
A Mathematica Workshop
For Mathematicians

Sam Fearn

June 21st, 2019



Outline

1. What is Mathematica?

2. Basic Mathematica

3. Practical 1

4. More Advanced Mathematica

5. Practical 2

2 / 21



What Is Mathematica?

• Mathematica is an example of a Computer Algebra System (CAS)
developed by Wolfram.

• Unlike a simple calculator application, Mathematica can work
symbolically.

In[1]:= D[Sin[x],x]

Out[1]:= Cos[x]

• The combination of symbolic manipulation and a large number of
built-in mathematical functions means that a large number of
problems can be solved much easier with Mathematica than a general
purpose programming language.

• There are other CAS which work very similarly, though the exact
syntax for commands may change. Other popular CAS include Maple,
MATLAB and the open source SageMath. Also Cadabra, which is
developed in Durham by Kasper Peeters.

3 / 21

http://www.wolfram.com/mathematica/
https://www.maplesoft.com/products/Maple/
https://uk.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
http://www.sagemath.org
https://cadabra.science/index.html


What Is Mathematica?

• Mathematica is an example of a Computer Algebra System (CAS)
developed by Wolfram.

• Unlike a simple calculator application, Mathematica can work
symbolically.

In[1]:= D[Sin[x],x]

Out[1]:= Cos[x]

• The combination of symbolic manipulation and a large number of
built-in mathematical functions means that a large number of
problems can be solved much easier with Mathematica than a general
purpose programming language.

• There are other CAS which work very similarly, though the exact
syntax for commands may change. Other popular CAS include Maple,
MATLAB and the open source SageMath. Also Cadabra, which is
developed in Durham by Kasper Peeters.

3 / 21

http://www.wolfram.com/mathematica/
https://www.maplesoft.com/products/Maple/
https://uk.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
http://www.sagemath.org
https://cadabra.science/index.html


What Is Mathematica?

• Mathematica is an example of a Computer Algebra System (CAS)
developed by Wolfram.

• Unlike a simple calculator application, Mathematica can work
symbolically.

In[1]:= D[Sin[x],x]

Out[1]:= Cos[x]

• The combination of symbolic manipulation and a large number of
built-in mathematical functions means that a large number of
problems can be solved much easier with Mathematica than a general
purpose programming language.

• There are other CAS which work very similarly, though the exact
syntax for commands may change. Other popular CAS include Maple,
MATLAB and the open source SageMath. Also Cadabra, which is
developed in Durham by Kasper Peeters.

3 / 21

http://www.wolfram.com/mathematica/
https://www.maplesoft.com/products/Maple/
https://uk.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
http://www.sagemath.org
https://cadabra.science/index.html


What Is Mathematica?

• Mathematica is an example of a Computer Algebra System (CAS)
developed by Wolfram.

• Unlike a simple calculator application, Mathematica can work
symbolically.

In[1]:= D[Sin[x],x]

Out[1]:= Cos[x]

• The combination of symbolic manipulation and a large number of
built-in mathematical functions means that a large number of
problems can be solved much easier with Mathematica than a general
purpose programming language.

• There are other CAS which work very similarly, though the exact
syntax for commands may change. Other popular CAS include Maple,
MATLAB and the open source SageMath. Also Cadabra, which is
developed in Durham by Kasper Peeters.

3 / 21

http://www.wolfram.com/mathematica/
https://www.maplesoft.com/products/Maple/
https://uk.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
http://www.sagemath.org
https://cadabra.science/index.html


A Notebook Interface

• You may already be familiar with Wolfram|Alpha, which understands
many of the same commands as Mathematica – they are both built
on the Wolfram Language.

• One way that Mathematica differs from Wolfram|Alpha, is that (by
default) Mathematica uses a ‘Notebook’ interface – similar to Jupyter
Notebooks or R Markdown documents/ R Notebooks.

• A Mathematica notebook may contain headings and subheadings,
formatted text and even other languages (Python, JavaScript)
alongside Mathematica code cells.

• Mathematica cells can even be dynamic, changing automatically
based on the execution of other cells, or have controls attached to
them allowing dynamic modification.

4 / 21

https://www.wolframalpha.com
https://www.wolfram.com/language/
https://jupyter.org
https://jupyter.org
https://rmarkdown.rstudio.com


A Notebook Interface

• You may already be familiar with Wolfram|Alpha, which understands
many of the same commands as Mathematica – they are both built
on the Wolfram Language.

• One way that Mathematica differs from Wolfram|Alpha, is that (by
default) Mathematica uses a ‘Notebook’ interface – similar to Jupyter
Notebooks or R Markdown documents/ R Notebooks.

• A Mathematica notebook may contain headings and subheadings,
formatted text and even other languages (Python, JavaScript)
alongside Mathematica code cells.

• Mathematica cells can even be dynamic, changing automatically
based on the execution of other cells, or have controls attached to
them allowing dynamic modification.

4 / 21

https://www.wolframalpha.com
https://www.wolfram.com/language/
https://jupyter.org
https://jupyter.org
https://rmarkdown.rstudio.com


A Notebook Interface

• You may already be familiar with Wolfram|Alpha, which understands
many of the same commands as Mathematica – they are both built
on the Wolfram Language.

• One way that Mathematica differs from Wolfram|Alpha, is that (by
default) Mathematica uses a ‘Notebook’ interface – similar to Jupyter
Notebooks or R Markdown documents/ R Notebooks.

• A Mathematica notebook may contain headings and subheadings,
formatted text and even other languages (Python, JavaScript)
alongside Mathematica code cells.

• Mathematica cells can even be dynamic, changing automatically
based on the execution of other cells, or have controls attached to
them allowing dynamic modification.

4 / 21

https://www.wolframalpha.com
https://www.wolfram.com/language/
https://jupyter.org
https://jupyter.org
https://rmarkdown.rstudio.com


A Notebook Interface

• You may already be familiar with Wolfram|Alpha, which understands
many of the same commands as Mathematica – they are both built
on the Wolfram Language.

• One way that Mathematica differs from Wolfram|Alpha, is that (by
default) Mathematica uses a ‘Notebook’ interface – similar to Jupyter
Notebooks or R Markdown documents/ R Notebooks.

• A Mathematica notebook may contain headings and subheadings,
formatted text and even other languages (Python, JavaScript)
alongside Mathematica code cells.

• Mathematica cells can even be dynamic, changing automatically
based on the execution of other cells, or have controls attached to
them allowing dynamic modification.

4 / 21

https://www.wolframalpha.com
https://www.wolfram.com/language/
https://jupyter.org
https://jupyter.org
https://rmarkdown.rstudio.com


Working In A Notebook

• In a notebook, content is arranged into cells.

• Cells which contain Mathematica code (as opposed to text) can be
executed in any order you like, the output is then placed in an
‘output’ cell below the ‘input’ cell.

• Cells are evaluated by pressing Shift-Enter.

• The output from one calculation can be used as part of another
calculation.

• As in other programming languages, we can create variables and
define our own functions.

• There are also a large number of built in functions covering a wide
range of mathematical (and non-mathematical) topics.

• Using a notebook means that you can change the definition of a
function – or add a new function – without having to rerun all the
rest of your code. This can be very helpful if calculations take a long
time to run, or if you want to store lots of results in a file you’re
working on.

5 / 21



Working In A Notebook

• In a notebook, content is arranged into cells.

• Cells which contain Mathematica code (as opposed to text) can be
executed in any order you like, the output is then placed in an
‘output’ cell below the ‘input’ cell.

• Cells are evaluated by pressing Shift-Enter.

• The output from one calculation can be used as part of another
calculation.

• As in other programming languages, we can create variables and
define our own functions.

• There are also a large number of built in functions covering a wide
range of mathematical (and non-mathematical) topics.

• Using a notebook means that you can change the definition of a
function – or add a new function – without having to rerun all the
rest of your code. This can be very helpful if calculations take a long
time to run, or if you want to store lots of results in a file you’re
working on.

5 / 21



Working In A Notebook

• In a notebook, content is arranged into cells.

• Cells which contain Mathematica code (as opposed to text) can be
executed in any order you like, the output is then placed in an
‘output’ cell below the ‘input’ cell.

• Cells are evaluated by pressing Shift-Enter.

• The output from one calculation can be used as part of another
calculation.

• As in other programming languages, we can create variables and
define our own functions.

• There are also a large number of built in functions covering a wide
range of mathematical (and non-mathematical) topics.

• Using a notebook means that you can change the definition of a
function – or add a new function – without having to rerun all the
rest of your code. This can be very helpful if calculations take a long
time to run, or if you want to store lots of results in a file you’re
working on.

5 / 21



Working In A Notebook

• In a notebook, content is arranged into cells.

• Cells which contain Mathematica code (as opposed to text) can be
executed in any order you like, the output is then placed in an
‘output’ cell below the ‘input’ cell.

• Cells are evaluated by pressing Shift-Enter.

• The output from one calculation can be used as part of another
calculation.

• As in other programming languages, we can create variables and
define our own functions.

• There are also a large number of built in functions covering a wide
range of mathematical (and non-mathematical) topics.

• Using a notebook means that you can change the definition of a
function – or add a new function – without having to rerun all the
rest of your code. This can be very helpful if calculations take a long
time to run, or if you want to store lots of results in a file you’re
working on.

5 / 21



Working In A Notebook

• In a notebook, content is arranged into cells.

• Cells which contain Mathematica code (as opposed to text) can be
executed in any order you like, the output is then placed in an
‘output’ cell below the ‘input’ cell.

• Cells are evaluated by pressing Shift-Enter.

• The output from one calculation can be used as part of another
calculation.

• As in other programming languages, we can create variables and
define our own functions.

• There are also a large number of built in functions covering a wide
range of mathematical (and non-mathematical) topics.

• Using a notebook means that you can change the definition of a
function – or add a new function – without having to rerun all the
rest of your code. This can be very helpful if calculations take a long
time to run, or if you want to store lots of results in a file you’re
working on.

5 / 21



Working In A Notebook

• In a notebook, content is arranged into cells.

• Cells which contain Mathematica code (as opposed to text) can be
executed in any order you like, the output is then placed in an
‘output’ cell below the ‘input’ cell.

• Cells are evaluated by pressing Shift-Enter.

• The output from one calculation can be used as part of another
calculation.

• As in other programming languages, we can create variables and
define our own functions.

• There are also a large number of built in functions covering a wide
range of mathematical (and non-mathematical) topics.

• Using a notebook means that you can change the definition of a
function – or add a new function – without having to rerun all the
rest of your code. This can be very helpful if calculations take a long
time to run, or if you want to store lots of results in a file you’re
working on.

5 / 21



Working In A Notebook

• In a notebook, content is arranged into cells.

• Cells which contain Mathematica code (as opposed to text) can be
executed in any order you like, the output is then placed in an
‘output’ cell below the ‘input’ cell.

• Cells are evaluated by pressing Shift-Enter.

• The output from one calculation can be used as part of another
calculation.

• As in other programming languages, we can create variables and
define our own functions.

• There are also a large number of built in functions covering a wide
range of mathematical (and non-mathematical) topics.

• Using a notebook means that you can change the definition of a
function – or add a new function – without having to rerun all the
rest of your code. This can be very helpful if calculations take a long
time to run, or if you want to store lots of results in a file you’re
working on.

5 / 21



Some Basic Functions

• The convention is that built in functions in Mathematica start with a
capital letter.

• Square brackets are then used to give arguments to a function, with
arguments separated by commas.

In[1]:= Binomial[15,4]

Out[1]:= 1365

In[2]:= Simplify[(2x - 4)/(3x + 3) - (x - 1)/(x + 1)]

Out[2]:= -1/3

In[3]:= Coefficient[(x + 3)^7, x, 4]

Out[3]:= 945

6 / 21



Some Basic Functions

• The convention is that built in functions in Mathematica start with a
capital letter.

• Square brackets are then used to give arguments to a function, with
arguments separated by commas.

In[1]:= Binomial[15,4]

Out[1]:= 1365

In[2]:= Simplify[(2x - 4)/(3x + 3) - (x - 1)/(x + 1)]

Out[2]:= -1/3

In[3]:= Coefficient[(x + 3)^7, x, 4]

Out[3]:= 945

6 / 21



Some Basic Functions

• The convention is that built in functions in Mathematica start with a
capital letter.

• Square brackets are then used to give arguments to a function, with
arguments separated by commas.

In[1]:= Binomial[15,4]

Out[1]:= 1365

In[2]:= Simplify[(2x - 4)/(3x + 3) - (x - 1)/(x + 1)]

Out[2]:= -1/3

In[3]:= Coefficient[(x + 3)^7, x, 4]

Out[3]:= 945

6 / 21



Some Basic Functions

• The convention is that built in functions in Mathematica start with a
capital letter.

• Square brackets are then used to give arguments to a function, with
arguments separated by commas.

In[1]:= Binomial[15,4]

Out[1]:= 1365

In[2]:= Simplify[(2x - 4)/(3x + 3) - (x - 1)/(x + 1)]

Out[2]:= -1/3

In[3]:= Coefficient[(x + 3)^7, x, 4]

Out[3]:= 945

6 / 21



Some Basic Functions

• The convention is that built in functions in Mathematica start with a
capital letter.

• Square brackets are then used to give arguments to a function, with
arguments separated by commas.

In[1]:= Binomial[15,4]

Out[1]:= 1365

In[2]:= Simplify[(2x - 4)/(3x + 3) - (x - 1)/(x + 1)]

Out[2]:= -1/3

In[3]:= Coefficient[(x + 3)^7, x, 4]

Out[3]:= 945

6 / 21



Lists

In[1]:= Divisors[24]

Out[1]:= {1, 2, 3, 4, 6, 8, 12, 24}

Lists in Mathematica are denoted using curly braces. Some functions like
Divisors[n] return lists. Other functions may have lists for their arguments.

In[2]:= Integrate[x^3 - 6 x + 3, {x, -5, 5}]

Out[2]:= 30

In Mathematica, vectors are given as lists, and matrices are given as lists
of lists (where the first list corresponds to the top row and so on).

In[3]:= Det[{{2, 1}, {1, 2}}]

Out[3]:= 3

7 / 21



Lists

In[1]:= Divisors[24]

Out[1]:= {1, 2, 3, 4, 6, 8, 12, 24}

Lists in Mathematica are denoted using curly braces. Some functions like
Divisors[n] return lists.

Other functions may have lists for their arguments.

In[2]:= Integrate[x^3 - 6 x + 3, {x, -5, 5}]

Out[2]:= 30

In Mathematica, vectors are given as lists, and matrices are given as lists
of lists (where the first list corresponds to the top row and so on).

In[3]:= Det[{{2, 1}, {1, 2}}]

Out[3]:= 3

7 / 21



Lists

In[1]:= Divisors[24]

Out[1]:= {1, 2, 3, 4, 6, 8, 12, 24}

Lists in Mathematica are denoted using curly braces. Some functions like
Divisors[n] return lists. Other functions may have lists for their arguments.

In[2]:= Integrate[x^3 - 6 x + 3, {x, -5, 5}]

Out[2]:= 30

In Mathematica, vectors are given as lists, and matrices are given as lists
of lists (where the first list corresponds to the top row and so on).

In[3]:= Det[{{2, 1}, {1, 2}}]

Out[3]:= 3

7 / 21



Lists

In[1]:= Divisors[24]

Out[1]:= {1, 2, 3, 4, 6, 8, 12, 24}

Lists in Mathematica are denoted using curly braces. Some functions like
Divisors[n] return lists. Other functions may have lists for their arguments.

In[2]:= Integrate[x^3 - 6 x + 3, {x, -5, 5}]

Out[2]:= 30

In Mathematica, vectors are given as lists, and matrices are given as lists
of lists (where the first list corresponds to the top row and so on).

In[3]:= Det[{{2, 1}, {1, 2}}]

Out[3]:= 3

7 / 21



Lists

In[1]:= Divisors[24]

Out[1]:= {1, 2, 3, 4, 6, 8, 12, 24}

Lists in Mathematica are denoted using curly braces. Some functions like
Divisors[n] return lists. Other functions may have lists for their arguments.

In[2]:= Integrate[x^3 - 6 x + 3, {x, -5, 5}]

Out[2]:= 30

In Mathematica, vectors are given as lists, and matrices are given as lists
of lists (where the first list corresponds to the top row and so on).

In[3]:= Det[{{2, 1}, {1, 2}}]

Out[3]:= 3

7 / 21



Lists

In[1]:= Divisors[24]

Out[1]:= {1, 2, 3, 4, 6, 8, 12, 24}

Lists in Mathematica are denoted using curly braces. Some functions like
Divisors[n] return lists. Other functions may have lists for their arguments.

In[2]:= Integrate[x^3 - 6 x + 3, {x, -5, 5}]

Out[2]:= 30

In Mathematica, vectors are given as lists, and matrices are given as lists
of lists (where the first list corresponds to the top row and so on).

In[3]:= Det[{{2, 1}, {1, 2}}]

Out[3]:= 3

7 / 21



Chaining Functions

Often we may want to use one function inside another.

In[1]:= Exponent[Integrate[2 x^6 - 3x + 1, x], x]

Out[1]:= 7

We can also use the percent sign ‘%’ to refer to the output from the
previous calculation – we have to be careful of the order here.

In[2]:= RandomInteger[{1, 100}]

Out[2]:= 78

In[3]:= Prime[%]

Out[3]:= 397

We can also use ‘%n’ to refer to the output on the nth line.

8 / 21



Chaining Functions

Often we may want to use one function inside another.

In[1]:= Exponent[Integrate[2 x^6 - 3x + 1, x], x]

Out[1]:= 7

We can also use the percent sign ‘%’ to refer to the output from the
previous calculation – we have to be careful of the order here.

In[2]:= RandomInteger[{1, 100}]

Out[2]:= 78

In[3]:= Prime[%]

Out[3]:= 397

We can also use ‘%n’ to refer to the output on the nth line.

8 / 21



Chaining Functions

Often we may want to use one function inside another.

In[1]:= Exponent[Integrate[2 x^6 - 3x + 1, x], x]

Out[1]:= 7

We can also use the percent sign ‘%’ to refer to the output from the
previous calculation – we have to be careful of the order here.

In[2]:= RandomInteger[{1, 100}]

Out[2]:= 78

In[3]:= Prime[%]

Out[3]:= 397

We can also use ‘%n’ to refer to the output on the nth line.

8 / 21



Chaining Functions

Often we may want to use one function inside another.

In[1]:= Exponent[Integrate[2 x^6 - 3x + 1, x], x]

Out[1]:= 7

We can also use the percent sign ‘%’ to refer to the output from the
previous calculation – we have to be careful of the order here.

In[2]:= RandomInteger[{1, 100}]

Out[2]:= 78

In[3]:= Prime[%]

Out[3]:= 397

We can also use ‘%n’ to refer to the output on the nth line.

8 / 21



Plotting Basics

It can often be useful to plot a function in order to better understand its
nature.

In[1]:= Plot[Sin[Sqrt[x]] + Cos[2 x], {x, 0, 5}]

9 / 21



Plotting Basics

It can often be useful to plot a function in order to better understand its
nature.

In[1]:= Plot[Sin[Sqrt[x]] + Cos[2 x], {x, 0, 5}]

9 / 21



Plotting Basics
If we want to compare functions, we can put multiple functions in a list.

In[1]:= Plot[{1/Tan[2 x], (x + 3) Cos[x]^2},

{x, 0, 5}, PlotLegends -> "Expressions"]

We have added an optional argument to add a legend.
Mathematica has automatically applied a PlotStyle to our plot.

10 / 21



Plotting Basics
If we want to compare functions, we can put multiple functions in a list.

In[1]:= Plot[{1/Tan[2 x], (x + 3) Cos[x]^2},

{x, 0, 5}, PlotLegends -> "Expressions"]

We have added an optional argument to add a legend.
Mathematica has automatically applied a PlotStyle to our plot.

10 / 21



Plotting Basics
If we want to compare functions, we can put multiple functions in a list.

In[1]:= Plot[{1/Tan[2 x], (x + 3) Cos[x]^2},

{x, 0, 5}, PlotLegends -> "Expressions"]

We have added an optional argument to add a legend.

Mathematica has automatically applied a PlotStyle to our plot.

10 / 21



Plotting Basics
If we want to compare functions, we can put multiple functions in a list.

In[1]:= Plot[{1/Tan[2 x], (x + 3) Cos[x]^2},

{x, 0, 5}, PlotLegends -> "Expressions"]

We have added an optional argument to add a legend.
Mathematica has automatically applied a PlotStyle to our plot.

10 / 21



The Documentation
Mathematica has so many functions, that one of the most important
things to learn is how to look up the definitions of functions as you need
them.

Luckily Mathematica has very good documentation.

You can access the documentation either online
(https://reference.wolfram.com/language/) or by opening the help menu
and selecting Wolfram Documentation. From the documentation, you can
view guides and tutorials which explain many common functions or search
for functions by name.

Each function is described in the documentation with examples, possible
options and related functions – searching for a function and then looking
at the related functions is often a good way to find the function you need.

As you start typing in a cell, Mathematica will also show a box of possible
autocompletion options. This is another way of finding the function you
need. Once you have typed the name of a function, Mathematica will
also show a dropdown menu with links to the documentation if you hover
your mouse over the function name.

11 / 21

https://reference.wolfram.com/language/


The Documentation
Mathematica has so many functions, that one of the most important
things to learn is how to look up the definitions of functions as you need
them. Luckily Mathematica has very good documentation.

You can access the documentation either online
(https://reference.wolfram.com/language/) or by opening the help menu
and selecting Wolfram Documentation. From the documentation, you can
view guides and tutorials which explain many common functions or search
for functions by name.

Each function is described in the documentation with examples, possible
options and related functions – searching for a function and then looking
at the related functions is often a good way to find the function you need.

As you start typing in a cell, Mathematica will also show a box of possible
autocompletion options. This is another way of finding the function you
need. Once you have typed the name of a function, Mathematica will
also show a dropdown menu with links to the documentation if you hover
your mouse over the function name.

11 / 21

https://reference.wolfram.com/language/


The Documentation
Mathematica has so many functions, that one of the most important
things to learn is how to look up the definitions of functions as you need
them. Luckily Mathematica has very good documentation.

You can access the documentation either online
(https://reference.wolfram.com/language/) or by opening the help menu
and selecting Wolfram Documentation. From the documentation, you can
view guides and tutorials which explain many common functions or search
for functions by name.

Each function is described in the documentation with examples, possible
options and related functions – searching for a function and then looking
at the related functions is often a good way to find the function you need.

As you start typing in a cell, Mathematica will also show a box of possible
autocompletion options. This is another way of finding the function you
need. Once you have typed the name of a function, Mathematica will
also show a dropdown menu with links to the documentation if you hover
your mouse over the function name.

11 / 21

https://reference.wolfram.com/language/


The Documentation
Mathematica has so many functions, that one of the most important
things to learn is how to look up the definitions of functions as you need
them. Luckily Mathematica has very good documentation.

You can access the documentation either online
(https://reference.wolfram.com/language/) or by opening the help menu
and selecting Wolfram Documentation. From the documentation, you can
view guides and tutorials which explain many common functions or search
for functions by name.

Each function is described in the documentation with examples, possible
options and related functions – searching for a function and then looking
at the related functions is often a good way to find the function you need.

As you start typing in a cell, Mathematica will also show a box of possible
autocompletion options. This is another way of finding the function you
need. Once you have typed the name of a function, Mathematica will
also show a dropdown menu with links to the documentation if you hover
your mouse over the function name.

11 / 21

https://reference.wolfram.com/language/


The Documentation
Mathematica has so many functions, that one of the most important
things to learn is how to look up the definitions of functions as you need
them. Luckily Mathematica has very good documentation.

You can access the documentation either online
(https://reference.wolfram.com/language/) or by opening the help menu
and selecting Wolfram Documentation. From the documentation, you can
view guides and tutorials which explain many common functions or search
for functions by name.

Each function is described in the documentation with examples, possible
options and related functions – searching for a function and then looking
at the related functions is often a good way to find the function you need.

As you start typing in a cell, Mathematica will also show a box of possible
autocompletion options. This is another way of finding the function you
need.

Once you have typed the name of a function, Mathematica will
also show a dropdown menu with links to the documentation if you hover
your mouse over the function name.

11 / 21

https://reference.wolfram.com/language/


The Documentation
Mathematica has so many functions, that one of the most important
things to learn is how to look up the definitions of functions as you need
them. Luckily Mathematica has very good documentation.

You can access the documentation either online
(https://reference.wolfram.com/language/) or by opening the help menu
and selecting Wolfram Documentation. From the documentation, you can
view guides and tutorials which explain many common functions or search
for functions by name.

Each function is described in the documentation with examples, possible
options and related functions – searching for a function and then looking
at the related functions is often a good way to find the function you need.

As you start typing in a cell, Mathematica will also show a box of possible
autocompletion options. This is another way of finding the function you
need. Once you have typed the name of a function, Mathematica will
also show a dropdown menu with links to the documentation if you hover
your mouse over the function name.

11 / 21

https://reference.wolfram.com/language/


Documentation Demo



Questions?



Practical:
• Download the Notebook for this workshop from my website

www.maths.dur.ac.uk/∼sxwc62/blog/

• Work through the ‘Basic Mathematica’ section of the notebook, using
the documentation to look up the necessary functions.

https://www.maths.dur.ac.uk/~sxwc62/blog/


Document Structure

• The notebook format is very good for helping to organise long
documents, or for creating files that can be easily understood when
you return to them at a later date.

• If you right click on your document you will have an option for
inserting a new cell. The various levels of headings that can be added
allow you to easily structure your document and have good default
styling.

• Adding headings also automatically puts cells into groups. These
groups can be opened/closed with the shortcut Ctrl+’ (or Cmd+’
on Mac).

• You can also add cells which just contain plain (or formatted) text.
This can be used to add explanations to your notebook, making it
easier for someone else (or yourself at a later date) to understand.

13 / 21



Document Structure

• The notebook format is very good for helping to organise long
documents, or for creating files that can be easily understood when
you return to them at a later date.

• If you right click on your document you will have an option for
inserting a new cell. The various levels of headings that can be added
allow you to easily structure your document and have good default
styling.

• Adding headings also automatically puts cells into groups. These
groups can be opened/closed with the shortcut Ctrl+’ (or Cmd+’
on Mac).

• You can also add cells which just contain plain (or formatted) text.
This can be used to add explanations to your notebook, making it
easier for someone else (or yourself at a later date) to understand.

13 / 21



Document Structure

• The notebook format is very good for helping to organise long
documents, or for creating files that can be easily understood when
you return to them at a later date.

• If you right click on your document you will have an option for
inserting a new cell. The various levels of headings that can be added
allow you to easily structure your document and have good default
styling.

• Adding headings also automatically puts cells into groups. These
groups can be opened/closed with the shortcut Ctrl+’ (or Cmd+’
on Mac).

• You can also add cells which just contain plain (or formatted) text.
This can be used to add explanations to your notebook, making it
easier for someone else (or yourself at a later date) to understand.

13 / 21



Document Structure

• The notebook format is very good for helping to organise long
documents, or for creating files that can be easily understood when
you return to them at a later date.

• If you right click on your document you will have an option for
inserting a new cell. The various levels of headings that can be added
allow you to easily structure your document and have good default
styling.

• Adding headings also automatically puts cells into groups. These
groups can be opened/closed with the shortcut Ctrl+’ (or Cmd+’
on Mac).

• You can also add cells which just contain plain (or formatted) text.
This can be used to add explanations to your notebook, making it
easier for someone else (or yourself at a later date) to understand.

13 / 21



Defining Your Own functions
To define your own function, you put the name and variables of the
function first, then ‘:=’, then the definition of your function.

In[1]:= myFunc[x_,y_] := x^2+x*y-3

In[2]:= myFunc[4,6]

Out[2]:= 37

Note that the variables for our function have an underscore after them on
the left hand side of the definition only.

Your functions can call any other function (including your own), and
unless specified (see later) will try to evaluate on whatever input you give.

In[3]:= padToLength24[vec_] :=

Join[Table[0, 24 - Length[vec]],vec]

In[4]:= toBinaryCodeword[n_] :=

padToLength24[IntegerDigits[n,2]]

14 / 21



Defining Your Own functions
To define your own function, you put the name and variables of the
function first, then ‘:=’, then the definition of your function.

In[1]:= myFunc[x_,y_] := x^2+x*y-3

In[2]:= myFunc[4,6]

Out[2]:= 37

Note that the variables for our function have an underscore after them on
the left hand side of the definition only.

Your functions can call any other function (including your own), and
unless specified (see later) will try to evaluate on whatever input you give.

In[3]:= padToLength24[vec_] :=

Join[Table[0, 24 - Length[vec]],vec]

In[4]:= toBinaryCodeword[n_] :=

padToLength24[IntegerDigits[n,2]]

14 / 21



Defining Your Own functions
To define your own function, you put the name and variables of the
function first, then ‘:=’, then the definition of your function.

In[1]:= myFunc[x_,y_] := x^2+x*y-3

In[2]:= myFunc[4,6]

Out[2]:= 37

Note that the variables for our function have an underscore after them on
the left hand side of the definition only.

Your functions can call any other function (including your own), and
unless specified (see later) will try to evaluate on whatever input you give.

In[3]:= padToLength24[vec_] :=

Join[Table[0, 24 - Length[vec]],vec]

In[4]:= toBinaryCodeword[n_] :=

padToLength24[IntegerDigits[n,2]]

14 / 21



Prefix, Postfix, Infix?
All the functions we’ve used so far have been used as Prefix functions –
the function name comes first, with the arguments after inside brackets.

Sometimes it is convenient to put a function you want to apply at the end
of the line. This is known as postfix notation and is often used for
functions which change the display of the output.

In[1]:= A = {{1, 2}, {3, 4}};

In[2]:= B = {{5, 6}, {7, 8}};

In[3]:= (A.B +2A) // MatrixForm

This displays the matrix as a rectangular array, rather than as a list of lists,
making it easier to read the output.

Some functions, including many standard mathematical operators
(+,−,∗,/), are used as infix operators.

In[4]:= Table[i, {i, 1, 5}] ~ Join ~ Divisors[6]

Out[4]:= {1, 2, 3, 4, 5, 1, 2, 3, 6}

15 / 21



Prefix, Postfix, Infix?
All the functions we’ve used so far have been used as Prefix functions –
the function name comes first, with the arguments after inside brackets.

Sometimes it is convenient to put a function you want to apply at the end
of the line. This is known as postfix notation and is often used for
functions which change the display of the output.

In[1]:= A = {{1, 2}, {3, 4}};

In[2]:= B = {{5, 6}, {7, 8}};

In[3]:= (A.B +2A) // MatrixForm

This displays the matrix as a rectangular array, rather than as a list of lists,
making it easier to read the output.

Some functions, including many standard mathematical operators
(+,−,∗,/), are used as infix operators.

In[4]:= Table[i, {i, 1, 5}] ~ Join ~ Divisors[6]

Out[4]:= {1, 2, 3, 4, 5, 1, 2, 3, 6}

15 / 21



Prefix, Postfix, Infix?
All the functions we’ve used so far have been used as Prefix functions –
the function name comes first, with the arguments after inside brackets.

Sometimes it is convenient to put a function you want to apply at the end
of the line. This is known as postfix notation and is often used for
functions which change the display of the output.

In[1]:= A = {{1, 2}, {3, 4}};

In[2]:= B = {{5, 6}, {7, 8}};

In[3]:= (A.B +2A) // MatrixForm

This displays the matrix as a rectangular array, rather than as a list of lists,
making it easier to read the output.

Some functions, including many standard mathematical operators
(+,−,∗,/), are used as infix operators.

In[4]:= Table[i, {i, 1, 5}] ~ Join ~ Divisors[6]

Out[4]:= {1, 2, 3, 4, 5, 1, 2, 3, 6}

15 / 21



FullForm And Head

In Mathematica, everything is an expression. Everything is a nested series
of functions operating on variables, even if Mathematica displays them in
a more compact way.

In[1]:= FullForm[x + z^6/y^(2/3)]

Out[1]:= Plus[x,Times[Power[y,Rational[-2,3]]

,Power[z,6]]]

Whenever we have an expression of the form f[x,y], f is known as the head
of the expression.

In[2]:= Head[{1,2,3}]

Out[2]:= List

Understanding how Mathematica stores its expressions allows us to write
much more powerful functions.

16 / 21

https://reference.wolfram.com/language/tutorial/EverythingIsAnExpression.html


FullForm And Head

In Mathematica, everything is an expression. Everything is a nested series
of functions operating on variables, even if Mathematica displays them in
a more compact way.

In[1]:= FullForm[x + z^6/y^(2/3)]

Out[1]:= Plus[x,Times[Power[y,Rational[-2,3]]

,Power[z,6]]]

Whenever we have an expression of the form f[x,y], f is known as the head
of the expression.

In[2]:= Head[{1,2,3}]

Out[2]:= List

Understanding how Mathematica stores its expressions allows us to write
much more powerful functions.

16 / 21

https://reference.wolfram.com/language/tutorial/EverythingIsAnExpression.html


FullForm And Head

In Mathematica, everything is an expression. Everything is a nested series
of functions operating on variables, even if Mathematica displays them in
a more compact way.

In[1]:= FullForm[x + z^6/y^(2/3)]

Out[1]:= Plus[x,Times[Power[y,Rational[-2,3]]

,Power[z,6]]]

Whenever we have an expression of the form f[x,y], f is known as the head
of the expression.

In[2]:= Head[{1,2,3}]

Out[2]:= List

Understanding how Mathematica stores its expressions allows us to write
much more powerful functions.

16 / 21

https://reference.wolfram.com/language/tutorial/EverythingIsAnExpression.html


FullForm And Head

In Mathematica, everything is an expression. Everything is a nested series
of functions operating on variables, even if Mathematica displays them in
a more compact way.

In[1]:= FullForm[x + z^6/y^(2/3)]

Out[1]:= Plus[x,Times[Power[y,Rational[-2,3]]

,Power[z,6]]]

Whenever we have an expression of the form f[x,y], f is known as the head
of the expression.

In[2]:= Head[{1,2,3}]

Out[2]:= List

Understanding how Mathematica stores its expressions allows us to write
much more powerful functions.

16 / 21

https://reference.wolfram.com/language/tutorial/EverythingIsAnExpression.html


Map And Apply

The next two functions we’re going to consider can be easily confused.

The function Apply[] lets us replace the head of an expression with
another head. If we didn’t know about the function Total[], we might do
the following

In[1]:= Apply[Plus,{1,2,3}]

Out[1]:= 6

The function Map[] lets us call a function on each value of a list in turn.
The output is a list of the values.

In[1]:= f[x_]:= x - 3

In[1]:= Map[f,{1,2,3}]

Out[1]:= {-2, -1, 0}

17 / 21



Map And Apply

The next two functions we’re going to consider can be easily confused.

The function Apply[] lets us replace the head of an expression with
another head.

If we didn’t know about the function Total[], we might do
the following

In[1]:= Apply[Plus,{1,2,3}]

Out[1]:= 6

The function Map[] lets us call a function on each value of a list in turn.
The output is a list of the values.

In[1]:= f[x_]:= x - 3

In[1]:= Map[f,{1,2,3}]

Out[1]:= {-2, -1, 0}

17 / 21



Map And Apply

The next two functions we’re going to consider can be easily confused.

The function Apply[] lets us replace the head of an expression with
another head. If we didn’t know about the function Total[], we might do
the following

In[1]:= Apply[Plus,{1,2,3}]

Out[1]:= 6

The function Map[] lets us call a function on each value of a list in turn.
The output is a list of the values.

In[1]:= f[x_]:= x - 3

In[1]:= Map[f,{1,2,3}]

Out[1]:= {-2, -1, 0}

17 / 21



Map And Apply

The next two functions we’re going to consider can be easily confused.

The function Apply[] lets us replace the head of an expression with
another head. If we didn’t know about the function Total[], we might do
the following

In[1]:= Apply[Plus,{1,2,3}]

Out[1]:= 6

The function Map[] lets us call a function on each value of a list in turn.
The output is a list of the values.

In[1]:= f[x_]:= x - 3

In[1]:= Map[f,{1,2,3}]

Out[1]:= {-2, -1, 0}

17 / 21



Patterns

We can use the Head of an expression to restrict whether our function
tries to evaluate on the expression or not.

In[1]:= f[x_Integer]:= Mod[x,2]

In[2]:= Map[f, Table[i/2, {i, 0, 6}]]

Out[2]:= {0, f[1/2], 1, f[3/2], 0, f[5/2], 1}

Here, we’ve only those x which have Head of Integer will be evaluated. We
can use this to overload a function, making it do different things
depending on the argument.

In[3]:= f[x_List]:= Map[f,List]

Out[3]:= f[{1,3/2,2}]:= {1,f[3/2],0}

18 / 21



Patterns

We can use the Head of an expression to restrict whether our function
tries to evaluate on the expression or not.

In[1]:= f[x_Integer]:= Mod[x,2]

In[2]:= Map[f, Table[i/2, {i, 0, 6}]]

Out[2]:= {0, f[1/2], 1, f[3/2], 0, f[5/2], 1}

Here, we’ve only those x which have Head of Integer will be evaluated.

We
can use this to overload a function, making it do different things
depending on the argument.

In[3]:= f[x_List]:= Map[f,List]

Out[3]:= f[{1,3/2,2}]:= {1,f[3/2],0}

18 / 21



Patterns

We can use the Head of an expression to restrict whether our function
tries to evaluate on the expression or not.

In[1]:= f[x_Integer]:= Mod[x,2]

In[2]:= Map[f, Table[i/2, {i, 0, 6}]]

Out[2]:= {0, f[1/2], 1, f[3/2], 0, f[5/2], 1}

Here, we’ve only those x which have Head of Integer will be evaluated. We
can use this to overload a function, making it do different things
depending on the argument.

In[3]:= f[x_List]:= Map[f,List]

Out[3]:= f[{1,3/2,2}]:= {1,f[3/2],0}

18 / 21



Patterns

We can use the Head of an expression to restrict whether our function
tries to evaluate on the expression or not.

In[1]:= f[x_Integer]:= Mod[x,2]

In[2]:= Map[f, Table[i/2, {i, 0, 6}]]

Out[2]:= {0, f[1/2], 1, f[3/2], 0, f[5/2], 1}

Here, we’ve only those x which have Head of Integer will be evaluated. We
can use this to overload a function, making it do different things
depending on the argument.

In[3]:= f[x_List]:= Map[f,List]

Out[3]:= f[{1,3/2,2}]:= {1,f[3/2],0}

18 / 21



Patterns

Patterns in Mathematica are very powerful for defining complex functions.
Although we don’t have time to discuss in detail, we can define functions
only on arguments which match arbitrary functions rather than just by
testing the Head.

One more type of pattern that you might need for the exercises is the
following

In[3]:= g[x_?EvenQ]:= x/2

In[4]:= g[x_?Odd]:= 3x+1

This applies one definition of g if the function EvenQ returns True, and
another definition if the function OddQ returns True.

19 / 21

https://reference.wolfram.com/language/tutorial/Introduction-Patterns.html


Patterns

Patterns in Mathematica are very powerful for defining complex functions.
Although we don’t have time to discuss in detail, we can define functions
only on arguments which match arbitrary functions rather than just by
testing the Head.

One more type of pattern that you might need for the exercises is the
following

In[3]:= g[x_?EvenQ]:= x/2

In[4]:= g[x_?Odd]:= 3x+1

This applies one definition of g if the function EvenQ returns True, and
another definition if the function OddQ returns True.

19 / 21

https://reference.wolfram.com/language/tutorial/Introduction-Patterns.html


Patterns

Patterns in Mathematica are very powerful for defining complex functions.
Although we don’t have time to discuss in detail, we can define functions
only on arguments which match arbitrary functions rather than just by
testing the Head.

One more type of pattern that you might need for the exercises is the
following

In[3]:= g[x_?EvenQ]:= x/2

In[4]:= g[x_?Odd]:= 3x+1

This applies one definition of g if the function EvenQ returns True, and
another definition if the function OddQ returns True.

19 / 21

https://reference.wolfram.com/language/tutorial/Introduction-Patterns.html


Patterns

Patterns in Mathematica are very powerful for defining complex functions.
Although we don’t have time to discuss in detail, we can define functions
only on arguments which match arbitrary functions rather than just by
testing the Head.

One more type of pattern that you might need for the exercises is the
following

In[3]:= g[x_?EvenQ]:= x/2

In[4]:= g[x_?Odd]:= 3x+1

This applies one definition of g if the function EvenQ returns True, and
another definition if the function OddQ returns True.

19 / 21

https://reference.wolfram.com/language/tutorial/Introduction-Patterns.html


Dynamic Plots
Mathematica has a few ways to produce dynamic content – content that
changes either in response to user input, or due to other ongoing
computations.

Manipulate allows us to change one or more values inside
a function and have the function automatically update.

In[1]:= Manipulate[CompleteGraph[n, EdgeStyle ->

style], {n, 2, 12, 1}, {style, {Gray -> "Gray",

Dashed -> "Dashed", Thick -> "Thick"}}]

20 / 21



Dynamic Plots
Mathematica has a few ways to produce dynamic content – content that
changes either in response to user input, or due to other ongoing
computations. Manipulate allows us to change one or more values inside
a function and have the function automatically update.

In[1]:= Manipulate[CompleteGraph[n, EdgeStyle ->

style], {n, 2, 12, 1}, {style, {Gray -> "Gray",

Dashed -> "Dashed", Thick -> "Thick"}}]

20 / 21



Questions?



Practical:
• Work through the ‘More Mathematica’ section of the notebook,


	What is Mathematica?
	Basic Mathematica
	Practical 1
	More Advanced Mathematica
	Practical 2

