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1 Introduction to Fourier series

Fourier analysis is an application of Calculus, which is at the heart of modern mathematics and science.

It provides a useful tool when studying problems involving vibrations or oscillations. Some obvious

examples are vibrating tuning forks, weights attached to springs, sound waves, water waves and alter-

nating electric currents, but Fourier actually developed this theory while attempting to solve physical

problems with extremely important applications in everyday’s life. These problems are posed in terms of
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partial differential equations (PDEs), and you will encounter some in the second year module Analysis

in Many Variables. Here are a few:

1. Laplace’s equation: ∇2u = 0, where the function u could be (i) the gravitational potential in

a region containing no matter, (ii) the electrostatic potential in a charge-free region, (iii) the

steady-state (i.e. time-independent) temperature in a region containing no source of heat, (iv)

the velocity potential for an incompressible fluid with no vortices and no sources or sinks.

2. Poisson’s equation: ∇2u = f(x, y, z), where f(x, y, z) (source density) is a function describing

matter, electric charge, a source of heat or fluid (the left hand side has the same meaning as in

Laplace’s equation).

3. The diffusion or heat flow equation: ∇2u = 1
α2

∂u
∂t
, where u can be (i) a non steady-state

temperature in a region with no heat sources, (ii) the concentration of a diffusing substance. α2

is a constant.

4. The wave equation: ∇2u = 1
v2

∂2u
∂t2

, where u could be (i) the displacement from equilibrium of a

vibrating string, membrane or medium (gas, liquid, solid), (ii) the current or potential along a

transmission line, (iii) a component of the electric or magnetic field in an electromagnetic wave

(light, radio wave,...). v is the speed of propagation of the wave.

Wave motion can often be decomposed into a combination of harmonic oscillations, and Fourier analysis

consists in decomposing a function f defined on an interval (−p, p) into an infinite series of sines and

cosines, called the Fourier series of f . Apart from solving the PDEs mentioned above, Fourier series

are also useful in signal processing. For instance, if one receives a signal in the form of a periodic pulse,

it is a superposition of a true signal and some noise, which is usually a high frequency signal. It is

important to separate the true signal from the noise. This technique is called ‘filtering’, and will be

described briefly later on.
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2 Preliminaries

2.1 Simple harmonic motion - a lightning refresher

Let P be a particle moving at constant speed around a circle of radius A, and Q be a particle moving

up and down the segment tb in such a way that the y-coordinate of P and Q are equal at all times.

Figure 1: Simple harmonic motion.

The points P and Q have coordinates

P = (A cos ωt,A sin ωt), Q = (A+ n,A sin ωt),

where ω is the angular velocity of the particle P , with ωt = θ. The positive real number n is not

essential for our purpose.

Simple harmonic motion: an object that moves in such a way that its displacement from equilibrium

can be written as A sin ωt (or A cos ωt, or A sin(ωt+φ)) is said to execute a simple harmonic motion.

In our setup, the particle Q executes a simple harmonic motion.

Amplitude of vibration: Maximum displacement (of the object executing the simple harmonic motion)

from its equilibrium position. In the situation corresponding to Fig. 1, the amplitude is A.

Period of simple harmonic motion: time needed to complete one oscillation (for the particle P to

revolve once around the circle, i.e. time T such that θ ≡ 2π = ωT . In mathematical terms, the period

of the function F (t) = A sinωt is the smallest positive real number T such that F (t + T ) = F (t). It
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is indeed T = 2π
ω

as

A sin(ω[t+
2π

ω
]) = A sin(ωt+ 2π) = A sinωt.

Frequency of simple harmonic motion: the inverse of the period T , i.e.

f = 1
T
= ω

2π
.

All these concepts are illustrated in Fig. 2, which graphs the function A sinωt as a function of t. (Note

that by choosing the origin of time appropriately, the graph also describes the functions A cos ωt and

A sin(ωt+ φ)).

Figure 2: Amplitude and period of F (t).

2.2 Orthogonal functions

Consider two real-valued functions of a real variable, f1 and f2, defined on the interval [a, b]. Introduce

the inner product of f1 and f2 on [a, b] as,

(f1, f2) ≡
∫ b

a

f1(x) f2(x) dx.
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Example 2.1 Take f1(x) = x, f2(x) = x2, [a, b] = [0, 1], then

(f1, f2) =

∫ 1

0

x3 dx =
1

4
[x4]10 =

1

4
.

Example 2.2 Take f1(x) = x2, f2(x) = x3, [a, b] = [−1, 1], then

(f1, f2) =

∫ 1

−1

x5 dx =
1

6
[x6]1−1 = 0.

In the last example, (f1, f2) = 0 on [−1, 1] and one says that f1 and f2 are orthogonal on [−1, 1].

More generally, the set

{ cos πk
p
x }k∈N ∪ { sin πk

p
x }k∈N (2.1)

is an orthogonal set on (−p, p), that is, given non-zero integer numbers m and n,

∫ p

−p

cos
mπ

p
x cos

nπ

p
x dx =

 0 for m,n > 0,m ̸= n

p for m = n,
(2.2)

∫ p

−p

sin
mπ

p
x sin

nπ

p
x dx =

 0 for m,n > 0,m ̸= n

p for m = n,
(2.3)

while ∫ p

−p

sin
mπ

p
x cos

nπ

p
x dx = 0 (2.4)

for m,n > 0,m ̸= n as well as for m = n. Moreover,∫ p

−p

1 · cos mπ

p
x dx = 0 for m > 0, (2.5)∫ p

−p

1 · sin mπ

p
x dx = 0 for m > 0. (2.6)

These results are proven by explicit integration, using the well-known trigonometric identities

sin(a± b) = sin a cos b± sin b cos a,

cos(a± b) = cos a cos b∓ sin a sin b.

For p = π, one obtains the following important relations
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1

2π

∫ π

−π

sinmx cosnx dx = 0 for m,n ∈ Z,

1

2π

∫ π

−π

sinmx sinnx dx =


0 if m ̸= n,

1
2
if m = n ̸= 0,

0 if m = n = 0,

1

2π

∫ π

−π

cosmx cosnx dx =


0 if m ̸= n,

1
2
if m = n ̸= 0,

1 if m = n = 0.

3 Fourier Series

3.1 Definition

The aim is to represent functions f(x) of period 2p in terms of a sum of the constant function 1 and

the trigonometric functions in the set (2.1), which are all of period 2p. Starting with f(x) defined on

(−p, p), the trigonometric series is of the form

a0
2

+
∞∑
n=1

[ an cos
nπ

p
x+ bn sin

nπ

p
x ], (3.1)

with the coefficients being the constants,

a0 =
1

p

∫ p

−p

f(x) dx (3.2)

an =
1

p

∫ p

−p

f(x) cos
nπ

p
x dx (3.3)

bn =
1

p

∫ p

−p

f(x) sin
nπ

p
x dx. (3.4)

The above formulas are often called Euler formulas. Note that the coefficient of the constant function 1

is labelled a0/2 rather than a0; this is for convenience so that the formula for an reduces to a0 for n = 0.

If the coefficients are such that the series (3.1) converges, then its sum will be a function of period 2p.
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Definition 3.1 Suppose that f(x) is a given function of period 2p, which can be represented by a

series of the form (3.1), and that this series converges and that its sum is f(x). Then, one writes

f(x) =
a0
2

+
∞∑
n=1

[ an cos
nπ

p
x+ bn sin

nπ

p
x ], (3.5)

and calls (3.5) the Fourier series of f(x).

In this case, the constants a0, an, bn for n > 0 are called the Fourier coefficients of f(x).

3.2 Determination of Fourier coefficients

Assume that the function f(x) is integrable on (−p, p), and that it is equal to its Fourier series, as in

(3.5). Also assume that the series (3.5) multiplied by cos mπ
p
x or sin mπ

p
x converges (this is to allow

term by term integration of the series). The Fourier coefficients a0, an, bn are determined as follows.

• Multiply (3.5) by the number 1 and integrate both sides between −p and p:∫ p

−p

f(x) · 1 dx =∫ p

−p

{ a0
2

· 1 +
∞∑
n=1

[ an cos
nπ

p
x+ bn sin

nπ

p
x ] · 1} dx,

which, after use of (2.5) and (2.6), yields∫ p

−p

f(x) dx = 2p
a0
2

= p a0.

• Multiply (3.5) by cos mπ
p
x where m ̸= 0, and integrate both sides between −p and p:∫ p

−p

f(x) · cos mπ

p
x dx =∫ p

−p

{a0
2

· cos mπ

p
x+

∞∑
n=1

[ an cos
nπ

p
x+ bn sin

nπ

p
x ] · cos mπ

p
x }dx,

which gives, after use of (2.5), (2.2) and (2.4),∫ p

−p

f(x) cos
mπ

p
x dx = p am.
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• Multiply (3.5) by sin mπ
p
x where m ̸= 0, and integrate both sides between −p and p:∫ p

−p

f(x) · sin mπ

p
x dx =∫ p

−p

{ a0
2

· sin mπ

p
x+

∞∑
n=1

[ an cos
nπ

p
x+ bn sin

nπ

p
x ] · sin mπ

p
x }dx,

which gives, after use of (2.6), (2.4) and (2.3),∫ p

−p

f(x) sin
mπ

p
x dx = p bm.

Example 3.2 Expand

f(x) =

 0 for − π < x < 0,

π − x for 0 ≤ x < π
(3.6)

in a Fourier series. The graph of f(x) is given in Fig. 3.

Solution: Here, p = π and application of (3.2) yields

Figure 3: Graph of f on (−π, π).

a0 =
1

π

∫ π

−π

f(x) dx =
1

π

∫ 0

−π

0 dx+
1

π

∫ π

0

(π − x) dx =
π

2
.

On the other hand, application of (3.3) yields

an =
1

π

∫ π

−π

f(x) cosnx dx =

1

π

∫ π

0

(π − x) cosnx dx =
1

nπ
[−cosnx

n
]π0 = − 1

n2π
[(−1)n − 1],

where integration by parts has been used (set u = x, dv = cosnxdx). Finally, application of (3.4)
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yields

bn =
1

π

∫ π

−π

f(x) sinnx dx =
1

π

∫ π

0

(π − x) sinnx dx

=

∫ π

0

sinnx dx− 1

π

∫ π

0

x sinnx dx

= −[
cosnx

n
]π0 −

1

π
[−x

n
cosnx]π0 +

1

n

∫ π

0

cosnx dx

= − 1

n
[(−1)n − 1] +

1

nπ
[(−1)nπ − 0] =

1

n
,

where integration by parts has been used (set u = x, dv = sinnxdx).

So the Fourier expansion of f(x) on the interval (−π, π) is given by,

π

4
+

∞∑
n=1

{1− (−1)n

n2π
cosnx+

1

n
sinnx}. (3.7)

One can tidy the final expression a bit more, as 1 − (−1)n = 0 when n is even, while 1 − (−1)n = 2

when n is odd. Therefore, only the terms corresponding to n odd will survive in the cosine series of

(3.7). Let us thus set n = 2k − 1, and sum over k rather than n. This yields

π

4
+

∞∑
k=1

{ 2

(2k − 1)2π
cos(2k − 1)x+

1

k
sin kx}. (3.8)

Example 3.3 The delta function δ(x) is defined to be the ‘function’ which is equal to 0 everywhere

except at x = 0, and which satisfies ∫ b

a

δ(x) f(x) dx = f(0)

when 0 ∈ [a, b]. Note that δ(x) is not, actually, a function. It is a distribution, which is a generalization

of the function concept, and it is used extensively in mathematical physics. Let us calculate the Fourier

coefficients of δ(x), considered defined on (−p, p). Using the formulas (3.2)-(3.4), we get,

a0 =
1

p

∫ p

−p

δ(x) dx =
1

p

an =
1

p

∫ p

−p

δ(x) cos
nπ

p
x dx =

1

p
cos 0 =

1

p

bn =
1

p

∫ p

−p

δ(x) sin
nπ

p
x dx =

1

p
. sin 0 = 0.
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Remark 3.4 The calculation of Fourier coefficients is quite tedious, and if you need to calculate such

quantities in your future career, you may benefit from developing a Maple code to this effect. An

example of such code is posted on the course webpages (see Handouts). You are encouraged to

experiment with it.

3.3 Convergence of a Fourier Series

3.3.1 Sequence of Partial Sums

Fourier series do not always converge, and even if they do converge, they do not necessarily converge to

the function that generated them. In order to get insight into convergence, let us consider the sequence

of partial sums {Sm(x),m ≥ 1} of the Fourier series generated by the function f(x), where

Sm(x) =
a0
2

+
m∑

n=1

(an cos
nπ

p
x+ bn sin

nπ

p
x).

If the sequence of partial sums converges to f(x) for some x ∈ (−p, p), i.e. if

f(x) = lim
m→∞

Sm(x)

then the Fourier series converges to f(x) at that value of x and one writes

f(x) =
a0
2

+
∞∑
n=1

(an cos
nπ

p
x+ bn sin

nπ

p
x).

For instance, the mth partial sum corresponding to the Fourier series (3.7) is,

Sm(x) =
π

4
+

m∑
n=1

{1− (−1)n

n2π
cosnx+

1

n
sinnx}.

Observe the plots for S2(x), S4(x) and S14(x) shown in Fig. 4, and compare with the graph in Fig. 3.

As m increases, it becomes more and more difficult to distinguish Sm from the graph of f(x), and we

can be fairly confident that the Fourier series of f(x) converges to f(x) for all x ∈ (−π, π).
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S2(x) S4(x)

S14(x)

Figure 4: Second, fourth and fourteenth partial sums of f .

3.3.2 Convergence theorem

Theorem 3.5 Let f and f ′ be continuous functions, except at a finite number of points in the interval

(−p, p) (i.e. let f and f ′ be piecewise continuous on (−p, p)), and let them only have finite (jump)

discontinuities at these points. Then,

• At a point of continuity x, the Fourier series of f on (−p, p) converges to f(x).

• At a point of discontinuity x0, the Fourier series converges to the average

f(x0+) + f(x0−)

2
,

where

f(x0+) = lim
h→0

f(x0 + h) h > 0,

f(x0−) = lim
h→0

f(x0 − h) h > 0.

In other words, it converges to the midpoint of the jump. Moreover, if f(−p) ̸= f(p), its Fourier series

converges to the average of the endpoints at both ends, as illustrated in Fig. 5 (for p ≡ π).
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Proof: Left as an exercise. ■

Figure 5: A piecewise continuous function on [−π, π] (left) generates a Fourier series converging to the

function on the right.

In summary,

If the function f(x) is piecewise smooth on x ∈ (−p, p) then the sequence of truncated Fourier series

converges as follows:

lim
N→∞

SN(x) →
1

2

(
lim
y ↓ x

f(y) + lim
y ↑ x

f(y)

)

=


f(x) if f is continuous at x,

average of f(x) across jump at a

discontinuity in f(x)

(y ↓ x and y ↑ x denote the one-sided limits as y approaches x from above or below respectively.)

Remark 3.6 The above also illustrates how to produce sans serif fonts for both text and formulas

(through textsf and mathsf).

4 Miscellaneous

A few more environments that Pandoc processes without problems.
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The three matrices M1,M2,M3 below are rendered reasonably well in html via Pandoc.

M1 =


a b c

d e f

g h i

 , M2 =


x2 a

b
c/b

c d e

f g h

, M3 =

 A B

C D

 .
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