MNS ALGEBRA: PROBLEMS

Field Extensions

1. Find the smallest subfield of \mathbf{C} which contains
(a) 0 and 1 ;
(b) 0 ;
(c) 0,1 and i ;
(d) i and $\sqrt{2}$;
(e) $\sqrt{2}$ and $\sqrt{3}$.
2. Describe the elements of the field $\mathbf{Q}(\sqrt[3]{5})$ and find $[\mathbf{Q}(\sqrt[3]{5})$: $\mathbf{Q}]$.
3. Describe the elements of the field $\mathbf{Q}(\sqrt[3]{5}, i)$ and find $[\mathbf{Q}(\sqrt[3]{5}, i): \mathbf{Q}]$.
4. Is $\{a+b \sqrt[3]{2} \mid a, b \in \mathbf{Q}\}$ a field?
5. Is $\{a+b \sqrt{2}+c \sqrt{3} \mid a, b, c \in \mathbf{Q}\}$ a field?
6. Show that the intersection of any (non-empty) collection of fields is itself a field.
7. Find the minimal poynomials for the complex numbers $(\sqrt{5}+1) / 2$ and $(i \sqrt{3}-1) / 2$ over \mathbf{Q}.
8. Supply a polynomial in $\mathbf{Q}[t]$ which has $\sqrt{2}+\sqrt{3}$ as a root.
9. Prove that $\mathbf{Q}(\sqrt{2}, \sqrt{3})=\mathbf{Q}(\sqrt{2}+\sqrt{3})$.
10. Describe the elements of an extension field $\mathbf{Q}(\alpha)$ over \mathbf{Q} when α has the following minimal polynomial over \mathbf{Q} :
(a) $t^{2}-5$,
(b) $t^{4}+t^{3}+t^{2}+t+1$,
(c) $t^{3}+2$.
11. Given segments of lengths $1, a$ and b, with $a>b$ and $b>0$, show how to construct segments of lengths $a+b, a-b, a b$ and a / b using ruler and compass.
12. Show that an equilateral triangle can be constructed using ruler and compass.
13. Show how to construct the points trisecting a line segment, and the tangent to a circle at a given point, using ruler and compass.
14. Can the angle $2 \pi / 5$ be trisected using ruler and compass?
15. Show that the regular 11-gon cannot be constructed using ruler and compass.
16. Show that the regular 48-gon and the regular 30-gon can both be constructed using ruler and compass.
