus. Thus the above
triangle splits, and since I#(S3) ∼= Z we have

rank(I#(S3
m+1(K))) = rank(I#(S3

m(K))) + 1,

hence rank(I#(S3
m(K))) = m+

(
rank(I#(S3

1(K)))− 1
)

for all m ≥ 1 by induction.

We conclude that S3
n(K) is an instanton L-space for each integer n ≥ r if and only

if S3
1(K) is. By [BS18, Theorem 4.20], the latter can only be true if K has Alexander

polynomial t−1+ t−1 or −t+3− t−1. But then K violates the Fox-Milnor condition, which
asserts that slice knots satisfy ∆K(t) = f(t)f(t−1) for some polynomial f(t) with integer
coefficients [FM66], so it cannot be slice and we have a contradiction. �

Proposition 9.4. If K is SU(2)-averse with smooth slice genus 1, then either S3
1(K) or

S3
−1(K) is an instanton L-space depending on whether r(K) is positive or negative. Thus

K has Seifert genus 1 and its Alexander polynomial is either t− 1 + t−1 or −t+ 3− t−1.

Proof. We arrange for r(K) > 0 by replacing K with its mirror as necessary, and then
repeat the proof of Theorem 9.3: each S3

n(K) is an instanton L-space for integers n ≥ r(K),
and so by the surgery exact triangle and induction, S3

1(K) must be as well. The 2-handle
cobordisms from S3 to S3

m(K) now have an embedded torus (rather than sphere) of self-
intersection m ≥ 1, and for m ≥ 2 we can still apply [MMR94, Corollary 16.0.2] to see that
the cobordism maps on I# vanish.

The only change needed is in the case m = 1, where we prove the vanishing of the
cobordism map I#(X) by using the adjunction inequality of [KM95] instead. This requires
some attention, since [KM95] assumes the ambient manifold is closed with b+ ≥ 3, but
in fact they only really need this to ensure that the Donaldson invariants are well-defined
(which is not an issue for cobordism maps) and to handle the boundary case where X
contains an essential sphere of self-intersection zero. In our situation the same argument
applies. Given a torus T with self-intersection 1, Kronheimer and Mrowka explain in [KM95,
§6 (ii)] how to blow up X with exceptional divisor E and then construct for all sufficiently

large, even d a surface Σd ⊂ X#CP2
homologous to d[T ]− [E] with odd genus and

Σd · Σd = d2 − 1,
Σd · Σd

2
+ 2 < 2g(Σd)− 2.

Since g(Σd) is odd, the self-intersection nd = Σd ·Σd is positive and not a multiple of 4, and
1
2nd + 2 < 2g(Σd) − 2, we can apply [KM95, Proposition 6.5] to see that the polynomial

invariants associated to the cobordism X#CP2
vanish on the orthogonal complement of

each class d[T ] − [E], hence they are identically zero; and then the same is true of the
polynomial invariants for X, which include the map I#(X) as a special case.

Thus if r(K) > 0 then S3
1(K) is an instanton L-space, and if r(K) < 0 then the same is

true of S3
1(K) = −S3

−1(K), hence also of S3
−1(K). We now apply [BS18, Theorem 4.20] to

K or K to draw the desired conclusions about its genus and Alexander polynomial. �

After the original version of this paper appeared, Baldwin and the first author [BS19]
proved that the trefoils are the only nontrivial knots of slice genus at most 1 which admit
instanton L-space surgeries. In particular, this implies that the trefoils are the only SU(2)-
averse knots with slice genus at most 1. We remark that the proof used an adjunction
inequality for cobordisms asserting that if b1(X) = 0 and X contains a surface Σ with
Σ · Σ > 2g(Σ) − 2 ≥ 0, then the cobordism map I#(X) is zero, analogous to the main
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result of [KM95]; this generalizes the vanishing results used to prove Theorem 9.3 and
Proposition 9.4.

Example 9.5. We consider the twist knots Kn of Example 7.2, assuming n ∈ Z without
loss of generality. These all have Seifert genus and hence smooth slice genus at most 1,
and Alexander polynomial ∆Kn(t) = −nt + (2n + 1) − nt−1, so by Proposition 9.4 these
cannot possibly be SU(2)-averse except when n = −1, 0, 1. The case n = 1 is the figure
eight, which cannot be SU(2)-averse because it is amphichiral: otherwise we would have
r(K1) = r(K1) = −r(K1) and hence r(K1) = 0, which is impossible. Thus we see once
again that no hyperbolic twist knot is SU(2)-averse.

10. Satellites and cabling

Let P ⊂ S1×D2 be an oriented knot in the solid torus which does not lie in any embedded
3-ball, and let K ⊂ S3 be a knot with tubular neighborhood N(K) and peripheral curves
µ, λ ∈ ∂N(K). Then we can take a homeomorphism

ϕ : S1 ×D2 ∼−→ N(K) ⊂ S3

which sends {pt} × ∂D2 to µ and S1 × {pt} ⊂ S1 × ∂D2 to λ, and we define the satellite
P (K) ⊂ S3 to be the image ϕ(P ). The knots P and K are called the pattern and the
companion, respectively, and P is nontrivial if it is not isotopic to the core of S1×D2. The
winding number of P is the unique integer w such that P represents an element w[S1×{pt}]
of H1(S1 ×D2). From now on U will denote the unknot.

The following is a result of Silver and Whitten, stated here in a slightly stronger form.

Proposition 10.1 ([SW06, Proposition 3.4]). Given any pattern P and companion K,
there is a surjection

ψ : π1(S3 r P (K))→ π1(S3 r P (U))

which preserves meridians and longitudes, i.e. such that ψ(µP (K)) = µP (U) and ψ(λP (K)) =
ψ(λP (U)).

Proof. We can write the knot group of P (K) as an amalgamated free product

π1(S3 r P (K)) = π1(S3 rK) ∗Z2 π1((S1 ×D2) r P ),

where generators of Z2 = π1(∂N(K)) identify a meridian and longitude of K with the
curves {pt} × ∂D2 and S1 × {pt} on S1 × ∂D2 respectively. Silver and Whitten argue that
taking the quotient of this product by the normal closure N of the commutator subgroup
of π1(S3 rK) reduces the first factor to Z, generated by µK ∼ ({pt} × ∂D2), and it sends
the element λK ∼ (S1 × {pt}) to the identity, so the quotient is the knot group of P (U)
and ψ is defined as the quotient map.

It is clear from the construction that ψ(µP (K)) is still a meridian of P (U). To see the

analogous claim for λP (K), we take an embedded surface Σ in S1 × D2 with boundary

P t (S1 × w), where w ⊂ ∂D2 is a set of oriented points, and let λP = Σ ∩ ∂N(P ) ⊂
(S1×D2)rN(P ). Then ϕ(λP ) is a longitude of any satellite P (K), since the image ϕ(S1×w)
bounds a collection of parallel Seifert surfaces for K. When we identify π1(S3 r P (U)) as
the quotient

π1

(
S3 r P (K)

)
/N ∼= π1

(
(S1 ×D2) r P

)
/〈S1 × {pt}〉,

it follows that both λP (K) and λP (U) are represented by the same curve λP ⊂ (S1 ×D2) r
N(P ), and so ψ(λP (K)) = λP (U). �
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The following are straightforward consequences of Proposition 10.1.

Proposition 10.2. Let P ⊂ S1 ×D2 be a pattern and K ⊂ S3 any knot.

(1) The image of X∗(P (U)) in the pillowcase is a subset of the image of X∗(P (K)).
(2) The SU(2)-cyclic surgery slopes for P (K) are all SU(2)-cyclic slopes for P (U).
(3) If P (K) is SU(2)-averse and P (U) is not the unknot, then r(P (K)) = r(P (U)).

Proof. (1) If an irreducible ρ : π1(S3 r P (U)) → SU(2) has pillowcase coordinates (α, β),
then so does ρ̃ = ρ ◦ ψ : π1(S3 r P (K))→ SU(2), since ψ(µP (K)) = µP (U) and ψ(λP (K)) =
λP (U). We have Im ρ̃ = Im ρ since ψ is surjective, so ρ̃ is irreducible as well.

(2) If mn -surgery on P (K) is SU(2)-cyclic then the line mα+nβ ≡ 0 (mod 2π) is disjoint
from the image of X∗(P (K)), and hence also from the image of X∗(P (U)) by (1).

(3) The set of SU(2)-cyclic slopes for P (K) has limit point r(P (K)) by Theorem 3.2,
hence so does the set of SU(2)-cyclic slopes for P (U) by (2). If P (U) is not the unknot,
then this limit point must therefore be r(P (U)), again by Theorem 3.2. �

We can also prove more about satellites with nonzero winding number, as follows.

Proposition 10.3. Let P be a satellite with winding number w 6= 0. If some r-surgery on
P (K) is SU(2)-cyclic, then so is r

w2 -surgery on K. In particular, if K is nontrivial and

P (K) is SU(2)-averse, then K is also SU(2)-averse, and r(P (K)) = w2r(K).

Proof. We will use the standard identification

S3 r P (K) =
(
S3 rN(K)

)
∪
(
(S1 ×D2) r P

)
to construct representations ρ ∈ R(P (K)) whose restrictions to S3 rN(K) are irreducible
(so that ρ is also irreducible), but whose restrictions to (S1 × D2) r P are abelian. Let
µP , λP denote peripheral curves for P in ∂N(P ) ⊂ S1 ×D2, so that µP bounds a meridian
of P and the image ϕ(λP ) ⊂ ∂(S3 r N(P (K))) is a longitude of P (K). We note that
[λP ] = w[S1 × {pt}] as elements of H1((S1 ×D2) rN(P )).

Let ρK : π1(S3rN(K))→ SU(2) be an irreducible representation, where up to conjugacy
we can write

ρK(µK) =

(
eiα 0
0 e−iα

)
, ρK(λK) =

(
eiβ 0
0 e−iβ

)
for some pair (α, β). By the Mayer-Vietoris sequence we have H1((S1×D2)rN(P )) ∼= Z2,
with generators [µP ] and [S1 × {pt}] where pt ∈ ∂D2. We know that [λP ] = w[S1 × {pt}],
and similarly by examining a disk {pt} × D2 which intersects P transversely in w points
(with sign) we see that w[µP ] = [{pt} × ∂D2]. So if we define an abelian representation

ρP : π1

(
(S1 ×D2) rN(P ))

ab−→ H1

(
(S1 ×D2) rN(P )

)
→ SU(2)

by the formulas

ρP (µP ) =

(
ei(α+2πk)/w 0

0 e−i(α+2πk)/w

)
, ρP (S1 × {pt}) =

(
eiβ 0
0 e−iβ

)
for some integer k, then we have ρP ({pt} × ∂D2) = ρK(µK) and ρP (S1 × {pt}) = ρK(λK).
We glue ρK and ρP to get the desired representation ρ ∈ R∗(P (K)), with peripheral curves
µ = ϕ(µP ) and λ = ϕ(λP ) satisfying

ρ(µ) =

(
ei(α+2πk)/w 0

0 e−i(α+2πk)/w

)
, ρ(λ) =

(
eiβw 0

0 e−iβw

)
,
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and it follows that ρ has image (α+2πk
w , βw (mod 2π)) in the pillowcase.

Now suppose that some p
q -surgery on P (K) is SU(2)-cyclic, where p and q are relatively

prime. Let d = gcd(p, w2), so that p
d and qw2

d are also relatively prime. If the p/d
qw2/d

-surgery

on K is not SU(2)-cyclic, then there is some irreducible ρK ∈ R∗(K) with pillowcase image
(α, β) satisfying

p

d
α+

qw2

d
β = 2πn

for some integer n. The corresponding ρ ∈ R∗(P (K)) has image (α+2πk
w , βw), satisfying

p

(
α+ 2πk

w

)
+ q (βw) =

2πd

w
(n+ k(p/d)) .

But p
d is invertible modulo w2

d since these are coprime integers, so we can choose k so

that n + k(pd) is a multiple of w2

d , and then the right side is a multiple of 2πw. The
representation ρ then descends to an irreducible representation of the p

q -surgery on P (K),

which is impossible, so we conclude that p/d
qw2/d

= p
qw2 is an SU(2)-cyclic surgery slope for

K after all. �

10.1. Connected sums. We can now show that all SU(2)-averse knots are prime.

Theorem 10.4. If K1 and K2 are nontrivial knots, then K1#K2 is not SU(2)-averse.

Proof. We know that K1#K2 is a satellite P (K2), where P (U) = K1. Indeed, we can
remove a small open neighborhood of a meridian m ⊂ ∂N(K1) from S3 to get a solid torus
S1 ×D2 with embedded knot P = K1, and this is the desired pattern. Similarly, there is a
pattern P ′ such that P ′(K1) = K1#K2 and P ′(U) = K2. Proposition 10.2 applied to P and
to P ′ now says that if K1#K2 is SU(2)-averse, then each summand must be SU(2)-averse
as well and

r(K1) = r(K1#K2) = r(K2).

We let r denote the common limit slope, recalling that r 6= 0.
The knot group of K1#K2 is an amalgamated free product

π1(S3 rK1) ∗Z π1(S3 rK2)

in which we identify the meridians µ1 ∼ µ2, with peripheral data µ# = µ1 = µ2 and
λ# = λ1λ2. Since both K1 and K2 are SU(2)-averse, they satisfy case (2) of Theorem 4.1,
so the pillowcase images of X∗(K1) and X∗(K2) contain arcs of the form

β = −rα+ ci,
π

2
≤ α < π

2
+ ε

for some constants c1 and c2 respectively and some ε > 0. For each α in this interval, we

let ρjα : π1(S3 rKj)→ SU(2), j = 1, 2, be corresponding representations such that

ρjα(µj) =

(
eiα 0
0 e−iα

)
, ρjα(λj) =

(
ei(−rα+cj) 0

0 e−i(−rα+cj)

)
.

Combining these produces a representation ρ#
α = ρ1

α ∗ ρ2
α of π1(S3 r (K1#K2)), with

ρ#
α (µ#) =

(
eiα 0
0 e−iα

)
, ρ#

α (λ#) =

(
ei(−2rα+c1+c2) 0

0 e−i(−2rα+c1+c2)

)
.
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But the ρ#
α produce a line segment of slope−2r in the pillowcase image ofX∗(K1#K2), so by

Theorem 3.5 we must actually have r(K1#K2) = 2r, and since r 6= 2r this is impossible. �

10.2. Cables. If p and q are relatively prime integers with q ≥ 2, and K is an arbitrary
knot, we define the (p, q)-cable Cp,q(K) to be a peripheral curve in ∂N(K) in the class
µpλq. This is clearly a satellite with winding number q, and if |p| ≥ 2 then Cp,q(U) is the
(p, q)-torus knot.

Proposition 10.5. If K is a nontrivial, SU(2)-averse knot with limit slope r(K) = p
q ,

where p and q are relatively prime and q ≥ 2, then the (p, q)-cable C = Cp,q(K) is SU(2)-
averse with limit slope r(C) = pq.

Proof. According to Theorem 8.2, there is an integer N ≥ 1 such that (pq + 1
kN )-surgery on

K is SU(2)-averse for all but finitely many k. Gordon [Gor83, Corollary 7.3] showed that

S3
pq+ 1

n

(Cp,q(K)) ∼= S3
p
q

+ 1
q2n

(K)

for all n ≥ 1, and the latter is SU(2)-cyclic for all but finitely many multiples n of N , so
Cp,q(K) has an infinite sequence of SU(2)-cyclic slopes which converges to pq. �

Theorem 10.6. Let K be a nontrivial knot, and let p and q be relatively prime with q ≥ 2.
The cable Cp,q(K) is SU(2)-averse if and only if K is also SU(2)-averse with limit slope
r(K) = p

q , and in this case r(Cp,q(K)) = pq.

We begin by proving the hardest case of Theorem 10.6, namely p = ±1.

Lemma 10.7. Let K be a nontrivial knot and q ≥ 2. Then the pillowcase image of
X∗(C±1,q(K)) contains a nontrivial line segment of slope ∓q, and the cable C±1,q(K) is
not SU(2)-averse.

Proof. We begin with some generalities about arbitrary cables. Many of the details below
are adapted from the proof of [NZ17, Theorem 2.8]. Letting C = Cp,q denote the corre-
sponding pattern in S1 × D2, the complement (S1 × D2) r C is Seifert fibered over the
annulus with one singular fiber of order q, where the generic fibers on S1 × ∂D2 have slope

p[µK ] + q[λK ] = p[{pt} × ∂D2] + q[S1 × {pt}],

and those on ∂N(C) have slope pq[µC ] + [λC ]; see [Gor83, Lemma 7.2]. These are central
in π1((S1 ×D2) r C), so any representation

ρ : π1(S3 r Cp,q(K))→ SU(2)

whose restriction to π1((S1×D2)rC) is irreducible must send these to the center of SU(2),
meaning that ρ(µpqC λC) is either I or −I.

We now assume that p = ±1 and let ρ+
K : π1(S3 r K) → SU(2) be an irreducible

representation satisfying ρ+
K(µ±1

K λqK) = I; this exists since ±1
q -surgery on K is not SU(2)-

cyclic, by [KM04a]. Then ρ+
K(µK) 6∈ {I,−I}, or else ρ+

K would be reducible, and since

ρ+
K(λqK) 6∈ {I,−I} as a result, the same is true of ρ+

K(λK). Likewise, we can multiply ρ+
K

by the central character

χ : π1(S3 \K)→ H1(S3 \K) ∼= Z n7→(−1)n−−−−−−→ {±1}

to get an irreducible ρ−K with ρ−K(µ±1
K λqK) = −I and ρ−K(µK), ρ−K(λK) 6∈ {I,−I}.
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We will use either ρ+
K or ρ−K to construct a family of representations

ρs : π1(S3 r C±1,q(K))→ SU(2)

which are irreducible on (S1×D2)rC, hence satisfy ρs(µ
±q
C λC) ∈ {I,−I}, but for which the

trace of ρs(µC) takes values everywhere in an open interval. This produces a line segment
of slope ∓q in the pillowcase image of X∗(C±1,q(K)), which implies that if C±1,q(K) is
SU(2)-averse then it has limit slope ±q. But in this case K must also be SU(2)-averse
with limit slope r(K) = 1

q2 r(C±1,q(K)) = ±1
q by Proposition 10.3, and this contradicts

|r(K)| > 2, so the proof will be complete.
Taking C = C±1,q ⊂ S1 ×D2, we have a presentation

π1((S1 ×D2) r C) = 〈h, λK | hqλK = λKh
q〉

with µC = hλK , as deduced in [NZ17]; here h is freely homotopic to the singular fiber
of (S1 × D2) r C. (Note that we are using K to refer to the companion knot and C to
refer to the cabling pattern, in contrast with [NZ17].) Thus we can extend either ρ+

K or

ρ−K to a representation of π1(S3 r C±1,q(K)) by finding an element of SU(2) whose qth

power commutes with ρK(λK); this will provide an extension of ρ+
K if the Seifert fiber

µ±qC λC ' µ±1
K λqK is sent to +I, and of ρ−K if it is sent to −I instead.

Viewing SU(2) as the unit quaternions for convenience, we can write ρK(λK) = eiβ up
to conjugacy for some β, noting that sin(β) 6= 0 since eiβ 6∈ {1,−1}. We define a family of
purely imaginary unit quaternions by

vs = cos(s)i+ sin(s)j, 0 ≤ s ≤ π.

Then for all s in the same range we extend ρK to ρs : π1(S3 r C±1,q(K)) → SU(2) with
pillowcase coordinates (αs, βs) by setting

ρs(h) = cos

(
π

q

)
+ sin

(
π

q

)
vs.

It is clear that ρs(h
q) = −1, which commutes with ρs(λK) = eiβ, and so these represen-

tations are well-defined. For 0 < s < π they restrict to irreducible representations on
π1((S1 × D2) r C), since ρs(h) does not commute with eiβ. From ρs(µK) = ρs(h)ρs(λK)
we also compute that

cos(αs) = Re(ρs(µK)) = cos

(
π

q

)
cos(β)− cos(s) sin

(
π

q

)
sin(β).

Since sin(πq ) sin(β) 6= 0, the value of cos(αs) and hence of αs covers an open interval of

values for 0 < s < π, as desired. �

Proof of Theorem 10.6. One direction was already established in Proposition 10.5, so we
will suppose that Cp,q(K) is SU(2)-averse. By Proposition 10.3, K is SU(2)-averse with
r(Cp,q(K)) = q2r(K). Lemma 10.7 says that p 6= ±1, so then Cp,q(U) = Tp,q is not the
unknot. But then r(Cp,q(K)) = r(Tp,q) = pq by Proposition 10.2 and we conclude that
r(K) = p

q . �

Theorem 10.6 says that if any cable at all of K is SU(2)-averse then exactly one cable
Cp,q(K) is, with limit slope r(Cp,q(K)) = pq; and in this case, not only is K also SU(2)-
averse but the limit slope r(K) = p

q cannot be an integer. Since SU(2)-averse small knots
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(which include torus knots) and cables must have integral limit slopes, we conclude the
following.

Corollary 10.8. Cables of small knots and of nontrivial cables are never SU(2)-averse.

We have the following special case, since algebraic knots are iterated cables of the unknot.

Corollary 10.9. An algebraic knot is SU(2)-averse if and only if it is a torus knot.

10.3. Whitehead doubles. Using what we know so far about satellites, we cannot say
much about whether the Whitehead double Wh(K) of a nontrivial knot is SU(2)-averse:
neither Proposition 10.2 nor Proposition 10.3 can be used here, since Wh(U) is the unknot
and the corresponding pattern knot has winding number zero. On the other hand, we can
completely answer Conjecture 1.6 for Whitehead doubles by other means.

Proposition 10.10. If K is a nontrivial knot, then its Whitehead double Wh(K) is not
SU(2)-averse.

Proof. Since Wh(K) has Seifert genus 1, its smooth slice genus is at most 1. If it is smoothly
slice, then Theorem 9.3 says that it is not SU(2)-averse. Otherwise its slice genus is exactly
1, and then since its Alexander polynomial is 1 we know by Proposition 9.4 that it is not
SU(2)-averse. �

11. Montesinos knots and knots with small crossing number

In this section we provide evidence for Conjecture 1.6, that the only SU(2)-averse knots
are the torus knots, by proving it for several classes of examples. Our main tools will be:

• Theorem 7.3 for small knots, and in particular the inequality det(K) ≤ |r(K)| − 1;
• restrictions on the roots of the Alexander polynomial from Proposition 6.6; and
• Theorem 9.3 and Proposition 9.4, which assert that an SU(2)-averse knot cannot

be smoothly slice, and that if it has slice genus 1 then its Seifert genus is also 1.

We have obtained data about knots with low crossing number from the Knot Atlas [BNM+]
and KnotInfo [CL], and we rely on SnapPy [CDGW] for a computation. In general, we only
discuss each knot with the chirality specified in these tables, but if K is not SU(2)-averse
then neither is its mirror K.

First, we will use Theorem 7.3 together with bounds on the boundary slopes of two-bridge
knots, and of Montesinos knots with three rational tangles, in terms of the crossing number
c(K) to verify Conjecture 1.6 for these knots.

Theorem 11.1. Let K be an SU(2)-averse knot which is an alternating Montesinos knot
with at most three rational tangles. Then K is a (2, 2n+ 1)-torus knot.

We will prove Theorem 11.1 by showing that the limit slope of such a knot is at most
twice the crossing number, which is in turn less than the determinant in almost all cases,
and this is impossible for small knots. We begin with the following slight refinement of a
theorem of Crowell [Cro59, Theorem 6.5].

Proposition 11.2. If K is a prime alternating knot, then det(K) ≥ 3c(K) − 8 unless K
is a (2, 2k + 1) torus knot or a twist knot.

Proof. Crowell [Cro59, Theorem 6.5] proved that any prime alternating knot K satisfies
det(K) ≥ 2c(K)−3 unless K is of “elementary torus type”; in the latter case, its Alexander
polynomial has the form

∆K(t)
.
= 1− t+ t2 − · · ·+ (−t)n
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[Cro59, (6.6)] for some n, which guarantees by [OS05, Proposition 4.1] that it is a (2, n+ 1)
torus knot. We assume from now on that K is not a torus knot.

Let B be the black graph associated to a checkerboard coloring of a diagram of K with
c(K) crossings. We let b and w denote the number of vertices and faces of B, or equivalently
the number of faces and vertices of the white graph. Then b, w ≥ 3 by [Cro59, (6.3)], and
since B is planar with c(K) edges, we have b+ w = c(K) + 2.

The proof of [Cro59, Theorem 6.5] combines the relation

(b− 1)(w − 1) = 2(c(K)− 2) + (b− 3)(w − 3),

which is equivalent to the relation b+ w = c(K) + 2, with the inequality

det(K)− 1 ≥ (b− 1)(w − 1) (11.1)

of [Cro59, Theorem 5.10]. We note that b+ w = c(K) + 2 is also equivalent to

(b− 3)(w − 3) = (b− 4)(w − 4) + (c(K)− 5),

so given that b, w ≥ 3, if the left side is nonzero then b, w ≥ 4, and it follows that (b−3)(w−3)
is either zero or at least c(K)− 5. Thus either

det(K) ≥ (b− 1)(w − 1) + 1

= 2c(K)− 3 + (b− 3)(w − 3)

≥ 3c(K)− 8

or one of b− 3 and w − 3 is zero.
In the remaining cases, we take b = 3 without loss of generality; in this case B has three

vertices, c(K) edges, and w = c(K) − 1 faces. Crowell deduces the inequality (11.1) from
the fact that for alternating knots, det(K) is the number of spanning trees of B, so we must
determine the cases in which (given b = 3 and w = c(K) − 1) the graph B has at most
3c(K)− 9 spanning trees.

Label the vertices of B as v1, v2, v3, and let ei denote the number of edges between vj and
vk whenever {i, j, k} = {1, 2, 3}; note that ei ≥ 1 for all i, since there are no vertices whose
removal from B disconnects it (see [Cro59, (5.3) and (5.4)]). There are e1e2 + e2e3 + e3e1

spanning trees and c(K) = e1 + e2 + e3, so we wish to solve the inequality

e1e2 + e2e3 + e3e1 ≤ 3(e1 + e2 + e3)− 9.

Reordering the vi if needed so that e1 ≤ e2 ≤ e3, we rearrange the inequality to get

(e1 + e2 − 3)e3 + (e1 − 3)(e2 − 3) ≤ 0.

If e1 + e2 ≥ 3, then it follows that e2 ≥ 2 (hence 2e2 − 3 > 0) and that

(e1 + e2 − 3)e2 + (e1 − 3)(e2 − 3) ≤ 0,

or equivalently e2
2 ≤ (3− e1)(2e2 − 3). But this implies that e2

2 ≤ 2(2e2 − 3), which has no
solutions, so we must therefore have e1 + e2 < 3, which means that e1 = e2 = 1.

We conclude that up to permuting the coordinates, the possible values of (e1, e2, e3) are
(1, 1, a) for some a ≥ 4. In each of these cases, the corresponding black graph can only
come from a twist knot, completing the proof. �

Corollary 11.3. If K is a prime alternating knot, then det(K) > 2c(K) unless K is a
(2, 2k + 1) torus knot, a twist knot, 62, or 73.
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Proof. We inspect the knot types with up to 7 crossings by hand to see that the knots with
det(K) ≤ 2c(K) are either torus knots (31, 51, and 71), twist knots (41, 52, 61, and 72),
or 62 or 73. Assuming that c(K) > 7 and K is not a torus knot or a twist knot, we have
det(K) ≥ 3c(K) − 8 > 2c(K) − 1 by Proposition 11.2, and since det(K) is always odd we
in fact have det(K) > 2c(K), so there are no further examples. �

Proof of Theorem 11.1. By hypothesis, the set of finite boundary slopes of K has diameter
equal to 2c(K); this is due to Mattman, Maybrun, and Robinson [MMR08] in the two-bridge
case (i.e., at most two rational tangles), and to Ichihara and Mizushima [IM08] for alter-
nating Montesinos knots in general. Both 0 and the limit slope r(K) are boundary slopes,
so we must have |r(K)| ≤ 2c(K). Two-bridge knots are small [HT85], as are Montesinos
knots with at most three rational tangles [Oer84], so Theorem 7.3 implies that

det(K) ≤ |r(K)| − 1 ≤ 2c(K)− 1. (11.2)

Theorem 10.4 says that K is prime, so by Corollary 11.3, we see that K is either a (2, 2n+1)
torus knot, a twist knot, 62, or 73. But we have already seen in Example 7.2 that the trefoil
is the only nontrivial, SU(2)-averse twist knot, so this leaves only 62 and 73. These have
Alexander polynomials

∆62(t) = −t2 + 3t− 3 + 3t−1 − t−2

∆73(t) = 2t2 − 3t+ 3− 3t−1 + 2t−2,

both of which are irreducible and not cyclotomic; since ∆62(−1) = −11 and ∆73(i) = −1,
Proposition 6.6 says that neither knot is SU(2)-averse. �

We now begin to verify Conjecture 1.6 for knots with low crossing number. Nearly all
knots through 10 crossings can be handled by elementary obstructions, meaning they do
not depend on the results of [BS19].

Theorem 11.4. If a knot with crossing number at most 9 is SU(2)-averse, then it is a
torus knot.

Proof. Most knots with at most 8 crossings are alternating Montesinos knots with at most
three tangles, and thus handled by Theorem 11.1; the exceptions are 8n for 16 ≤ n ≤ 21,
of which 819 is the (3, 4) torus knot. The remaining five knots all have slice genus at most
1 and Seifert genus at least 2, so Theorem 9.3 and Proposition 9.4 say that they are not
SU(2)-averse.

Similarly, there are 49 knot types with crossing number 9, and the knot 9n is alternating
and Montesinos with at most three rational tangles for 1 ≤ n ≤ 28 and n = 30, 31, 35, 36, 37,
so Theorem 11.1 applies for these values of n. The remaining knots are 9n for n in

29, 32, 33, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49.

Among these knots, all but 938, 943, and 949 are either smoothly slice, or have smooth slice
genus 1 but Seifert genus greater than 1, so they cannot be SU(2)-averse by Theorem 9.3
and Proposition 9.4.

We now use Proposition 6.6 to rule out 938, since

∆938(t) = (t− 1 + t−1)(5t− 9 + 5t−1)

and the roots of 5t− 9 + 5t−1 lie on the unit circle but are not roots of unity; and 949, since

∆949(t) = 3t2 − 6t+ 7− 6t−1 + 3t−2
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is irreducible with ∆949(eiπ/3) = −2. This leaves only the small Montesinos knot 943: if it
were SU(2)-averse then r(943) would be one of its boundary slopes, which are

−4, 0, 6, 8, 32/3

by [HO89, Dun01], but since det(943) = 13, it cannot satisfy det(943) < |r(943)|. �

Theorem 11.5. The only 10-crossing knot which is SU(2)-averse is 10124 = T (3, 5), with
the possible exception of 1098.

Proof. The 10-crossing knots are labeled 10n for n ≤ 165, and 10n is alternating and
Montesinos with at most three rational tangles for all n ≤ 78, so Theorem 11.1 applies to
them. For 79 ≤ n ≤ 165, the knot 10n is either smoothly slice, or has slice genus 1 and
Seifert genus at least 2, for all n except 124 (i.e., the (3, 5) torus knot) and

80, 85, 92, 98, 100, 101, 111, 120, 127, 128, 134,

139, 142, 145, 149, 150, 152, 154, 157, 160, 161.

Thus Theorem 9.3 and Proposition 9.4 rule out all of the remaining 10-crossing knots except
for these.

Among the remaining 21 knot types 10n, most of these are not SU(2)-averse by Propo-
sition 6.6. The Alexander polynomials of the following knots have no cyclotomic factors,
and are negative at the indicated points on the unit circle:

∆10n(eiπ/4) < 0: n = 80, 92, 101, 111, 127, 128, 134, 145, 149, 150, 154, 157, 160, 161

∆10n(eiπ/6) < 0: n = 120, 152.

Proposition 6.6 can also be applied to the Alexander polynomials

∆1085(t) = (t− 1 + t−1)(t3 − 3t2 + 4t− 3 + 4t−1 − 3t−2 + t−3),

∆10139(t) = (t− 1 + t−1)(t3 − t+ 1− t−1 + t−3),

∆10142(t) = (t− 1 + t−1)(2t2 − t− 1− t−1 + 2t−2).

Indeed, if we call the second factors f85(t), f139(t), and f142(t) respectively, then these are

real-valued on the unit circle and equal to 1 at t = 1, with f85(−1) = −19, f139(eiπ/3) = −2,
and f142(i) = −5, so that each fn(t) and hence ∆10n(t) has a simple root on the unit circle
which is not a root of unity.

This leaves only the knots 1098 and 10100. Since 10100 is small, we use SnapPy [CDGW]
to compute the list of boundary slopes of spun normal surfaces in its complement:

Manifold(’10_100’).normal_boundary_slopes()

The list includes all nonzero boundary slopes since 10100 is a hyperbolic knot in S3, and
thus it gives us an upper bound of 20 on the absolute value of a boundary slope for 10100.
This upper bound is smaller than det(10100) = 65, so Theorem 7.3 says that it cannot be
SU(2)-averse. �

On the other hand, if we appeal to [BS19] in the form of Corollary 1.3, then we can push
these results even further with minimal effort.

Theorem 11.6. If K is a prime knot of crossing number at most 11, then K is SU(2)-
averse if and only if it is a torus knot.
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Proof. Corollary 1.3 says that K must be fibered, and either K or its mirror is strongly
quasipositive. According to KnotInfo [CL], the only such prime knots up to 11 crossings
are torus knots and

10139, 10145, 10152, 10154, 10161, 11n77, 11n183.

In the proof of Theorem 11.5, we used the Alexander polynomial obstruction of Proposi-
tion 6.6 to rule out each of the 10-crossing knots listed above. We can do the same for 11n77

and 11n183, whose Alexander polynomials factor as

∆11n77(t) = (t− 1 + t−1)2(t2 + t− 3 + t−1 + t−2)

∆11n183(t) = (t− 1 + t−1)(t2 + 2t− 5 + 2t−1 + t−2).

Indeed, f77(t) = t2 + t− 3 + t−1 + t−2 and f183(t) = t2 + 2t− 5 + 2t−1 + t−2 are irreducible
and not cyclotomic, and f77(1) = f183(1) = 1 while f77(−1) = −3 and f183(−1) = −7, so
both f77 and f183 have simple roots on the unit circle which are not roots of unity. �

Appendix A. Cr-approximation through shearing maps

In this appendix, we prove Theorem 4.5, following the strategy of the proof of [Zen18,
Theorem 3.3].

We start by fixing some notational and linguistic conventions which are self-suggesting
by the fact that the tangent bundle of the torus is parallelizable. If X is a vector field on T 2

we regard it as a map T 2 → R2. We consider its derivative as a map DX : T 2 × R2 → R2,
and if the point p on the torus is fixed we denote by DXp the corresponding linear map.
The expression ‖DX‖∞ denotes the supremum of the norms ‖DXp‖ as p varies over T 2.

Likewise we regard the flow φtX as a map T 2 → R2, and we consider the derivative as a
map DφtX : T 2 × R2 → R2.

By a slight abuse of notation, we shall denote by

‖ζ − ξ‖Cr := sup
(x,y)∈T 2

d(ζ(x, y), ξ(x, y)) +

r∑
l=1

∥∥∥D(l)ζ −D(l)ξ
∥∥∥
∞

the Cr-distance of the maps ζ, ξ : T 2 → T 2.

The Fourier decomposition. The first point is that Lemma 3.4 in [Zen18] generalizes to
the C l norm for any l ≥ 1 if the vector field X one starts with is differentiable infinitely
often. More precisely, for any smooth vector field X, and for any ε > 0, there is a sum
of Fourier vector fields Z = W1 + · · · + Wm such that we have ‖X − Z‖Cl < ε. A Fourier
vector field Wi is of the form

Wi(x, y) = ai sin(ki · (x, y)) + bi cos(ki · (x, y)) ,

where ai,bi ∈ R2, and ki ∈ Z2. It is shown in [Zen18, Lemma 3.4] that if the vector field Z
is divergence-free, then the flow of the vector fields Wi are isotopies through shearing maps.

A few lemmata. In the sequel we denote by R+ the non-negative real integers. The
following lemma is a generalization of [Zen18, Lemma 3.6].

Lemma A.1. Let r ≥ 0. For any 0 ≤ l ≤ r, there are functions

al : R+ × R+ → R+
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which are continuous and monotonically increasing in both variables, such that the following
holds. Let X : T 2 → R2 be a vector field on T 2 with flow φtX : T 2 → T 2, and suppose that
for any l ≤ r + 1 its derivatives satisfy∥∥∥D(i)X

∥∥∥
∞
≤ Kl for all i ≤ l

for some positive constants Kl. Then:

(1) For any p, q ∈ T 2, we have∥∥φtX(p)− φtX(q)
∥∥ ≤ a0(t,K1) · ‖p− q‖ .

(2) For any p, q ∈ T 2 and any l ≥ 1, we have∥∥∥(D(l)φtX)(p)− (D(l)φtX)(q)
∥∥∥ ≤ t · al(t,Kl+1) · ‖p− q‖ .

Proof. The case r = 0 is Lemma 3.6 in [Zen18], with a0(t,K1) = eK1t. For r ≥ 1, the proof
will be by induction on r.

By definition the flow φtX satisfies the differential equation

dφtX
dt

(p) = X(φtX(p)) ,

for any p ∈ T 2, which integrated gives

φtX(p) = p+

∫ t

0
X(φsX(p)) ds . (A.1)

Differentiating this equation with respect to p yields

DφtX(p) = id +

∫ t

0
DXφsX(p) ◦DφsX(p) ds . (A.2)

Therefore we get, using the triangle inequality and the mean value theorem,∥∥DφtX(p)−DφtX(q)
∥∥ ≤∫ t

0

∥∥∥DXφsX(p) ◦DφsX(p)−DXφsX(q) ◦DφsX(q)
∥∥∥ ds

≤
∫ t

0

∥∥∥DXφsX(p) ◦DφsX(p)−DXφsX(q) ◦DφsX(p)
∥∥∥ ds

+

∫ t

0

∥∥∥DXφsX(q) ◦DφsX(p)−DXφsX(q) ◦DφsX(q)
∥∥∥ ds

≤ ‖DφsX‖L∞(T 2×[0,t]) ·K2 ·
∫ t

0
‖φsX(p)− φsX(q)‖ ds

+ ‖DX‖∞
∫ t

0
‖DφsX(p)−DφsX(q)‖ ds .

But [Zen18, Lemma 3.6] states that ‖φsX(p)− φsX(q)‖ ≤ eK1s ‖p− q‖. Therefore, we get the
inequality ∥∥DφtX(p)−DφtX(q)

∥∥ ≤ ‖DφsX‖L∞(T 2×[0,t]) ·K2 · t · eK1t ‖p− q‖

+ ‖DX‖∞
∫ t

0
‖DφsX(p)−DφsX(q)‖ ds .

Gronwall’s inequality now yields∥∥DφtX(p)−DφtX(q)
∥∥ ≤ t · ‖p− q‖ · ‖DφsX‖L∞(T 2×[0,t]) ·K2 · exp(t(‖DX‖∞ +K1)) (A.3)
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for all p, q ∈ T 2, and for all t ≥ 0.
In a similar but easier application of Gronwall’s inequality, Equation (A.2) yields

‖DφsX‖L∞(T 2×[0,t]) ≤ exp(K1t) . (A.4)

Hence the bound in Equation (A.3) implies the l = 1 case of the lemma once we set
a1(t,K2) := K2 · exp(3K2t).

We suppose now that the result holds for r − 1 for some r ≥ 2. Differentiating Equa-
tion (A.2), we get the formula

(D(r)φtX)(p) =

∫ t

0
L(r−1)(s) ds

+

∫ t

0
(DX)φsX(p) ◦ (D(r)φsX)(p) ds .

(A.5)

Here, the term L(r−1)(s) is a polynomial expression of derivatives of X and of φsX of order up
to r− 1. A precise expression could be given, but we don’t need this here. The formula for
higher derivatives of a composition of functions of one variable is known as Faà di Bruno’s
formula.

The claim now follows easily from this, using the same sort of estimates as above, the
induction step, and then Gronwall’s inequality to obtain an inequality for

∥∥D(r)φsX
∥∥
∞,

and for the difference
∥∥(D(r)φsX)(p)− (D(r)φsX)(q)

∥∥. This will use the fact that sums and
products of non-negative monotonely increasing functions are again monotonely increasing.
We leave the details as an exercise for the interested reader. �

One can prove the following generalization of [Zen18, Lemma 3.7] along the same lines.

Lemma A.2. Let r ≥ 0. Then for any l ≤ r there are functions

bl : R+ × R+ × R+ → R+

which are continuous and monotonically increasing in all three variables, such that the
following holds:

(1) For all t ≥ 0 and K ≥ 0 we have bl(t, 0,K) = 0.
(2) Let X,Y : T 2 → R2 be vector fields on T 2, and suppose that for any l ≤ r + 1 the

derivatives of X satisfy∥∥∥D(i)X
∥∥∥
∞
≤ Kl for all i ≤ l

for some positive constants Kl. Then the flows φtX , φ
t
Y : T 2 → T 2 satisfy∥∥∥(D(l)φtX)(p)− (D(l)φtY )(p)

∥∥∥ ≤ t · bl(t, ‖X − Y ‖Cl ,Kl+1)·

for any p ∈ T 2.

Proof. The case r = 0 is Lemma 3.7 of [Zen18], with b0(t, d,K1) = d · eK1t. The proof for
r ≥ 1 again goes by induction. To start the induction, let r = 1. Applying the triangle
inequality as above, one gets∥∥DφtX(p)−DφtY (p)

∥∥ ≤∫ t

0

∥∥∥DXφsX(p) ◦DφsX(p)−DYφsY (p) ◦DφsY (p)
∥∥∥ ds
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≤
∫ t

0

∥∥∥DXφsX(p) ◦DφsX(p)−DXφsY (p) ◦DφsX(p)
∥∥∥ ds

+

∫ t

0

∥∥∥DXφsY (p) ◦DφsX(p)−DXφsY (p) ◦DφsY (p)
∥∥∥ ds

+

∫ t

0

∥∥∥DXφsY (p) ◦DφsY (p)−DYφsY (p) ◦DφsY (p)
∥∥∥ ds

≤ ‖DφsX‖L∞(T 2×[0,t]) ·K2 ·
∫ t

0
‖φsX(p)− φsY (p)‖ ds

+ ‖DX‖∞
∫ t

0
‖DφsX(p)−DφsY (p)‖ ds

+ t ‖DX −DY ‖∞ · ‖Dφ
s
Y ‖L∞(T 2×[0,t]) .

Now [Zen18, Lemma 3.7] yields the estimate ‖φsX(p)− φsY (p)‖ ≤ s ‖X − Y ‖∞ eK1s, where
K1 can be taken as a Lipschitz constant for X. Gronwall’s inequality now yields∥∥DφtX(p)−DφtY (p)

∥∥ ≤ t( ‖DX −DY ‖∞ · ‖DφsY ‖L∞(T 2×[0,t])

+K2 · ‖X − Y ‖∞ · e
K1t · ‖DφsX‖L∞(T 2×[0,t])

)
· exp(t ‖DX‖∞) .

This has the desired form once we notice that by (A.4) and the triangle inequality,

‖DφsY ‖∞ ≤ exp(‖DY ‖∞ s) ≤ exp(‖DX −DY ‖∞ s+ ‖DX‖∞ s)

≤ exp(‖DX −DY ‖∞ s+K1s) .

Assuming the claim holds up to r − 1, the induction step now follows again from Equa-
tion (A.5) similarly as in the proof of the previous lemma. Again, we leave the details to
the reader. �

We will also need a generalization of [Zen18, Lemma 3.11].

Lemma A.3. Let r ≥ 0. Then for any l ≤ r and any m ≥ 2 there are functions

c
(m)
l : R+ × R+ × R+ → R+

which are continuous and monotonically increasing in all three variables, such that the
following holds:

Let Z be a vector field given as a sum of vector fields Z = W0 + · · · + Wm−1. Suppose
that there are positive constants K0, . . . ,Kr+1 and M0, . . . ,Mr such that for any l ≤ r + 1
one has ∥∥∥D(i)(Wj1 + · · ·+Wjn)

∥∥∥
∞
≤ Kl

for all i ≤ l and all nonempty subsets {j1, . . . , jn} of {0, . . . ,m− 1}, and that for any l ≤ r
and 1 ≤ n ≤ m− 1 we have∥∥∥D(i)[Wn,W0 + · · ·+Wn−1]

∥∥∥
∞
≤Ml

for all i ≤ l. Then for any p ∈ T 2 we have∥∥∥(D(l)φtZ)(p)− (D(l)(φtWm
◦ · · · ◦ φtW1

))(p)
∥∥∥ ≤ t2 · c(m)

l (t,Ml,Kl+1)

for all t ≥ 0.
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Proof. We recall that for two vector fields X,Y the Lie bracket is defined to be

[X,Y ](p) = lim
h→0

DφhY (X(φ−hY (p))−X(p)

h
=

d

dt
[(φtY )∗(X)](p)|t=0 .

Hence we have for any point p the equality

DφtY (X(p)) = X(φtY (p)) + t[X,Y ](φtY (p)) +RX,Y (φtY (p), t) , (A.6)

where the term RX,Y satisfies

lim
t→0

RX,Y (p, t)

t
= 0

and this convergence is uniform in p. Moreover, any derivatives of R with respect to p have
the same limit as t goes to 0, since we can interchange the order of the derivatives.

The proof of the lemma now goes by induction on l. The case l = 0 is the statement of
[Zen18, Lemma 3.11]. We will prove the lemma for l = 1, leaving the induction to higher
l to the interested reader. This case will itself proceed by induction on m, the number of
summands in the expression Z = W0 + · · ·+Wm−1, beginning with m = 2.

Suppose we have Z = W0 +W1. Differentiating the composition φtW1
◦φtW0

and using the
above remark, we obtain

d

dt
φtW1

(φtW0
(p)) =

dφtW1

dt
(φtW0

(p)) + (φtW1
)∗

(
dφtW0

(p)

dt

)
= W1(φtW1

(φtW0
(p))) + (φtW1

)∗W0(φtW0
(p))

= (W1 +W0)(φtW1
(φtW0

(p))) (A.7)

+ t[W0,W1](φtW1
(φtW0

(p))) +RW0,W1(φtW1
(φtW0

(p)), t) .

Integrating this equation, and differentiating with respect to p, we obtain the integral
equality

D(φtW1
◦ φtW0

)(p) = id +

∫ t

0
D(W1 +W0) ◦D(φsW1

◦ φsW0
)(p) ds

+

∫ t

0
sD([W1,W0]) ◦D(φsW1

◦ φsW0
)(p) ds (A.8)

+

∫ t

0
sD

(
R

s

)
(φtW1

(φtW0
(p))) ds .

We substract this from the corresponding integral equality which is satisfied by the deriva-
tive of the flow φtW1+W0

, as in (A.2), and this yields the estimate∥∥(DφtW1+W0
)(p) − D(φtW1

◦ φtW0
)(p)

∥∥
≤
∫ t

0

∥∥∥D(W1 +W0)φsW1+W0
(p) ◦DφsW1+W0

(p)

− D(W1 +W0)(φsW1
◦φsW0

)(p) ◦D(φsW1
◦ φsW0

)(p)
∥∥∥ ds

+

∫ t

0
s ‖[W1,W0]‖C1

∥∥D(φsW1
◦ φsW0

)
∥∥ ds

+

∫ t

0
s

∥∥∥∥DRs
∥∥∥∥ ds
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≤
∫ t

0

∥∥∥D(W1 +W0)φsW1+W0
(p)

∥∥∥∥∥DφsW1+W0
(p)−D(φsW1

◦ φsW0
)(p)

∥∥ ds
+

∫ t

0

∥∥∥D(W1 +W0)φsW1+W0
(p) −D(W1 +W0)(φsW1

◦φsW0
)(p)

∥∥∥∥∥D(φsW1
◦ φsW0

)(p)
∥∥ ds

+
t2

2
max
s∈[0,t]

(‖[W1,W0]‖C1 ·
∥∥D(φsW1

◦ φsW0
)
∥∥)

+
t2

2
max
s∈[0,t]

∥∥∥∥Rs
∥∥∥∥
C1

≤ K1

∫ t

0

∥∥DφsW1+W0
(p)−D(φsW1

◦ φsW0
)(p)

∥∥ ds
+K2

∫ t

0

∥∥φsW1+W0
(p)− (φsW1

◦ φsW0
)(p)

∥∥ ∥∥D(φsW1
◦ φsW0

)(p)
∥∥ ds

+
t2

2
max
s∈[0,t]

(‖[W1,W0]‖C1 ·
∥∥D(φsW1

◦ φsW0
)(p)

∥∥)

+
t2

2
max
s∈[0,t]

∥∥∥∥Rs
∥∥∥∥
C1

. (A.9)

By the induction hypothesis we have∥∥φsW1+W0
− φsW1

◦ φsW0

∥∥ ≤ s2 c
(2)
0 (s,M0,K1)

for all s. Furthermore one easily shows that∥∥D(φsW1
◦ φsW0

)
∥∥
∞ ≤ e

K1s

holds for all s. If we plug these two inequalities into the estimate (A.9), Gronwall’s inequality
yields the desired result for l = 1; here we define

c
(2)
1 (t,M,K) :=

(
K c

(2)
0 (t,M,K)eKt +

1

2
MeKt +

1

2
r1(t,M,K)

)
eKt ,

where r1(t,M,K) is a function that can be explicitly described in terms of RW1,W0 , which
was defined in Equation (A.6) above. We leave the induction in the cases m ≥ 3 as an
exercise for the interested reader. �

We are now ready to start with the proof of Theorem 4.5.

Strategy of the proof. We observe that an isotopy (ψt)t∈[0,1] as in the statement of
Theorem 4.5 is the flow of a time-dependent, divergence-free vector field Xt satisfying

dψt(p)

dt
= Xt(ψ

t(p)) (A.10)

for any p ∈ T 2 and any t ∈ [0, 1]. Integrating the vector field from time t0 to time t sends
a point p ∈ T 2 to ψt((ψt0)−1(p)).

Let ε > 0 be given, and suppose that we want to approximate ψt to within a distance of
at most ε in the Cr norm. The proof of Theorem 4.5 is an approximation in three steps,
just as in the proof of [Zen18, Theorem 3.3].
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(1) We approximate the flow ψt of Xt by a composition of flows of time-independent
vector fields Xi := Xi/n, i = 0, . . . , n − 1. More precisely, we define the isotopies

(Θt
(Xj)) : T 2 → T 2 on each interval i

n ≤ t ≤
i+1
n by

Θt
(Xj) := φ

t−i/n
Xi

◦ φ1/n
Xi−1

◦ · · · ◦ φ1/n
X0

. (A.11)

We will show that by taking n large enough, we get∥∥∥Θt
(Xj) − ψ

t
∥∥∥
Cr

<
ε

3

for all t ∈ [0, 1].
(2) We approximate each of the Xi by a finite sum Zi of Fourier vector fields, using

the Cr-version of [Zen18, Lemma 3.4] mentioned above. We define Θt
(Zj) to be

the analogue of (A.11) above with Zi in place of Xi, and by keeping track of the
accumulated error, we find that∥∥∥Θt

(Xj) −Θt
(Zj)

∥∥∥
Cr

<
ε

3

for all t ∈ [0, 1], assuming each Zj was chosen sufficiently Cr-close to Xj .
(3) We write each Zj as a finite Fourier series

Zj =

mj−1∑
r=0

W (j)
r ,

where each W
(j)
r is a shearing vector field in some direction in Z2. We will approxi-

mate the flow of Zj , which occurs over a time interval of length at most 1
n in Θt

(Zj),

by successive flows along each of the summands W
(j)
r .

For each Zj , we fix some kj ∈ N and define an isotopy Ξt
(W

(j)
r )

as follows. For

0 ≤ t ≤ 1
kjmjn

, we flow along W
(j)
0 with speed mj ; then we flow along W

(j)
1 with

speed mj for 1
kjmjn

≤ t ≤ 2
kjmjn

; and so on, until we flow along W
(j)
mj−1 during the

mjth interval of length 1
kjmjn

and a total time of 1
kjn

has elapsed. We then repeat

this kj times to get the desired Ξt
(W

(j)
r )

, defined for 0 ≤ t ≤ 1
n .

We now approximate Θt
(Zj) by an isotopy Ωt

(Zj), defined in terms of Ξt
(W

(j)
r )

by

Ωt
(Zj) := Ξ

t−i/n
(W

(i)
r )
◦ Ξ

1/n

(W
(i−1)
r )

◦ · · · ◦ Ξ
1/n

(W
(0)
r )

(A.12)

for i
n ≤ t ≤ i+1

n , where i = 0, . . . , n − 1. We will show that if for each sum

Zj =
∑mj−1

r=0 W
(j)
r we choose the corresponding kj large enough, then∥∥∥Θt

(Zj) − Ωt
(Zj)

∥∥∥
Cr

<
ε

3

for all t ∈ [0, 1].

First step. We start by approximating the isotopy ψt by Θt
(Xj), as defined in (A.11). Thus

we need an estimate that bounds the distance from ψt to Θt
(Xj) in the Cr-topology.
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Lemma A.4. Let r ≥ 0. Then for any l ≤ r and n ∈ N, there are functions

h
(n)
l : R+ × R+ × R+ → R+

which are continuous and monotonically increasing in all three variables, such that the
following holds:

(1) The functions h
(n)
l have the property that

lim
x→0+

h
(n)
l (t, x,K) = 0 ,

and the convergence is uniform in n, and also in t and K taken from compact subsets
of R+.

(2) Suppose that for any l ≤ r + 1 we have∥∥∥D(i)Xt

∥∥∥
∞
≤ Kl

for all i ≤ l and all t ≥ 0. Then we have the estimate∥∥∥D(l)ψt −D(l)Θt
(Xj)

∥∥∥
∞
≤ h

(n)
l

(
t, max
j=0,...,n−1

max
j
n
≤t≤ j+1

n

‖Xj −Xt‖Cl(T 2) ,Kl+1

)
for all t ∈ [0, 1].

Proof. We prove the lemma by induction on l. The case l = 0 is the conclusion of [Zen18,

Lemma 3.9]. In fact, we can define the function h
(n)
0 by the formula

h
(n)
0 (t, x,K) :=

(
t− j

n

)
x eK(t− j

n
) +

x

n

j−1∑
i=0

eK(t− i
n

)

where j
n ≤ t ≤ j+1

n . This function clearly is bounded uniformly by f0(t, x,K) := t x eKt,
and hence the claim follows.

For simplicity of notation and more clarity of the argument, we will treat the case l = 1
only, and we will leave the induction argument for l ≥ 2 to the interested reader.

The proof of Lemma A.2 extends verbatim to the case of vector fields which depend on
time. In our case, we will compare the flow of Xt to that of X0. The conclusion we get is
the uniform bound∥∥Dψt −DφtX0

∥∥ ≤ t · b1(t, sup
s∈[0,t]

‖X0 −Xs‖C1(T 2) ,K2) (A.13)

which holds for all t ≥ 0. It is also straightforward to verify the bounds∥∥Dψt∥∥∞ ≤ eK1 t and
∥∥∥DφtXj

∥∥∥
∞
≤ eK1 t (A.14)

for any j = 0, . . . , n− 1, cf. Equation (A.4).

We claim that for j
n ≤ t ≤

j+1
n we have∥∥(Dψt)(p) −(DΘt

(Xj))(p)
∥∥∥
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≤
(
t− j

n

) b1
 1

n
, sup
s∈[ j

n
, j+1

n
]

‖Xj −Xs‖C1(T 2) ,K2

 (A.15)

+ a1

(
1

n
,K2

)
h

(n)
0

 j

n
, sup
s∈[ j

n
, j+1

n
]

‖Xi −Xs‖C1(T 2) ,K1

 eK1
j
n

+

j−1∑
i=0

1

n

b1
 1

n
, sup
s∈[ j

n
, j+1

n
]

‖Xj −Xs‖C1(T 2) ,K2


+ a1

(
1

n
,K2

)
h

(n)
0

 i

n
, max
i=0,...,n−1

sup
s∈[ i

n
, i+1

n
]

‖Xi −Xs‖C1(T 2) ,K1

 eK1
j
n .

Here a1 and b1 are some functions satisfying the statement of Lemmas A.1 and A.2 above.
We prove this claim by induction on j. The case j = 0, and hence the claim for times

0 ≤ t ≤ 1
n follows immediately from (A.13). (Notice that h

(n)
0 (0, x,K) = 0.)

Suppose the claim holds for t ≤ j
n . Using the triangle inequality, Lemmas A.1 and A.2,

and Equation (A.14) above, we obtain for j
n ≤ t ≤

j+1
n the bound∥∥∥(Dψt)(p)− (DΘt

(Xj))(p)
∥∥∥ =

∥∥∥∥D(ψt ◦ (ψ
j
n )−1)

ψ
j
n (p)
◦ (Dψ

j
n )(p)− (Dφ

t− j
n

Xj
)
Θ

j
n (p)
◦DΘ

j
n

(Xj)(p)

∥∥∥∥
≤
∥∥∥∥D(ψt ◦ (ψ

j
n )−1)

ψ
j
n (p)
− (Dφ

t− j
n

Xj
)
ψ

j
n (p)

∥∥∥∥ · ∥∥∥(Dψ
j
n )(p)

∥∥∥
+

∥∥∥∥(Dφ
t− j

n
Xj

)
ψ

j
n (p)
− (Dφ

t− j
n

Xj
)
Θ

j
n (p)

∥∥∥∥ · ∥∥∥(Dψ
j
n )(p)

∥∥∥
+
∥∥∥(Dψ

j
n )(p)− (DΘ

j
n )(p)

∥∥∥ · ∥∥∥∥(Dφ
t− j

n
Xj

)
Θ

j
n (p)

∥∥∥∥
≤
(
t− j

n

)
b1

t− j

n
, sup
s∈[ j

n
,t]

‖Xj −Xs‖C1(T 2) ,K2

 eK1
j
n

+

(
t− j

n

)
a1

(
t− j

n
,K2

) ∥∥∥ψ j
n (p)−Θ

j
n (p)

∥∥∥ eK1
j
n

+
∥∥∥(Dψ

j
n )(p)− (DΘ

j
n )(p)

∥∥∥ eK1(t− j
n

).

Using the induction hypothesis to bound the last term, and the case l = 0 to bound the

middle term, we clearly obtain the bound (A.15). Hence we define the function h
(n)
1 by the

formula

h
(n)
1 (t, x,K) :=

(
t− j

n

)(
b1

(
1

n
, x,K

)
+ a1

(
1

n
,K

)
h

(n)
0

(
j

n
, x,K

))
eKt

+

j−1∑
i=0

1

n

(
b1

(
1

n
, x,K

)
+ a1

(
1

n
,K

)
h

(n)
0

(
i

n
, x,K

))
eK

i
n

for j
n ≤ t ≤

j+1
n . The bound (A.15) implies statement (2) of the lemma for the case l = 1.
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The functions h
(n)
1 satisfy the bound

h
(n)
1 (t, x,K) ≤ f1(t, x,K) :=

(
b1(1, x,K) + a1(1,K)f0(t, x,K)

)
eKt

for all t ∈ [0, 1], where we recall that f0(t, x,K) = txeKt. By the properties of the functions
f0, a1 and b1 we clearly have

lim
x→0+

f1(t, x,K) = 0 ,

and this limit is uniform in t and K taken from compact subsets. This implies statement (1)
of the lemma for the case l = 1. �

The first statement of Lemma A.4 tells us that there are functions

fl : R+ × R+ → R+

such that

h
(n)
l (t, x,Kr+1) ≤ fl(x,Kr+1)

for all n ∈ N and all t ∈ [0, 1]. Furthermore, these functions satisfy

lim
x→0+

fl(x,K) = 0

for all K, so we can choose M > 0 so small that fl(M,Kr+1) < ε
3(r+1) for all l = 0, . . . , r.

We now notice that the time dependent vector field (Xt) : T 2 × [0, 1] → R2 is equicon-
tinuous, and all of its derivatives are also equicontinuous maps. In particular, given M as
above, there is some δ > 0 such that we have

‖Xs −Xt‖Cr(T 2) < M whenever |s− t| < δ.

Choosing n large enough so that 1
n < δ, the second conclusion of Lemma A.4 implies that∥∥∥Θt

(Xj) − ψ
t
∥∥∥
Cr(T 2)

<
ε

3
.

for all t ∈ [0, 1], as desired.

Second step. We now approximate Θt
(Xj) by Θt

(Zj), where each Zi is a finite Fourier series

which Cr-approximates Xi. The following is nearly a duplicate of Lemma A.4, with Θt
(Xj)

and Θt
(Zj) in place of ψt and Θt

(Xj).

Lemma A.5. Let r ≥ 0. Then for any l ≤ r and n ∈ N, there are functions

g
(n)
l : R+ × R+ × R+ → R+

which are continuous and monotonically increasing in all three variables, such that:

(1) The functions g
(n)
l have the property that

lim
x→0+

g
(n)
l (t, x,K) = 0 ,

and the convergence is uniform in n, and also in t and K taken from compact subsets
of R+.
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(2) Suppose that for any l ≤ r + 1 we have∥∥∥D(i)Xj

∥∥∥
∞
≤ Kl

for all i ≤ l. Then we have the estimate∥∥∥D(l)Θt
(Xj) −D

(l)Θt
(Zj)

∥∥∥
∞
≤ g

(n)
l (t, max

j=0,...,n−1
max

j
n
≤t≤ j+1

n

‖Xj − Zj‖Cl(T 2) ,Kl+1)

for all t ∈ [0, 1].

Proof. We repeat the proof of Lemma A.4 verbatim, using the same functions h
(n)
l as before.

The only details which need to be established first are bounds for each l ≤ r+ 1 of the form∥∥D(i)Zj
∥∥
∞ ≤ Kl, for all i ≤ l and all j = 0, . . . , n− 1. But clearly we have∥∥∥D(i)Zj

∥∥∥
∞
≤
∥∥∥D(i)Xj

∥∥∥+
∥∥∥D(i)(Zj −Xj)

∥∥∥ ≤ Kl + ‖Zj −Xj‖Cl ,

and we can absorb the extra ‖Zj −Xj‖Cl in the definition of the functions g
(n)
l . �

The first statement of the preceding lemma tells us that

lim
x→0+

g
(n)
l (t, x,Kr+1) = 0

uniformly in t ∈ [0, 1]. (We don’t need the statement about uniform convergence in n, as
n was already fixed in the first approximation step.) We choose M > 0 small enough that

g
(n)
l (1,M,Kr+1) ≤ ε

3(r+1) for all l = 0, . . . , r. Having fixed M , we choose the finite Fourier

sums Zj = W
(j)
0 + · · ·+W

(j)
mj−1 so that we have

‖Xj − Zj‖Cr ≤M

for j = 0, . . . , n− 1. Now the second conclusion of Lemma A.5 implies that∥∥∥Θt
(Xj) −Θt

(Zj)

∥∥∥
Cr(T 2)

<
ε

3

for all t ∈ [0, 1].

Third step. We start with a lemma that describes the C l-distance between the flow φtZ of
Z = W0 + · · ·+Wm−1 and the isotopy Ξt(Wr), defined as in step (3). To be explicit, suppose

that we have fixed positive integers n and k, so that for any t ∈ [0, 1
n ] we can find integers

i, r such that
1

n

(
i

k
+

r

km

)
≤ t ≤ 1

n

(
i

k
+
r + 1

km

)
with 0 ≤ i ≤ k − 1 and 0 ≤ r ≤ m− 1. Then we define Ξt(Wr) by the formula

Ξt(Wr) := φ
m(t− im+r

kmn
)

Wr
◦ φ

1
kn
Wr−1

◦ · · · ◦ φ
1
kn
W0
◦
(
φ

1
kn
Wm−1

◦ · · · ◦ φ
1
kn
W0

)i
.

Lemma A.6. Let r ≥ 0. Then for any l ≤ r and k ∈ N, there are functions

d
(k)
l : R+ × R+ × R+ → R+

which are continuous and monotonically increasing in all three variables, such that:
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(1) The functions d
(k)
l have the property that

lim
k→∞

d
(k)
l (t,M,K) = 0

for any M , K, and t.
(2) Let Z be a vector field given as a sum of vector fields Z = W0 + · · · + Wm−1.

Suppose that there are positive constants K0, . . . ,Kr+1 and M0, . . . ,Mr such that
for any l ≤ r + 1 we have∥∥∥D(i)(Wj1 + · · ·+Wjn)

∥∥∥
∞
≤ Kl

for all i ≤ l and all finite subsets {j1, . . . , jn} of {0, . . . ,m− 1}, and such that∥∥∥D(i)[Wn,W0 + · · ·+Wn−1]
∥∥∥
∞
≤Ml

for all i ≤ l ≤ r and all n ≥ 1. Then we have the estimate∥∥∥D(l)φtZ −D(l)Ξt(Wr)

∥∥∥
∞
≤ d

(k)
l (t,Ml,Kl+1)

for all t ≥ 0. (We recall here that Ξt(Wr) depends on k.)

Proof. The case l = 0 is the content of [Zen18, Lemma 3.12]. Again, we will show the case
l = 1 and leave the induction for higher l to the interested reader; we start by noting that∥∥∥DΞt(Wr)

∥∥∥
∞
≤ eK1t (A.16)

for all t ≥ 0.
We first claim that at times t = j

nk , where j is an integer, we have∥∥∥∥DΞ
j
nk

(Wr) −Dφ
j
nk
Z

∥∥∥∥
∞
≤

j−1∑
i=0

1

nk

[
1

nk
c1

(
1

nk
,M1,K2

)
+ a1

(
1

nk
,K2

)
d

(k)
0

(
j

nk
,M1,K2

)]
eK1

i
nk .

(A.17)

Here c1 denotes a function c
(m)
1 : R+×R+×R+ → R+ as provided by Lemma A.3 above; we

omit the superscript (m) for convenience, as well as the (Wr) subscript on Ξ in the sequel.
The proof of (A.17) is by induction, analogous to the proof of the bound (A.15) in

Lemma A.5; in this situation, we make use of Lemma A.3 above. By using the triangle
inequality, followed by Lemma A.1 and (A.4), we obtain the estimate∥∥(DΞt)(p)− (DφtZ)(p)

∥∥ =

∥∥∥∥∥D(Ξt−
j
nk )

Ξ
j
nk (p)

◦ (DΞ
j
nk )(p)− (Dφ

t− j
nk

Z )
φ

j
nk
Z (p)

◦Dφ
j
nk
Z (p)

∥∥∥∥∥
≤
∥∥∥∥D(Ξt−

j
nk )

Ξ
j
nk (p)

− (Dφ
t− j

nk
Z )

Ξ
j
nk (p)

∥∥∥∥ · ∥∥∥(DΞ
j
nk )(p)

∥∥∥
+

∥∥∥∥∥(Dφ
t− j

nk
Z )

Ξ
j
nk (p)

− (Dφ
t− j

nk
Z )

φ
j
nk
Z (p)

∥∥∥∥∥ · ∥∥∥(DΞ
j
nk )(p)

∥∥∥
+

∥∥∥∥(DΞ
j
nk )(p)− (Dφ

j
nk
Z )(p)

∥∥∥∥ · ∥∥∥∥(Dφ
t− j

nk
Z )

Θ
j
nk (p)

∥∥∥∥
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≤
∥∥∥∥D(Ξt−

j
nk )

Ξ
j
nk (p)

− (Dφ
t− j

nk
Z )

Ξ
j
nk (p)

∥∥∥∥ eK1
j
nk

+

(
t− j

nk

)
a1

(
t− j

nk
,K2

) ∥∥∥∥Ξ
j
nk (p)− φ

j
nk
Z (p)

∥∥∥∥ eK1
j
nk

+

∥∥∥∥(DΞ
j
nk )(p)− (Dφ

j
nk
Z )(p)

∥∥∥∥ eK1(t− j
nk

). (A.18)

Supposing we are trying to prove (A.17) for t = j+1
nk , the last two terms of (A.18) can be

bounded using the case l = 0 of the lemma and the case t = j
nk of (A.17) respectively. At

time t = j+1
nk the map Ξt−

j
nk is equal to Ξ

1
nk = φ

1
nk
Wm−1

◦ · · · ◦ φ
1
nk
W0

, and hence Lemma A.3

gives us the bound∥∥∥∥D(Ξt−
j
nk )

Ξ
j
nk (p)

− (Dφ
t− j

nk
Z )

Ξ
j
nk (p)

∥∥∥∥ =

∥∥∥∥D(Ξ
1
nk )

Ξ
j
nk (p)

− (Dφ
1
nk
Z )

Ξ
j
nk (p)

∥∥∥∥
≤
(

1

nk

)2

c1

(
1

nk
,M1,K2

)
.

This bound together with (A.18) establishes the bound (A.17) by induction.

Now the intermediate times j
kn ≤ t ≤ j+1

kn need a separate treatment, because for these

times Ξt−
j
nk is not of the form where Lemma A.3 applies. In fact, for these times we can

only establish a coarser estimate:∥∥∥∥DΞt−
j
nk −Dφt−

j
nk

Z

∥∥∥∥
∞
≤
∥∥∥DΞt−

j
nk − id

∥∥∥
∞

+

∥∥∥∥Dφt− j
nk

Z − id

∥∥∥∥
∞

≤
(
t− j

nk

)
K1e

K1(t− j
nk

) +

(
t− j

nk

)
K1e

K1(t− j
nk

)

= 2

(
t− j

nk

)
K1e

K1(t− j
nk

) . (A.19)

The estimate
∥∥DφtZ − id

∥∥
∞ ≤ tK1e

K1t is an immediate application of Gronwall’s inequality
to the derivative of the flow equation of Z, i.e. equation (A.2), and we leave the estimate∥∥∥∥DΞ

t− j
nk

Z − id

∥∥∥∥
∞
≤ (t− j

nk
)K1e

K1(t− j
nk

)

for j
kn ≤ t ≤

j+1
kn as an exercise to the interested reader.

In total, we have now proved that for any j
nk ≤ t ≤

j+1
nk we have

∥∥∥DΞt(Wr) −Dφ
t
Z

∥∥∥
∞
≤

j∑
i=0

1

nk

[
max

{
1

nk
c1

(
1

nk
,M1,K2

)
,

2

nk
K1e

K1
nk

}
+ a1

(
1

nk
,K2

)
d

(k)
0

(
j

nk
,M1,K2

)]
eK1

i
nk .

(A.20)
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Now notice that for j
nk ≤ t < j+1

nk the sum on the right hand side has j + 1 = bnktc + 1
summands. Thus we clearly obtain the estimate∥∥∥DΞt(Wr) −Dφ

t
Z

∥∥∥
∞
≤ 2

(
t+

1

k

)(
max

{
1

k
c1(1,M1,K2),

2

k
K1e

K1
k

}
+ a1

(
1

k
,K2

)
d

(k)
0 (1,M1,K2)

)
eK1t .

(A.21)

(The functions a1, c1, and d
(k)
0 are increasing in t, so we can thus obtain expressions inde-

pendent of n.) We define d
(k)
1 (t,M1,K2) to be the right hand side of (A.21), and then

lim
k→∞

d
(k)
1 (t,M,K) = 0

follows immediately from the fact that limk→∞ d
(k)
0 (t,M,K) = 0. �

We are now ready to compare Θt
(Zj) to the map Ωt

(Zj) defined in equation (A.12) above.

Recall that the definition of Ωt
(Zj) depends on the summands W

(j)
0 , . . . ,W

(j)
mj−1 in Zj =

W
(j)
0 + · · · + W

(j)
mj−1 and on the integers kj which appear in the definitions of the maps

Ξt
(W

(j)
r )

, for j = 0, 1, . . . , n − 1. Here n has been fixed in the first approximation step, and

the vector fields Z0, . . . , Zn−1 have been fixed in the second approximation step.

Lemma A.7. Let r ≥ 0. Then for any l ≤ r there are functions

f
(k0,...,kn−1)
l : R+ × Rn+ × Rn+ → R,

which are continuous and monotonically increasing in all variables, such that:

(1) For any tuples M = (M0, . . . ,Mn−1) and K = (K0, . . . ,Kn−1) we have

lim
kmin→∞

f
(k0,...,kn−1)
l (t,M,K) = 0 ,

where kmin is defined as the minimum of the numbers k0, . . . , kn−1.

(2) Let Zj be a vector field of the form W
(j)
0 + · · ·+W

(j)
mj−1 for 0 ≤ j ≤ n− 1. Suppose

that for each j there are positive constants K
(j)
0 , . . . ,K

(j)
r+1 and M

(j)
0 , . . . ,M

(j)
r such

that for any l ≤ r + 1 one has∥∥∥D(i)(W
(j)
i1

+ · · ·+W
(j)
iq

)
∥∥∥
∞
≤ K(j)

l

for all i ≤ l and all subsets {i1, . . . , iq} of {0, . . . ,mj − 1}, and∥∥∥D(i)[W (j)
q ,W

(j)
0 + · · ·+W

(j)
q−1]

∥∥∥
∞
≤M (j)

l

for all i ≤ l ≤ r and 1 ≤ q ≤ mj − 1. Then we have the estimate∥∥∥D(l)Θt
(Zj) −D

(l)Ωt

(W
(j)
r )

∥∥∥
∞
≤ f (k0,...,kn−1)

l (t, (M
(0)
l , . . . ,M

(n−1)
l ), (K

(0)
l+1, . . . ,K

(n−1)
l+1 ))

for all t ≥ 0.
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Proof. The theme of the proof is by now familiar. The case l = 0 is the statement of [Zen18,

Lemma 3.13]. For the case l = 1, and for times j
n ≤ t ≤

j+1
n , one starts with the estimate∥∥∥DΩt

(Zj) −DΘt
(Zj)

∥∥∥ =

∥∥∥∥DΞ
t− j

n

(W
(j)
r )
◦DΩ

j
n

(Zj) −Dφ
t− j

n
Zj
◦DΘ

j
n

(Zj)

∥∥∥∥
≤
∥∥∥∥DΩ

t− j
n

(Zj) −Dφ
t− j

n
Zj

∥∥∥∥ ∥∥∥∥DΩ
j
n

(Zj)

∥∥∥∥+

∥∥∥∥Dφt− j
n

Zj

∥∥∥∥ ∥∥∥∥DΩ
j
n

(Zj) −DΘ
j
n

(Zj)

∥∥∥∥ .
(A.22)

Now it is simple to verify that

∥∥∥∥DΩ
j
n

(Zj)

∥∥∥∥ ≤ e
1
n

(K
(0)
1 +···+K(j−1)

1 ), and together with Lemma

A.6 this gives inductively for j
n ≤ t ≤

j+1
n the estimate∥∥∥DΩt

(Zj) −DΘt
(Zj)

∥∥∥ ≤ j−1∑
i=0

d
(ki)
1

(
1

n
,M

(j)
1 ,K

(j)
2

)
e

1
n

(K
(0)
1 +···+K(i−1)

1 )

+ d
(kj)
1

(
t− j

n
,M

(j)
1 ,K

(j)
2

)
e

1
n

(K
(0)
1 +···+K(j−1)

1 ) ,

where the d
(k)
1 are functions satisfying the conclusion of Lemma A.6. The right hand side

defines the function f
(k0,...,kn−1)
1 , and the fact that

lim
kmin→∞

f
(k0,...,kn−1)
l (t,M,K) = 0

follows from the first conclusion of Lemma A.6.
We leave the induction steps for l ≥ 2 as an exercise for the interested reader. �

Once the vector fields Zj and their decomposition as sums Zj = W
(j)
0 + · · · + W

(j)
mj−1

are fixed, there are constants K
(j)
l and M

(j)
l satisfying the hypotheses of Lemma A.7.

Lemma A.7 then allows us to choose the multi-index (k0, . . . , kn−1) large enough so that we
have

f
(k0,...,kn−1)
l (t, (M

(0)
l , . . . ,M

(n−1)
l ), (K

(0)
l+1, . . . ,K

(n−1)
l+1 )) <

ε

3(r + 1)

for all l = 0, . . . , r, and it follows that∥∥∥Θt
(Zj) − Ωt

(Zj)

∥∥∥
Cr

<
ε

3

for all t ∈ [0, 1]. This concludes the proof of Theorem 4.5.

Appendix B. Area-preserving isotopies of surfaces

In this appendix we prove Lemma 4.9, which was used in the proofs of Theorems 4.1 and
7.3. We restate the lemma here for convenience.

Lemma 4.9. Let Σ be a compact surface with area form ω, and let K be a compact subset of
Σ. Let Ct ⊂ Σ (0 ≤ t ≤ 1) be a smooth isotopy of smoothly embedded curves (not necesarily
connected), and suppose that

(1) the union
⋃
t∈[0,1]Ct is contained in the interior of a compact, connected subsurface

Σ′ with smooth boundary, such that Σ′ is disjoint from K;
(2) each component γ ⊂ Ct is separating in Σ \ (Ct \ γ);
(3) the areas of the respective components of Σ \ Ct are independent of t.
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Then there is a smooth isotopy ψt : Σ→ Σ with ψ0 = idΣ such that

(1) ψt(C0) = Ct for all t;

(2) ψt is constant on Σ \ Σ′, and hence on a neighborhood of K, for all t ∈ [0, 1];
(3) each ψt is a symplectomorphism, i.e., ψ∗t ω = ω for all t.

Proof. We break the proof into two steps: first we arrange an isotopy which fixes the
symplectic form near Ct and on the closure of Σ \ Σ′, and then we use another isotopy to
fix it away from these sets.

Step 1: Find disjoint open neighborhoods V of C0 and W of Σ \ Σ′, and an isotopy
ϕt : Σ→ Σ with ϕt(C0) = Ct, such that (ϕ∗tω) |V = ω|V and ϕt|W = idW for all t.

We start by using the isotopy extension theorem to produce an isotopy

φt : Σ→ Σ, 0 ≤ t ≤ 1,

supported on an arbitrarily small neighborhood of the compact set
⋃
tCt ⊂ Σ′, such that

φt(C0) = Ct for all t. By taking the support small enough we can make it disjoint from an

open neighborhood W of Σ \ Σ′, since the latter is compact and disjoint from
⋃
tCt.

Since C0 is Lagrangian with respect to each of the forms φ∗tω, 0 ≤ t ≤ 1, the parametrized
Weinstein Lagrangian neighborhood theorem (see [Oh15, Exercise 3.3.4]) provides tubular
neighborhoods Ut of C0 and a 1-parameter family of diffeomorphisms

ht : U0
∼−→ Ut,

with h0 = idΣ, which fix C0 pointwise and satisfy h∗t (φ
∗
tω) = ω. This ht is constructed as

the time-1 flow of a vector field vt, which is defined on a neighborhood U of C0 and satisfies
vt|C0 = 0 for all t. We take a smaller open neighborhood V of C0 whose closure satisfies

V ⊂ U ∩ (Σ \W ),

and a smooth cut-off function ρ : Σ → [0, 1] which is supported on U \ W and satisfies

ρ|V ≡ 1. We then let h̃t : Σ→ Σ be the time-t flow of ρ · vt, and define

ϕt = φt ◦ h̃t.

By construction, it follows that ϕt(C0) = φt(h̃t(C0)) = φt(C0) = Ct; that both φt and h̃t
fix W pointwise, hence so does ϕt; and that

ϕ∗tω|V = h̃∗t (φ
∗
tω)
∣∣∣
V

= h∗t (φ
∗
tω)|V = ω|V

as desired.

Step 2: Construct the isotopy ψt : Σ→ Σ.
Let Σi denote the closures of the various components of Σ′ \ C0. Then by hypothesis,

and by the fact that ϕt fixes Σ \ Σ′ ⊂W , each of the areas∫
Σi

ϕ∗tω

is constant as a function of t, so we apply Moser’s theorem, as generalized by Banyaga
[Ban74] to compact manifolds with boundary, to the surfaces Σi. This theorem asserts that
since

∫
Σi
ϕ∗tω is constant, there is an isotopy

χit : Σi → Σi, 0 ≤ t ≤ 1
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such that (χit)
∗(ϕ∗tω) = ϕ∗0ω = ω and χit|∂Σi

= 0 for all t ∈ [0, 1]. Banyaga’s proof begins by
constructing a 1-form αit on Σi satisfying

d

dt

(
ϕ∗tω|Σi

)
= dαit, αit

∣∣
∂Σi

= 0,

and then one takes χit to be the flow of a vector field vit satisfying ιvit(ϕ
∗
tω) = −αit. We

remark that by condition (2), each component of C0 ∩ Σi belongs to the boundary of Σi

rather than the interior, so that αit = 0 along all of C0 ∩ Σi.
We now modify the above so that χit fixes not just ∂Σi but a whole neighborhood thereof.

Let N ⊂ Σi be a collar neighborhood of ∂Σi contained in V ∪W , and identify N ∼= [0, 1]×∂Σi

so that ∂Σi is identified with {0} × ∂Σi. We know that αit
∣∣
∂Σi

is zero, so it represents the

zero class in H1
dR(∂Σi). Since N ⊂ V ∪W , Step 1 guarantees that ϕ∗tω is constant on N ,

so then αit
∣∣
N

is closed, and its cohomology class is sent to zero by the restriction map

H1
dR(N)

∼−→ H1
dR(∂Σi),

so it must be exact. Thus we can write αit
∣∣
N

= dβt, and we replace αit with αit − d(ρβt),

where ρ : [0, 1]→ [0, 1] is a smooth cutoff function satisfying ρ(t) = 1 for t ≤ 1
3 and ρ(t) = 0

for t ≥ 2
3 . This leaves dαit unchanged, but now we have αit ≡ 0 on [0, 1

3 ] × ∂Σi ⊂ N . It

follows in the above construction that vit is zero on this neighborhood, so χit is stationary
there as desired.

Having arranged for each χit to fix a neighborhood of ∂Σi, we can now glue the various
χit together and extend by the identity on the rest of Σ to get a single smooth isotopy

χt : Σ→ Σ

such that χ∗t (ϕ
∗
tω) = ω, and such that χt is the identity on a neighborhood U of C0∪Σ \ Σ′.

We therefore define

ψt = ϕt ◦ χt : Σ→ Σ,

which fixes the neighborhood U ∩W of Σ \ Σ′. By construction we have

ψt(C0) = ϕt(χt(C0)) = ϕt(C0) = Ct

and ψ∗t ω = χ∗t (ϕ
∗
tω) = ω, so ψt is the desired isotopy. �
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