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Abstract. We prove that if an integer homology three-sphere contains an em-
bedded incompressible torus, then its fundamental group admits irreducible SU(2)-
representations.

1. Introduction

The fundamental group is one of the most powerful invariants to distinguish closed
three-manifolds. In fact, by Perelman’s proof of Thurston’s Geometrization conjec-
ture [28, 30, 29], fundamental groups determine closed, orientable three-manifolds
up to orientations of the prime factors and up to the indeterminacy arising from
lens spaces. Prominently, the three-dimensional Poincaré conjecture, a special case
of Geometrization, characterizes S3 as the unique closed, simply-connected three-
manifold. For a three-manifold with non-trivial fundamental group, it is then useful
to quantify the non-triviality of the fundamental group. Since the Geometrization
theorem implies that three-manifolds have residually finite fundamental groups [17],
this non-triviality can be measured by representations to finite groups. However,
there is not a finite group G such that every three-manifold group has a non-trivial
homomorphism to G. Therefore, a more uniform measurement of non-triviality can
be found in the following conjecture:

Conjecture 1 (Kirby Problem 3.105(A), [18]). If Y is a closed, connected, three-
manifold other than S3, then π1(Y ) admits a non-trivial SU(2)-representation.

Note that this conjecture is equivalent to the statement that the fundamental
groups of all integer homology three-spheres other than S3 admit irreducible SU(2)-
representations. Indeed, every three-manifold whose first homology group is non-
zero admits non-trivial abelian representations to SU(2). Moreover, lens spaces
are examples of manifolds that admit non-trivial SU(2)-representations of their
fundamental groups, but no irreducible ones. There are also three-manifolds with
non-abelian fundamental group which do not admit irreducible representations [26].
However, for representations of perfect groups to SU(2), non-triviality is equivalent
to irreducibility.
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For comparison, the third author showed in [36] that Conjecture 1 is true if one
replaces SU(2) with SL2(C). The reader may also relate Conjecture 1 with char-
acterizing the three-manifolds with simplest instanton or Heegaard Floer homolo-
gies. One side of the L-space conjecture predicts that every prime integer homology
three-sphere other than S3 and the Poincaré homology three-sphere admits a co-
orientable taut foliation. This fact, together with the gauge-theoretic methods used
by Kronheimer-Mrowka in [22], would then imply Conjecture 1.

There are many families of integer homology three-spheres for which Conjecture 1
has been established, such as those which are Seifert fibered (although the methods
go back to Fintushel-Stern [12], this can be found explicitly in [32, Theorem 2.1]),
branched double covers of non-trivial knots with determinant 1 [7, Theorem 3.1]
and [35, Corollary 9.2], 1/n-surgeries on non-trivial knots in S3 [21], those that are
filled by a Stein manifold which is not a homology ball [1], or for splicings of knots
in S3 [36].

It follows again from Geometrization that there are three (non-disjoint) types
of prime integer homology three-spheres: Seifert fibered, hyperbolic, and toroidal
ones. We remark that although some toroidal integer homology three-spheres are
Seifert fibered, they are never hyperbolic. The third author established that if all
hyperbolic integer homology three-spheres have irreducible SU(2)-representations,
then Conjecture 1 holds in general. While we are unable to complete the remaining
step in this program, we confirm the existence of SU(2)-representations for toroidal
integer homology three-spheres.

Theorem 1.1. Let Y be a toroidal integer homology three-sphere. Then π1(Y )
admits an irreducible SU(2)-representation.

A proof of Theorem 1.1 could be obtained by showing that toroidal integer homol-
ogy three-spheres have non-trivial instanton Floer homology. Although we expect
the latter to be true (see [18, Problem 3.106]), we do not prove it in this article. Our
proof of Theorem 1.1 instead relies on holonomy perturbations in a manner similar
to the proof of [36, Theorem 8.3]. If Y is a toroidal integer homology three-sphere,
then Y can be viewed as a splice of knots Ki in integer homology three-spheres Yi for
i = 1, 2 (see for example [10, Proof of Corollary 6.2]). If some Yi has an irreducible
SU(2)-representation, then there is a π1-surjective map from Y to Yi and we can
pull back to an irreducible SU(2)-representation for Y . If not, then we will study
the image of the space of representations of the knot exterior Yi \ N(Ki)

◦ in the
character variety for the boundary torus (i.e. in the pillowcase). Here, N(Ki) de-
notes a closed tubular neighborhood of Ki, and N(Ki)

◦ denotes its interior. Similar
to the case of non-trivial knots in S3, if Yi has no irreducible representations, we will
show that the image in the pillowcase contains a suitably essential loop. The loops
for the two exteriors will have a non-trivial intersection, and therefore the spliced
manifold Y will admit an irreducible SU(2)-representation.
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Theorem 1.1 gives a simpler proof of [36, Theorem 9.4] since it avoids the use of
a finiteness result of Boileau-Rubinstein-Wang.

Corollary 1.2 (Theorem 9.4, [36]). Every integer homology three-sphere other than
S3 has an irreducible SL2(C)-representation of its fundamental group.

Proof. By the remarks above we have to consider three cases: Seifert fibered, hy-
perbolic, and toroidal integer homology three-spheres. Let Y be an integer ho-
mology three-sphere other than S3. If Y is hyperbolic, it admits an irreducible
SL2(C)-representation by lifting the holonomy representation to PSL2(C) [8]. If
Y is Seifert fibered, then π1(Y ) admits an irreducible SU(2)-representation by [32,
Theorem 2.1]. If Y is toroidal, the result now follows from Theorem 1.1. �

In order to generalize the holonomy perturbation machinery developed by the
third author from non-trivial knots in S3, we will need to establish a non-vanishing
result which may be of independent interest.

Theorem 1.3. Let J be a knot in an integer homology three-sphere Y such that the
exterior of J is irreducible and boundary-incompressible. Suppose that I∗(Y ) = 0.
Then, Iw∗ (Y0(J)) 6= 0.

Here, and throughout this article, I∗ denotes Floer’s original version of instanton
Floer homology and Iw∗ denotes instanton Floer homology for an admissible SO(3)-
bundle with second Stiefel-Whitney class w. (Note that Y0(J) admits only one such
bundle.)

The proof of Theorem 1.3 is a combination of (1) Kronheimer-Mrowka’s non-
vanishing result for instanton Floer homology of three-manifolds with a taut sutured
manifold hierarchy [19], (2) the surgery exact triangle in instanton Floer homology,
and (3) Gordon’s description of surgery on cable knots [16]. The argument is similar
to Kronheimer-Mrowka’s proof of Property P [22].

While Theorem 1.3 itself may not be particularly interesting, it does lead to the
following corollary, whose analogue in Heegaard Floer homology has been established
by Ni [27, p.1144] and Conway and Tosun [6]. The proof of the corollary appears in
Section 2 below.

Corollary 1.4. Let Y 6= S3 be an integer homology three-sphere which bounds a
Mazur manifold. Then, I∗(Y ) 6= 0, and hence π1(Y ) admits an irreducible SU(2)-
representation.

Recall that Baldwin-Sivek prove that if an integer homology three-sphere Y
bounds a Stein domain with non-trivial homology, then π1(Y ) admits an irreducible
SU(2)-representation [1, Theorem 1.1]. In light of Conjecture 1, the following con-
jecture would be a natural extension of their work:

Conjecture 2. If Y 6= S3 is an integer homology three-sphere which bounds a Stein
integer homology ball, then π1(Y ) admits an irreducible SU(2)-representation.
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Since Stein domains admit handlebody decompositions with no three-handles [11],
Corollary 1.4 proves this conjecture for the boundaries of Stein integer homology
balls with the simplest possible handle decompositions.

Theorem 1.1 also has two simple corollaries. The first one is obtained by consid-
ering branched covers over satellite knots in S3. Remarkably, its proof requires no
use of gauge theory, beyond our main result. Its proof appears in Section 5 below.

Corollary 1.5. Let K be a prime, satellite knot in S3. Conjecture 1 holds for any
non-trivial cyclic branched cover of K.

To obtain the second corollary, define a graph manifold integer homology three-
sphere to be a closed, orientable three-manifold whose torus decomposition has no
hyperbolic pieces.1 As discussed above, the fundamental groups of Seifert integer
homology three-spheres other than S3 admit irreducible SU(2)-representations, and
hence we obtain:

Corollary 1.6. Let Y be a graph manifold integer homology three-sphere other than
S3. Then π1(Y ) admits an irreducible SU(2)-representation.

A first alternate proof of this corollary can be obtained by noting that every
integer homology three-sphere other than S3 which is a graph manifold can be
realized as the branched double cover of a non-trivial (arborescent) knot in S3, see
[3]. A second alternate proof can be obtained by noting that every prime graph
manifold integer homology three-sphere Y other than S3 or Σ(2, 3, 5) admits a co-
orientable taut foliation by [2, Corollary 0.3]. This implies that I∗(Y ) 6= 0, and this
in turn implies that there exists an irreducible SU(2)-representation. On the other
hand, the binary dodecahedral group is well-known to admit two conjugacy classes
of irreducible representations, completing the proof. Note that, unlike for Seifert
integer homology three-spheres, the Casson invariant of a non-trivial graph manifold
can be zero. For example, the three-manifold Y obtained as the splice of two copies
of the exterior of the right handed trefoil has trivial Casson invariant [15, 4].

Outline. In Section 2 we establish the main technical result Theorem 1.3 whose
strategy also leads us to prove Corollary 1.4 about Mazur manifolds. In Section 3,
we review the pillowcase construction and prove Theorem 1.1 in subsection 3.3,
using a technical result about invariance under holonomy perturbations in instanton
Floer homology reviewed in Section 4. The material in Section 4 is mostly known
(or at least folklore knowledge) and can be found elsewhere, but the reader might
appreciate our synthesis of the role of holonomy perturbations and our sketch of
invariance in order to follow more easily through the proof of our main results. In
Section 5, we prove Corollary 1.5.

1Some authors impose additional constraints, such as primeness or a non-trivial torus
decomposition.



TOROIDAL HOMOLOGY SPHERES AND SU(2)-REPRESENTATIONS 5

Acknowledgements. Tye Lidman was partially supported by NSF grant DMS-
1709702 and a Sloan Fellowship. Juanita Pinzón-Caicedo is grateful to the Max
Planck Institute for Mathematics in Bonn for its hospitality and financial support
while a portion of this work was prepared for publication. She was partially sup-
ported by NSF grant DMS-1664567, and by Simons Foundation Collaboration grant
712377. Raphael Zentner is grateful to the DFG for support through the Heisenberg
program. We would also like to thank John Baldwin, Paul Kirk, and Tom Mrowka
for helpful discussions.

2. Instanton Floer homology of 0-surgery

In this section we rely solely on formal properties of instanton Floer homology
to prove Theorem 1.3 regarding the instanton Floer homology of 0-surgeries, and
Corollary 1.4 regarding the instanton Floer homology of integer homology three-
spheres that bound Mazur manifolds. More concrete aspects of instanton Floer
homology groups, in particular those regarding perturbations, appear in Section 4
but in this section we wish to place the focus on the usefulness of formal properties
for purposes of computations.

We consider instanton Floer homology for admissible bundles, as introduced by
Floer [14]. For integer homology three-spheres, this is the trivial SU(2)-bundle over
Y . For three-manifolds with positive first Betti number, this is an SO(3)-bundle
P → Y such that there is a surface Σ ⊆ Y on which the second Stiefel-Whitney
class w := w2(P ) evaluates non-trivially, that is, such that 〈w2(P ), [Σ]〉 6= 0. The
instanton Floer homology group is defined as a version of Morse homology of the
Chern-Simons function on the space of connections on the admissible bundle [14, 9].
It is denoted by I∗(Y ) for the trivial bundle on integer homology three-spheres, and
it is denoted by Iw∗ (Y ) for SO(3)-bundles P → Y with w2(P ) = w. We remark here
that for an integer homology three-sphere, the trivial connection is isolated and is
the unique reducible connection (up to gauge equivalence). In the other cases, the
admissibility condition ensures that there are no reducible flat connections on the
bundle.

In the case of a knot K in an integer homology three-sphere Y , there is a unique
admissible bundle on the 0-surgery Y0(K), because H2(Y0(K);Z/2) ∼= Z/2. There-
fore, the instanton Floer homology group Iw(Y0(K)) is defined without ambiguity.

Proposition 2.1. Instanton Floer homology satisfies the following properties:

(1) For Y an integer homology three-sphere and any n ∈ Z, the three-manifolds
Y1/n(K), Y1/(n+1)(K), and Y0(K) fit into an exact triangle

I∗(Y1/n(K))

''
I∗(Y1/(n+1)(K))

66

Iw∗ (Y0(K)).oo
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(2) If M is an irreducible three-manifold with b1(M) = 1, then Iw∗ (M) 6= 0.
(3) For Y an integer homology three-sphere, if π1(Y ) admits no irreducible

SU(2)-representations, then I∗(Y ) = 0.
(4) Iw∗ (S2 × S1) = 0.

Proof. The surgery exact triangle in (2.1(1)) is originally due to Floer [14, Theorem
2.4] with details given in [5, Theorem 2.5]. The non-triviality result in (2.1(2)) is
precisely [20, Theorem 7.21]. Next, (2.1(3)) follows from [13, Theorem 1], since if
π1(Y ) admits no irreducible SU(2)-representations, then the generating set for the
instanton Floer chain groups is empty. Finally, (2.1(4)) follows from (2.1(3)) and
(2.1(1)), by considering the surgery exact triangle for surgery on the unknot in S3.
Alternatively, this follows from the definition of Iw∗ (see Section 4), since π1(S2×S1)
admits no representations to SO(3) which do not lift to SU(2). �

We will be particularly interested in integer homology three-spheres whose fun-
damental groups do not admit irreducible SU(2)-representations. We therefore es-
tablish the following definition.

Definition 2.2. An integer homology three-sphere Y is SU(2)-cyclic if every SU(2)-
representation of π1(Y ) is trivial.

Notice that Conjecture 1 states that S3 is the only SU(2)-cyclic integer homology
three-sphere.

Having stated the above formal properties of instanton Floer homology, the proofs
of Theorem 1.3 and Corollary 1.4 now follow easily.

2.1. Non-vanishing of Instanton Floer Homology. In this subsection we il-
lustrate the way the formal properties from Proposition 2.1 can be used to show
that the instanton homology groups are non-zero in two cases: (1) three-manifolds
obtained as 0-surgery along knots in SU(2)-cyclic integer homology three-spheres
whose exterior is irreducible and boundary incompressible, and (2) three-manifolds
other than S3 obtained as the boundary of a Mazur manifold.

Proof of Theorem 1.3. We assume Iw∗ (Y0(K)) is trivial and argue by contradiction.
By Proposition 2.1(1) the three-manifolds Y1/n(K), Y1/(n+1)(K), and Y0(K) fit to-
gether in an exact triangle

I∗(Y1/n(K))

''
I∗(Y1/(n+1)(K))

66

Iw∗ (Y0(K)).oo

The assumption Iw∗ (Y0(K)) = 0 implies that there is an isomorphism

I∗(Y1/(n+1)(K)) ∼= I∗(Y1/n(K)) for each n ∈ Z.



TOROIDAL HOMOLOGY SPHERES AND SU(2)-REPRESENTATIONS 7

In particular, if n = 0 then I∗(Y1(K)) ∼= I∗(Y ) = 0 thus showing that for all n ∈ Z,

I∗(Y1/n(K)) = 0. (1)

Now, a result of Gordon [16, Lemma 7.2] shows that Y1/4(K) is diffeomorphic to
Y1(K2,1), where K2,1 is the (2, 1)-cable of the knot K (See Figure 5 for an example of
K2,1). This together with Equation (1) implies I∗(Y1(K2,1)) = 0. An iteration of an
exact triangle as in Proposition 2.1(1) for surgeries along K2,1 gives Iw∗ (Y0(K2,1)) =
0.

We now consider a decomposition of Y0(K2,1) that includes the knot exterior of K
in Y . Denote by C2,1 a closed curve that lies in the boundary of a “small” solid torus
S1 × ∂D2

1/2
⊂ S1 ×D2, and representing the class 2[S1] + [∂D2

1/2
] in H1(S1 × ∂D2

1/2
).

Notice that the 0-framing of K2,1 in Y induces the framing on C2,1 determined by
the curve λ in ∂N (C2,1) that represents the class 2[S1] in H1(S1×∂D2) (see [16, pg.
692]). Therefore, the manifold Y0(K2,1) can be expressed as the union of the knot
exterior Y \N(K), and the result of Dehn surgery on S1 ×D2 along the curve C2,1

with framing given by λ. By hypothesis the knot exterior Y \ N(K) is irreducible
and boundary-incompressible, and by [16, Lemma 7.2] the 0-surgery along the curve
C2,1 is a Seifert fibred space with incompressible boundary. Hence Y0(K2,1) is an
irreducible closed three-manifold with first Betti number equal to 1 and with trivial
instanton Floer homology. However, this contradicts Proposition 2.1(2), which says
that Iw∗ (Y0(K2,1)) 6= 0. �

Next, consider integer homology three-spheres that bound a Mazur manifold,
that is, a four-manifold that admits a handle decomposition in terms of exactly one
0-handle, one 1-handle, and one 2-handle as in Figure 1. Then we have:

Proof of Corollary 1.4. If Y bounds a Mazur manifold, then there exists a knot
J in Y such that Y0(J) = S2 × S1. Moreover, if I∗(Y ) = 0, a combination of the
surgery exact triangle from Proposition 2.1(1) and the computation Iw∗ (S2×S1) = 0
from Proposition 2.1(4) shows once again that I∗(Y1/4(J)) = 0. The same argument
used above in the proof of Theorem 1.3 then gives I∗(Y0(J2,1)) = 0. However, it
is easy to see that the exterior of a knot in S2 × S1 which generates homology is
either irreducible and boundary-incompressible or a solid torus. The latter case
corresponds to Y = S3, so by assumption we have that Y0(J2,1) is irreducible with
b1 = 1. But this contradicts Proposition 2.1(2). �

3. The pillowcase alternative

In this section we recall the relevant background on SU(2)-character varieties and
generalize work of the third author [36] to prove Theorem 1.1, our main result.
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n

Figure 1. A Mazur manifold with one two-handle attached with
framing given by n for some n ∈ N.

3.1. The pillowcase. Given a connected manifold M , we denote by

R(M) = Hom(π1(M), SU(2))/SU(2)

the space of SU(2)-representations of its fundamental group, up to conjugation.
We will write R(M)∗ for the subset of irreducible representations. For example,
the space R(T 2) is identified with the pillowcase, an orbifold homeomorphic to
a two-dimensional sphere with four corner points. To see this, notice that since
π1(T 2) ∼= Z2 is abelian, the image of any representation ρ : π1(T 2) → SU(2) is
contained in a maximal torus subgroup of SU(2). Up to conjugation, this torus can

be identified with the circle group consisting of matrices of the form

[
eiθ 0
0 e−iθ

]
for

θ ∈ [0, 2π]. Thus, if we denote the generators of π1(T 2) ∼= Z2 by m and l, then,
again after conjugation, a representation ρ ∈ R(T 2) is determined by

ρ(m) =

[
eiα 0
0 e−iα

]
and ρ(l) =

[
eiβ 0
0 e−iβ

]
,

and hence we can associate to ρ a pair (α, β) ∈ [0, 2π]×[0, 2π]. However, conjugation

of ρ by the element

[
0 1
−1 0

]
gives rise to the representation associated to the pair

(2π−α, 2π− β). This is the only ambiguity, however, as can be seen using the fact
that the trace of an element in SU(2) determines its conjugacy class. Therefore
R(T 2) is isomorphic to the quotient of the fundamental domain [0, π] × [0, 2π] by
identifications on the boundary as indicated in Figure 2.

If we have a three-manifold M with torus boundary, then the inclusion i : T 2 ∼=
∂M ↪→M induces a map i∗ : R(M)→ R(T 2) by restricting a representation to the
boundary. For instance, if K is a knot in a three-manifold Y , then the three-manifold
Y (K) := Y \ N(K)◦ obtained by removing the interior of a tubular neighborhood
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R(K)

R(K)

P Q

P Q

Figure 2. The gluing pattern for obtaining the pillowcase from a
rectangle, and the image of the representation variety R(K) of the
trefoil in the pillowcase.

N(K) of K from Y , is a three-manifold with boundary a two-dimensional torus.
Figure 2 shows the image of R(S3(K)) when K is the right handed trefoil in S3,
once in the pillowcase, and once in the fundamental domain [0, π]× [0, 2π]. Here we
use the convention that the first coordinate corresponds to ρ(mK), where mK is a
meridian to the knot K, and the second coordinate corresponds to ρ(lK), where lK
is a longitude of the knot K.

For a knot K in a three-manifold Y there is a well-defined notion of meridian
mK , and if the knot is nullhomologous, there is a well-defined notion of longitude
lK . In particular, this is the case for any knot K in an integer homology three-
sphere Y . In what follows, we will use the notation R(K) := R(Y (K)) if it is clear
which integer homology three-sphere Y we have in mind, and we will stick to the
above convention of the coordinates in R(T 2) corresponding to the meridian and
longitude of K. With these conventions, all abelian representations in R(K) map
under i∗ to the thick red line {β = 0 mod 2πZ} ‘at the bottom’ of the pillowcase
R(T 2). Indeed, lK is a product of commutators in the fundamental group of the
knot complement, so an abelian representation necessarily maps lK to the identity.
Furthermore, for any α ∈ [0, π] we can find an abelian representation of R(K) whose
restriction to R(T 2) corresponds to (α, 0).

If we cut the pillowcase open along the lines a0 := {α = 0 mod 2πZ} and aπ :=
{α = π mod 2πZ}, we obtain a cylinder C = [0, π]×R/2πZ. In the gluing pattern
of Figure 2 this means that we do not perform the identifications along the four
indicated vertical boundary lines.
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Our main goal is to prove Theorem 3.5 below, which asserts that if K is a knot
in an SU(2)-cyclic integer homology three-sphere whose 0-surgery has non-trivial
instanton homology, then the image of R(K) in the pillowcase contains a homo-
logically non-trivial embedded closed curve in the cylinder C. In order to derive
Theorem 1.1 from this, we need a more refined statement, namely, that there is a
homologically non-trivial embedded closed curve in i∗(R(K)) that is disjoint from a
neighborhood of the two lines a0 and aπ. Notice that for a knot in S3, there are no
representations with ρ(lK) 6= id and ρ(mK) = ± id. This is because the fundamen-
tal group of a knot complement in S3 is normally generated by the meridian of the
knot. In particular, there are no representations in i∗(R(K)) that have coordinates
(α, β) with β 6= 0, and α = 0 or α = π. In [36, Proposition 8.1], it is shown that
the image of R(K)∗, the subset of irreducible representations in R(K), in fact stays
outside a neighborhood of these two lines. We begin with a generalization of this
fact.

Lemma 3.1. Let K be a knot in an SU(2)-cyclic integer homology three-sphere Y .
There is a neighborhood of the lines {α = 0 mod 2πZ} and {α = π mod 2πZ} in
the pillowcase which is disjoint from the image of R(K)∗.

Proof. Suppose by contradiction that the image of R(K)∗ intersects every neighbor-
hood of the lines {α = 0 mod 2πZ} and {α = π mod 2πZ}. If that was the case,
then we could find a sequence of elements in R(K)∗ whose image under i∗ converges
to a point on one of the two lines. By the compactness of R(K), the limit is the
image of a representation ρ : π1(Y (K)) → SU(2) sending every meridional curve µ
to ±1. We first claim that ρ must be a central representation (and hence reducible),
and so its image under i∗ can only be (0, 0) or (π, 0).

First, if ρ(µ) = 1, then ρ : π1(Y (K))→ SU(2) is really a representation of π1(Y ).
Since Y is assumed to be SU(2)-cyclic, then the representation is trivial and there-
fore ρ(λ) = 1. As a consequence, if the limit of elements in R(K)∗ is an element
of the line {α = 0 mod 2πZ}, then it is the point (0, 0) in the pillowcase. Next,
consider the case that ρ(µ) = −1. If the representation ρ is irreducible, then we
obtain an irreducible representation ρ̃ : π1(Y ) → SO(3). The obstruction to lifting
an SO(3) representation into an SU(2)-representation is an element of H2(Y ;Z/2),
and since Y is an integer homology three-sphere, the obstruction vanishes and ρ̃
would lift to an irreducible representation to SU(2), contradicting the fact that
Y is SU(2)-cyclic. Therefore, a representation ρ : π1(Y (K)) → SU(2) satisfying
ρ(µ) = −1 is reducible and hence abelian, and so factors through H1(Y (K)). Be-
cause λ is trivial in H1(Y (K)), we see that ρ is the central representation sending
µ to −1 and λ to 1, and this corresponds to the point (−π, 0) in the pillowcase. All
of this shows that if a sequence of elements in i∗R(K) converges to a point on the
lines {α = 0 mod 2πZ} and {α = π mod 2πZ}, then the limit point is a central
representation. For notation, we will call these representations ρ± for the sign of
the image of µ.
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Now, it remains to show that the points (0, 0) and (π, 0) cannot be limits of
irreducible representations. We remark here that this fact does not require that Y
is SU(2)-cyclic. Let Γ = π1 (Y (K)). A result of Weil [33] expanded in [25, Chapter
2] shows that TρR(K) corresponds to H1(Γ; su(2)ad◦ρ). This group is identified with
the first cohomology group (with twisted coefficients) of a K(Γ, 1)-space, or more
generally, with the first (twisted) cohomology of any CW complex with fundamental
group isomorphic to Γ. This shows that H1(Γ; su(2)ad◦ρ) = H1(Y (K); su(2)ad◦ρ) and
so TρR(K) = H1(Y (K); su(2)ad◦ρ). Next, since each representation ρ± is central,
then ad ◦ ρ± is the trivial representation and so

H1
(
Y (K); su(2)ad◦ρ±

)
= H1

(
Y (K);R3

) ∼= R3.

This shows that the tangent space to R(K) at ρ± is three-dimensional. Since we
obtain three dimensions of freedom by abelian representations near ρ± in R(K), the
entire tangent space to R(K) consists of tangent vectors to abelian representations
and so there cannot be irreducible representations near ρ±, completing the proof. �

3.2. Essential curves in the pillowcase. In this section, we relate the instanton
Floer homology of 0-surgery on a knot to the image of the character variety of the
knot exterior in the pillowcase. This will be the key step in the proof of Theorem 1.1,
found at the end of this subsection.

We next establish some notation, following Kronheimer-Mrowka in [21], that will
be useful in the proof of our next theorem.

Definition 3.2. For a subset L ⊆ R(T 2), we denote by R(K|L) the set of elements
[ρ] ∈ R(K) such that [i∗ρ] ∈ L.

Theorem 3.3. Let K be a knot in an integer homology three-sphere Y , and assume
that the instanton Floer homology of the 0-surgery is non-vanishing, Iw∗ (Y0(K)) 6= 0.
Then any topologically embedded path from P = (0, π) to Q = (π, π) in the associated
pillowcase has an intersection point with the image of R(K).

Before proving the theorem, we point out that this generalizes [36, Theorem 7.1],
from knots in S3 to knots in general integer homology three-spheres. The main
difference in the argument compared to [36, Theorem 7.1] is that here we make
use of the non-trivial instanton Floer homology of the 0-surgery in an essential
way, which is exploited through its connection with holonomy perturbations of the
Chern-Simons functional. The arguments of the third author in [36] instead use
holonomy perturbations of a moduli space which computes the Donaldson invariants
of a closed 4-manifold containing the 0-surgery as a hypersurface. In that case, the
non-vanishing result builds on the existence of a taut foliation on S3

0(K) for a non-
trivial knot K. In the case at hand, we do not know whether Y0(K), the 0-surgery
on a knot K in the integer homology three-sphere Y , admits a taut foliation.

Proof. Suppose by contradiction that there is a continuous embedded path c from
P to Q such that its image is disjoint from i∗(R(K)) ⊆ R(T 2). (We will not



12 TYE LIDMAN, JUANITA PINZÓN-CAICEDO, AND RAPHAEL ZENTNER

distinguish between paths and their image for the remainder of this proof.) In other
words, R(K|c) is empty. In particular, we may suppose that c is disjoint from the
bottom line {β = 0} of the pillowcase R(T 2), since any element of this line lies
in the image of i∗. Since the image i∗(R(K)) is compact, there is a neighborhood
U ⊆ R(T 2) of the image of c in R(T 2) which is still disjoint from i∗(R(K)). Since
R(K|c) is empty, for c′ sufficiently close to c, R(K|c′) is empty as well.

Associated to a three-manifold and admissible bundle, we consider two objects:
the Chern-Simons functional and holonomy perturbations of the Chern-Simons func-
tional. These are described in detail in Section 4, in particular Sections 4.2 and 4.3,
but their definition is not needed for the proof. Given a three-manifold Z with ad-
missible bundle represented by w and a holonomy perturbation Ψ, let RwΨ(Z) denote
the set of critical points of the Chern-Simons functional perturbed by Ψ. By Theo-
rem 4.4 below (which is essentially a synthesis of [36, Theorem 4.2 and Proposition
5.3]), there exists a path c′ arbitrarily close to c and a (holonomy) perturbation Ψ
of the Chern-Simons functional such that RwΨ(Y0(K)) is a double cover of R(K|c′).
Therefore, RwΨ(Y0(K)) is empty, so computing Morse homology with respect to this
perturbation of the Chern-Simons functional produces a trivial group. However,
Theorem 4.5 below asserts that computing Morse homology with respect to the par-
ticular perturbation Ψ produces a group isomorphic to Iw∗ (Y0(K)), which is non-zero
by assumption. Therefore, we obtain a contradiction. �

Remark 3.4. Although [36, Proposition 5.3] is only stated for knots in S3, the
arguments used in its proof apply for a knot in an arbitrary SU(2)-cyclic integer
homology three-sphere.

If we combine the constraint that Y is SU(2)-cyclic with the assumption that
Iw∗ (Y0(K)) is non-trivial, then we obtain the following generalization of [36, Theorem
7.1], which will be the last step before the proof of our main theorem.

Theorem 3.5. (Pillowcase alternative) Suppose Y is an SU(2)-cyclic integer ho-
mology three-sphere. Suppose K is a knot in Y such that the 0-surgery Y0(K) has
non-trivial instanton Floer homology Iw∗ (Y0(K)), where w is the non-zero class in
H2(Y0(K);Z/2) ∼= Z/2. Then the image i∗(R(Y (K))) in the cut-open pillowcase
C = [0, π]× (R/2πZ) contains a topologically embedded curve which is homologically
non-trivial in H1(C;Z) ∼= Z.

Proof. The hypothesis implies that the lines {(0, β) ∈ R(T 2) |β 6= 0} and {(π, β) ∈
R(T 2) |β 6= 0} have empty intersection with i∗(R(Y (K))). The conclusion then
follows from Theorem 3.3 together with the Alexander duality argument of [36,
Lemma 7.3]. �

3.3. Main Result. In this subsection we prove that if an integer homology three-
sphere contains an embedded incompressible torus, then the fundamental group of
the homology three-sphere admits irreducible SU(2)-representations. To derive our
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i∗R(K)

QP

Figure 3. This is a hypothetical image of a representation variety
i∗(R(K)) of a knot K in an integer homology three-sphere Y . The
homology three-sphere Y is assumed to satisfy Iw∗ (Y0(K)) 6= 0 and
assumed to not be SU(2)-cyclic. As a consequence, i∗(R(K)) inter-
sects every path joining P and Q as in Theorem 3.3, but it does not
contain a curve which is homologically non-trivial in the cut-open
pillowcase C = [0, π] × (R/2πZ). This hypothetical example thus
illustrates that the SU(2)-cyclic assumption is necessary in Theo-
rem 3.5.

result we first recall that we can realize a toroidal integer homology three-sphere
as a splice, as in [10, Proof of Corollary 6.2]. We then study the image of the two
knot exteriors in the pillowcase of the incompressible torus. With this in mind, we
include the following definition.

Definition 3.6. Let K1 ⊂ Y1 and K2 ⊂ Y2 be oriented knots in oriented integer
homology three-spheres. For i = 1, 2, denote by µi, λi ⊂ ∂N(Ki) a meridian and
longitude for Ki in Yi. Form a three-manifold Y as

(Y1 \N(K1)◦) ∪
h

(Y2 \N(K2)◦) ,

where h : ∂N(K1) → ∂N(K2) identifies µ1 with λ2, and λ1 with µ2. The manifold
Y is called the splice of Y1 and Y2 along knots Y2 and K2.

Let Y be an integer homology three-sphere and let T be a two-dimensional torus
embedded in Y in such manner that its normal bundle is trivial. A simple application
of the Mayer-Vietoris sequence shows that Y \N(T )◦ has two connected components
M1,M2, and that each component has the same homology groups as S1. The “half
lives, half dies” principle shows that for each i = 1, 2 there exists a basis (αi, βi) for
the peripheral subgroup of ∂Mi such that βi is nullhomologous in Mi. Therefore, if
Yi denotes the union of Mi and a solid torus S1 ×D2 in such a way that the curve
{1} × ∂D2 gets identified with αi, then Yi is an integer homology three-sphere.
Moreover, since T is incompressible in Y , then the core of the solid torus in Yi is a
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non-trivial knot Ki. In other words, every toroidal integer homology three-sphere
can be expressed as a splice of non-trivial knots K1 and K2 in integer homology
three-spheres Y1 and Y2.

With all of this in place, we are ready to prove our main result.

Proof of Theorem 1.1. Realize Y as a splice (Y1 \N(K1)◦) ∪
h

(Y2 \N(K2)◦), with

K1,K2 non-trivial knots. Suppose first that Yi \N(Ki)
◦ is reducible, in other words,

that Yi \ N(Ki)
◦ = Qi# (Zi \N(Ji)

◦) where Qi, Zi are integer homology three-
spheres and Ji ⊂ Zi has irreducible and boundary-incompressible exterior. As a
consequence of Van-Kampen’s theorem, there exists a surjection π1 (Yi \N(Ki)

◦)→
π1 (Zi \N(Ji)

◦), and this surjection induces a π1-surjection from Y to the splice of
(Z1, J1) and (Z2, J2). Thus, our proof reduces to the case when Y is the splice of
two knots with irreducible and boundary-incompressible exteriors, which we assume
from now on.

Next, by the Seifert–van Kampen theorem, the pieces of the decomposition fit
into the following commutative diagram

π1 (Y1 \N(K1)◦)

**
π1(T )

44

**

π1(Y )

π1 (Y2 \N(K2)◦)

44

and since each Yi \N(Ki)
◦ is a homology circle, there exists a π1-surjection from Y

to each Yi. Therefore, our proof reduces further to the case when both Y1 and Y2

are SU(2)-cyclic since an irreducible representation for Yi gives rise to one for Y .
To recap, the previous two paragraphs allow us to assume that Y is the splice

of (Y1,K1), (Y2,K2) with each Yi an SU(2)-cyclic homology three-sphere, and each
Ki ⊂ Yi a knot with irreducible and boundary-incompressible exterior. Then, as
a consequence of Proposition 2.1(3) we have that each Yi has trivial instanton
Floer homology. Moreover, since each Yi \ N(Ki)

◦ is irreducible and boundary-
incompressible, Theorem 1.3 shows that the instanton Floer homology of 0-surgery
on Yi along Ki is non-zero. Therefore, the hypotheses of both Theorem 3.5 and
Lemma 3.1 hold, and the proof now follows exactly as in [36, Proof of Theorem
8.3(i)] with [36, Theorem 7.1] and [36, Proposition 8.1(ii)] replaced by Theorem 3.5
and Lemma 3.1 respectively. �

4. Review of instanton Floer homology and holonomy perturbations

We start this section with a disclaimer: We do not claim to prove any original
or new result in this section. However, we review instanton Floer homology and
holonomy perturbations to the extent which is necessary in order to understand
the proof of our main results above. For instance, Section 4.3 below contains a
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P Q

Figure 4. Let Y be the three-manifold obtained as the splice of
two copies of the exterior of a right handed trefoil, and let T be
the incompressible torus given as the intersection of the two knot
exteriors. The figure shows the image of each copy of R(T2,3)∗ in the
pillowcase. Note that any representation of the splice corresponding
to an intersection of the red and blue curves is irreducible.

synthesis of the third author’s results about holonomy perturbations from [36] which
we hope the reader unfamiliar with this reference will appreciate. Section 4.5 below
contains a result about invariance under holonomy perturbations in the context of
an admissible bundle with non-trivial second Stiefel-Whitney class, together with
a sketch of proof. Again, this result is already contained in [13] and [9], but by
looking up these references it may not be immediately clear whether these results
apply verbatim in our situation.

The proof of Theorem 3.3 relies on a non-vanishing result of an instanton Floer
homology group Iw∗,Φ(Y0(K)), computed with suitable perturbation terms Φ of the
Chern-Simons function. We will review the construction of these perturbation terms
below, which are built from the holonomy along families of circles, parametrized by
embedded surfaces. The critical points of the complex underlying the homology
group Iw∗,Φ(Y0(K)) will have a clear interpretation in terms of intersections of the

representation variety R(K) with certain deformations of the path given by the
straight line {β = π} in the pillowcase, resulting as the representation variety of the
boundary of the exterior of K in Y as before.

On the other hand, Theorem 1.3 yields a non-vanishing result for Iw∗ (Y0(K)),
defined in the usual way, and in particular without the above class of perturbation
terms. We can therefore complete the proof from the fact that the two instanton
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Floer homology groups, Iw∗ (Y0(K)) and Iw∗,Φ(Y0(K)), are isomorphic, and we sketch
the proof of this below.

Remark 4.1. In the construction of both Iw∗ (Y0(K)) and Iw∗,Φ(Y0(K)) there are typi-
cally perturbation terms involved for the sake of transversality. These can be chosen
as small as one likes, in a suitable sense. We will omit these auxiliary perturbations
from our notation. The perturbations labeled by the terms Φ, however, will have a
clear geometric purpose, and the discussion below will focus on these.

4.1. The Chern-Simons function. For details on the holonomy perturbations we
use we refer the reader to Donaldson’s book [9], Floer’s orginal article [14], and the
third author’s article [36].

If we deal with an admissible SO(3)-bundle F → Y over a three-manifold Y
with second Stiefel-Whitney class w, we may suppose that it arises from an U(2)-
bundle E → Y as its adjoint bundle su(E), see for instance [9, Section 5.6]. Then
w = w2(E) ≡ c1(E) mod 2. The space of SO(3)-connections on F is then naturally
isomorphic to the space of U(2)-connections on E that induce a fixed connection θ
in the determinant line bundle det(E), which we will suppress from notation.

When dealing with functoriality properties, it is more accurate to consider w to
be an embedded 1-manifold which is Poincaré dual to w2(E) = w2(F ), see [23].

We will fix a reference connection A0 on E and consider the Chern-Simons func-
tion

CS: A → R

A 7→
∫
Y

tr(2a ∧ (FA0)0 + a ∧ dA0a+
1

3
a ∧ [a ∧ a]) ,

defined on the affine space A of connections A in E which induce θ in det(E), and
where we have written A = A0 + a with a ∈ Ω1(Y ; su(E)). The term FA denotes
the curvature of a connection A, and (FA)0 denotes its trace-free part, and dA
denotes the exterior derivative associated to a connection A. We denote by G the
group of bundle automorphisms of E which have determinant 1. The Chern-Simons
function induces a circle-valued function CS: B → R/Z on the space B = A /G of
connections modulo gauge equivalence, and the instanton Floer homology Iw∗ (Y ) is
the Morse homology, in a suitable sense, of the Chern-Simons function CS. To carry
this out, one has to deal with a suitable grading on the critical points, which will
only be a relative Z/8-grading, with suitable compactness arguments (Uhlenbeck
compactification and “energy running down the ends”), and with transversality
arguments. In particular, one will in general add a convenient perturbation term
to the Chern-Simons function to obtain the required transversality results. This
is usually done by the use of holonomy perturbations that we discuss below. By
a Sard-Smale type condition, this term can be chosen as small as one wants, in
the respective topologies one is working with. Therefore, we are suppressing these
perturbations for the sake of transversality from our notation. One then needs to
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prove independence of the various choices involved, and in particular the Riemannian
metric and the perturbation terms required for transversality.

One may also deal with orientations, but we do not need this in our situation,
where Z/2-coefficients in the Floer homology will be sufficient.

4.2. Review of holonomy perturbations. To set up the perturbation of the
Chern-Simons function we are using, we need to introduce some notation. Let
χ : SU(2)→ R be a class function, that is, a smooth conjugation invariant function.
Any element in SU(2) is conjugate to a diagonal element, and hence there is a
2π-periodic even function g : R→ R such that

χ

([
eit 0
0 e−it

])
= g(t) (2)

for all t ∈ R. Furthermore, let Σ be a compact surface with boundary, and let µ
be a real-valued two-form which has compact support in the interior of Σ and with∫

Σ µ = 1. Let ι : Σ× S1 → Y be an embedding. Let N ⊆ Y be a codimension-zero
submanifold containing the image of ι, and such that the bundle E is trivialized
over N in such a way that the connection θ in det(E) induces the trivial product
connection in the determinant line bundle of our trivialization of E over N . This
means that connections in A can be understood as SU(2)-connections in E when
restricted to N .

Associated to this data, we can define a function

Φ: A → R
which is invariant under the action of the gauge group G . For z ∈ Σ, we denote
by ιz : S1 → Y the circle t 7→ ι(z, t). A connection A ∈ A provides an SU(2)-
connection over the image of ι. The holonomy Holιz(A) of A around the loop ιz
(with variable starting point) is a section of the bundle of automorphisms of E with
determinant 1 over the loop. Since χ is a class function, χ(Holιz(A)) is well-defined.
We can therefore define

Φ(A) =

∫
Σ
χ(Holιz(A))µ(z) , (3)

and this function is invariant under the action of the gauge group G . It depends
on the data (ι, χ, µ) and a trivialization of the bundle over a codimension-zero sub-
manifold N , but we will omit the latter from notation.

We will have to work with a finite sequence of such embeddings, all supported
in a submanifold N of codimension zero over which the bundle E → N is trivial.
For some n ∈ N, let ιk : S1 × Σk → N ⊆ Y be a sequence of embeddings for
k = 0, . . . , n− 1 such that the interior of the image of ιk is disjoint from the interior
of the image of ιl for k 6= l. We also suppose class functions χk : SU(2) → R
corresponding to even, 2π-periodic functions gk : R→ R as above to be chosen, for
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k = 0, . . . , n − 1, and we assume that µk is a two-form on Σk with support in the
interior of Σk and integral 1. Just as in the case of (3), this data determines a finite
sequence of functions

Φk : A → R , k = 0, . . . , n− 1 ,

and we are interested in the Morse homology of the function

CS + Ψ: B → R/Z, where Ψ =

n−1∑
k=0

Φk. (4)

Definition 4.2. We denote by RwΨ(Y ) the space of critical points [A] ∈ A /G of

the function CS+Ψ: B → R/Z, where Ψ is specified by the holonomy perturbation
data {ιk, χk} as above.

If the holonomy perturbation data Ψ is chosen in a way such that RwΨ(Y ) does
not contain equivalence classes of connections [A] such that A is reducible, then the
construction for defining a Floer homology IwΨ(Y ) with generators given by critical

points of the perturbed Chern-Simons function CS+Ψ, and with differentials defined
from negative gradient flow lines, goes through in the same way as in [9, 14]. This
will require additional small perturbations in order to make the critical points non-
degenerate and in order to obtain transversality for the moduli spaces of flow-lines.
In fact, we really have not done anything new compared to the constructions in
these references since the same perturbations already appear there for the sake of
obtaining transversality of the moduli spaces involved in the construction. The only
slight difference is that in Floer’s work, the surfaces Σk appearing in the definition
of the embeddings ιk are always chosen to be disks, whereas those used in the proof
of Theorem 3.3 above, i.e. in [36, Theorem 4.2 and Proposition 5.3], the surfaces
Σk are all annuli.

More specifically, for completeness, we recall a bit more on the implementation
of the holonomy perturbations used in the work of the third author as needed in
the previous section for studying Y0(K). Given a smoothly embedded path c from
P = (0, π) to Q = (π, π) avoiding (0, 0) and (π, 0), There is an isotopy φt through
area-preserving maps of the pillowcase R(T 2) such that φ1 maps the straight line
c0 := {β = π} from P to Q to the path c, and such that φt fixes the four corner points
of the pillowcase. Theorem 3.3. of [36] states that isotopies through area preserving
maps can be C0-approximated by isotopies through finitely many shearing maps.
For details on shearing maps we refer the reader to [36, Sections 2 and 3]. The
essential relationship is outlined in the following subsection, which we include for
the sake of clarity and completeness of our exposition.

4.3. Review of holonomy perturbations and shearing maps. We denote by
R(N) the space of flat SU(2)-connections in the trivial SU(2)-bundle over N =
S1 ×Σ up to gauge equivalence, where Σ = S1 × I = S1 × [0, 1] is an annulus. The
two inclusion maps i− : S1 × (S1 × {0})→ N and i+ : S1 × (S1 × {1})→ N induce
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restriction maps r−, r+ : R(N) → R(T 2) to the representation varieties of the two
boundary tori, which are pillowcases. In this situation, we have that both r− and
r+ are homeomorphisms, and under the natural identification of these tori we have
r− = r+.

Now if χ is a class function as in Equation (2) above then instead of the flatness
equation FA = 0 for connections A on the trivial bundle over N , one may consider
the equation

FA = χ′(Holl(A))µ, (5)

where l = S1 × pt denote “longitudes” in N , where Holl(A) is the holonomy of A
along longitudes parametrised by points in Σ, and where χ′ : SU(2) → su(2) is the
trace dual of the derivative dχ of χ, and where µ is a 2-form with compact support in
the interior of Σ and

∫
Σ µ = 1. It can then be proved that Holl(A) does not depend

on the choice of longitude, and that solutions A of this equation are reducible, see
[5, Lemma 4], and also [36, Proposition 2.1].

If we denote by Rχ(N) the solutions of Equation (5) up to gauge equivalence, then
we still have two restriction maps r± : Rχ(N) → R(T 2). However, in this situation
we have the following relationship:

Proposition 4.3. The two restriction maps r± are homeomorphisms and fit into a
commutative diagram

Rχ(N)
r−

zz

r+

$$
R(T 2)

φχ // R(T 2),

(6)

where φ is a shearing map that relates to χ as follows:
If we write m− = {pt} × S1 × {0} and m+ = {pt} × S1 × {1} for “meridians”

given by the boundaries of Σ in {pt} × Σ, and if

Holm±(A) =

[
eiβ± 0

0 e−iβ±

]
, and Holl(A) =

[
eiα 0
0 e−iα

]
, (7)

which we may suppose up to gauge equivalence, then we have

φχ

(
α
β−

)
=

(
α

β− + f(α)

)
, (8)

where f : R → R is the derivative of the function g appearing in Equation (2).
Here, (α, β±) determine points in R(T 2) determined by Holm±(A) and Holl(A) as
in Equation (7) above.

Equation (6) is essentially proved in [5, Lemma 4], and a proof also appears in
[36, Proposition 2.1].

Of course, one can iterate this construction: One may choose a finite collection of
disjoint embeddings ιk : S1 × Σ into a closed three-manifold Y , and class functions
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χk. The embeddings may chosen to be “parallel” in that the image of ιk corresponds
to S1 × (S1 × [k, k + 1]) ⊆ S1 × (S1 × [0, n]) ⊆ Y , but the role of “meridian” and
“longitude” may be chosen arbitrarily in an SL2(Z) worth of possible choices. In
this case the restriction maps to the two boundary components of S1×(S1×[0, n]) in
the diagram analogous to Equation (6) will be related by a composition of shearing
maps.

4.4. Holonomy perturbations and the pillowcase. The main application of
holonomy perturbations we have in mind is stated as Theorem 4.4 below. To put
it into context, note first that for a non-trivial bundle, the critical space of the
Chern-Simons function Rw(Y0(K)) is a double cover of R(K|c0), where c0 is the
straight line from (0, π) to (π, π) in the pillowcase, see [36, Proposition 5.1]. If
we choose holonomy perturbations associated to some data {ιk, χk}n−1

k=0 as above,
where the image of ιk corresponds to S1× (S1× [k, k+ 1]) ⊆ S1× (S1× [0, n]) ⊆ Y
in a collar neighborhood of the Dehn filling torus in Y0(K), then repeated use of
Proposition 4.3 above will imply that for the holonomy perturbation Ψ determined
by the data {ιk, χk}n−1

k=0 , the critical space of RwΨ(Y0(K)) will correspond to R(K|c′),
where c′ is the image of c0 under a composition of shearing maps φn−1 ◦ · · · ◦ φ0,
with “directions” determined by the embeddings ιk. (In Equation (8) we are dealing

with a shearing in direction

(
0
1

)
, but we can pick any direction in Z2.)

The main point of [36, Theorem 4.2] is that the area-preserving maps of the
pillowcase obtained by composition of shearing maps is C0-dense in the space of all
area-preserving maps of the pillowcase, and this yields the following result.

Theorem 4.4 (Theorem 4.2 and Proposition 5.3, [36]). Let K be a knot in an
SU(2)-cyclic integer homology three-sphere Y . Let c be an embedded path from (0, π)
to (π, π) missing the other orbifold points of the pillowcase. Then, there exists an
arbitrarily close path c′ and a holonomy perturbation Ψ along disjoint embeddings of
S1 × (S1 × I) parallel to the boundary of a neighborhood of K such that RwΨ(Y0(K))
double-covers R(K|c′).

(To see that we get a double-cover here we refer the reader to [36, Remark 1.2]).
We only stress the fact that we must assume there are no reducible connections

in RwΨ(Y ), since the presence of such solutions will result in a failure of the transver-
sality arguments involved in the discussion.

4.5. Invariance of instanton Floer homology. The instanton Floer homology
groups Iw(Y ) and IwΨ(Y ), the latter being defined under the additional assumption
that RwΨ(Y ) does not contain reducible connections, depend on additional data that
we have already suppressed from notation, notably the choice of a Riemannian
metric on Y and holonomy perturbations just as defined above in order to achieve
transversality. More explicitly, holonomy perturbations have already been implicit
in the definition of instanton Floer homology unless the critical points of CS had
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been non-degenerate at the start and the moduli space defining the flow lines had
been cut out transversally. In Floer’s original work [14], and elaborated in more
detail in Donaldson’s book [9], invariance under the choice of Riemannian metric
and the choice of holonomy perturbations follows from a more general concept,
namely the functoriality of instanton Floer homology under cobordisms. See also
the discussion in [23, Section 3.8.]

Theorem 4.5 (Invariance under holonomy perturbations). Suppose that the space
of critical points RwΨ(Y ) of the perturbed Chern-Simons function 4 appearing in Def-
inition 4.2 above does not contain equivalence classes of reducible connections. Then
the associated instanton Floer homology groups Iw∗ (Y ) and Iw∗,Ψ(Y ) are isomorphic.

Sketch of Proof. The proof of this statement is standard, so we will describe a chain
map determining the isomorphism on homology and outline the ideas along which
the result is proved.

Slightly more generally, suppose we are dealing with a smooth map [0, 1] →
C∞(A ,R), s 7→ Γ(s). We may suppose that this map is constant near 0 and 1. The
Floer differential counts flow lines of the Chern-Simons function, possibly suitably
perturbed. Instead of doing this, we may also consider the downward gradient
flow equation of the time-dependent function CS +Γ(s), where we extend Γ(s) to a
map (−∞,∞) → C∞(A ,R) which is constant Γ(0) on (−∞, 0] and constant Γ(1)
on [1,∞). If we are given critical points ρ0 of CS +Γ(0) and ρ1 of CS +Γ(1) of the
same index, then we consider a zero-dimensional moduli space Mρ0,ρ1 of connections
A = {A(t)}t on E → R × Y of finite L2-norm (inducing θ on det(E), pulled back
to R× Y ), such that the equation

dA

dt
= − grad(CS +Γ(t))(A(t)) (9)

holds on R×Y , where grad denots the L2-gradient, and A limits to ρ0 and ρ1 in the
limit t → ±∞, respectively. Finally, we also require that the moduli space Mρ0,ρ1

is cut out transversally.
We require that the addition of the term − grad(Γ(t))(A(t)) to the gradient flow

Equation (9) for the Chern-Simons function does not alter the linearized deformation
theory for A, see for instance [9, Sections 3 and 4]. Furthermore, we have to require
that the Uhlenbeck compactification goes through with the perturbation we have
in mind. It is shown in [9, Section 5.5] that both hold for the function Γ built
from holonomy perturbations as described in Equation (10). One essential feature
is that the holonomy perturbation term appearing in the flow equation is uniformly
bounded.

A suitable interpolation between the holonomy perturbation data Γ(0) = 0 and
Γ(1) = Ψ for Ψ as in Equation (4) is given, for instance, by the following formula.
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Suppose Ψ is determined by data {ιk, χk}n−1
k=0 . Then for t ∈ [ kn ,

k+1
n ] we define

Γ(t) =
k−1∑
l=0

Φl + β(t− k/n)Φk (10)

for any k ∈ {0, . . . , n− 1}. Here β : [0, 1
n ]→ [0, 1] is a smooth function which is 0 in

a neighborhood of 0 and 1 in a neighborhood of 1
n .

Now the moduli space Mρ0,ρ1 does not contain any reducibles, because if it did,
then the limits ρ0 and ρ1 in Rw(Y ) and RwΨ(Y ), respectively, would also be reducible,
and by our assumption and the setup for instanton Floer homology for admissible
bundles, this does not occur.

One defines a linear map ζ : Cw(Y )→ CwΨ(Y ) of the underlying chain complexes
such that the “matrix entry” corresponding to the elements ρ0 ∈ Cw(Y ) and ρ1 ∈
CwΨ(Y ) is given by the signed count of the moduli space Mρ0,ρ1 , where the sign is
determined in the usual way by the choice of a homology orientation. That ζ is
a chain map follows from analyzing the compactification of suitable 1-dimensional
moduli spaces, making use of Uhlenbeck compactification – no bubbling can occur
here due to the dimension of the moduli space – and the chain convergence discussed
in [9, Section 5.1], together with suitable glueing results.

That different interpolations yield chain homotopic chain maps follows from study-
ing the compactification of (−1)-dimensional moduli spaces over a 1-dimensional
family, defining a chain homotopy equivalence between the two different interpola-
tions.

That ζ defines a chain homotopy equivalence follows from the functoriality prop-
erty: One may consider a further path Γ′ : [1, 2]→ C∞(A ,R) such that Γ′(1) = Γ(1),
similar as above. This defines a corresponding chain map ζ ′ : CwΨ → CwΓ′(2). On the

other hand, one may concatenate the path Γ(t) and the path Γ′(t) and build a
corresponding interpolation Γ′′ : [0, 2] → C∞(A ,R), resulting in a chain map ζ ′′

as above. A neck stretching argument then shows that ζ ′′ and ζ ′ ◦ ζ are chain
homotopy equivalent, and hence induce the same maps on homology. In our sit-
uation we take Γ′(2) to be 0, meaning that this defines again the “unperturbed”
chain complex Cw(Y ) (which, again, may contain some perturbations for the sake
of regularity omitted in our notation). One may finally interpolate between Γ′′ and
the 0-term along a 1-dimensional family. Analyzing again the compactification of
suitable (−1)-dimensional moduli spaces over a 1-dimensional family, one obtains a
chain homotopy equivalence between ζ ′′ and the identity. �

Remark 4.6. There is some confusion about invariance under “small” and “large”
holonomy perturbations in the field. If one is given holonomy perturbation data
for which the underlying space of critical points and moduli spaces defining the
differentials are already cut out transversally, then for small enough perturbations
the same will still hold, and the resulting chain complexes will be isomorphic. This is
due to the fact that the condition of being cut out transversally is an open condition,
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Figure 5. Left: The pattern representing the (2,1)-cable satellite
operation. Right: The (2,1)-cable for the right handed trefoil. The
extra twisting appears as a consequence of the requirement that a
longitude in S1 ×D2 maps to the canonical longitude of the trefoil.

expressed as the surjectivity of the deformation operators involved in the linearized
equation together with the Coulomb gauge fixing.

If on the other hand, one is given a situation where the critical points and the
unperturbed moduli spaces are not cut out transversally, then one needs to perturb,
and even if these perturbations are chosen “small”, the resulting chain complexes will
in general not be isomorphic but only chain homotopy equivalent. In this situation,
the proof of invariance is really the same as proving the invariance under “large”
perturbations, and already present in [14] and [9].

5. Branched covers of prime satellite knots

In this section, we prove Corollary 1.5, establishing the existence of a non-trivial
SU(2) representation for cyclic branched covers of prime satellite knots. We begin
with a definition of satellite knots.

Definition 5.1. Let P ⊂ S1 ×D2 be an oriented knot in the solid torus. Consider
an orientation-preserving embedding h : S1 × D2 → S3 whose image is a tubular
neighborhood of a knot K so that S1 × {∗ ∈ ∂D2} is mapped to the canonical
longitude of K. The knot h(P ) is called the satellite knot with pattern P and
companion K, and is denoted P (K). The winding number of the satellite is defined
to be the algebraic intersection number of P with {∗} × D2. See Figure 5 for an
example.

Corollary 1.5. Let K be a prime, satellite knot in S3 and let Σ(K) be any non-
trivial cyclic cover of S3 branched over K. Then π1 (Σ(K)) admits a non-trivial
SU(2) representation.

Proof. Let K be a prime satellite knot in S3. If Σ(K) is not an integer homology
three-sphere, then there is a non-trivial abelian representation. In the case when
Σ(K) is an integer homology three-sphere, then by Theorem 1.1 it suffices to show
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that Σ(K) is toroidal. Write K = P (J) and observe that if Σ(K) is the d-fold
cover of S3 branched over P (J), then there is a decomposition of Σ (P (J)) as the
union of Σ(S1 ×D2, P ), the d-fold cover of S1 ×D2 branched over P , and a d-fold
covering space of the knot complement S3 \ N(J). The isomorphism type of this
latter covering space depends only on the greatest common divisor between d and
the winding number of S1 × D2, see for example [31] or [24, pg. 220]. Since the
exterior of J has incompressible boundary, the same is true of any cover. Therefore,
we just need to show that Σ(D2 × S1, P ) has incompressible boundary. We claim
the following. Let P be a non-trivial pattern knot in D2 × S1 which does not
correspond to a connect-sum and which is not contained in an embedded B3. Then
for any cyclic branched cover over P , Σ(D2 × S1, P ) has incompressible boundary.
This claim is standard and proved in the lemma below for completeness. �

Lemma 5.2. Let P be a non-trivial pattern knot in D2 × S1 which does not corre-
spond to a connect-sum and which is not contained in an embedded B3. Then for
any cyclic branched cover over P , M = Σ(D2×S1, P ) has incompressible boundary.

Proof. Suppose that γ is an essential loop on ∂M , which is nullhomotopic in M .
Let G denote the group of covering transformations of M and consider the action
of G on the boundary. We first claim that γ can be isotoped on the boundary such
that for each g ∈ G, either g(γ) ∩ γ = ∅ or g(γ) = γ. Of course, we only need to
restrict to the subgroup of elements which fix the boundary component containing
γ setwise. Further, since γ bounds in M , it is easy to see that the homology class in
∂M is fixed by all such elements. Because every finite group action on the torus is
equivalent to the quotient of an affine action of the plane, the claim easily follows.
Now, because of this claim, and because the curve γ is disjoint from the lift of P ,
the equivariant Dehn’s lemma [34] implies that there exists a disk D in M bounding
γ such that for all g, either g(D) ∩ D = ∅ or g(D) = D, and furthermore, D is
transverse to the lift of the branch set. Consider the (possibly disconnected) surface
Σ =

⋃
g∈G g(D). Then, Σ/G is a collection of disks in D2 × S1 and Σ → Σ/G is

a branched cover (although some components of Σ may have trivial branch locus).
Furthermore, each component of the boundary of Σ/G is an essential curve on the
boundary of the solid torus. For homology reasons, it is necessarily a meridional
curve on the solid torus and each component of Σ/G is a meridional disk. (The
components cannot have any other topology, since a disk can only cover/branch
cover another disk.) Now, if any component of Σ/G does not intersect P , then we
can cut D2× S1 along one of these disks, and see that P is contained in B3 and we
have a contradiction. If some component of Σ/G does intersect P , it must intersect
in exactly one point, since a disk cannot be such a cyclic branched cover over a disk
with more than one branch point. (Here we are using that the branch points all
correspond to intersections of P with the disk.) In other words, P is the pattern
for a connect-sum, and again we have a contradiction. This proves the claim and
completes the proof of the lemma. �
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