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5 Abelian gauge theories

Ex 1 1. Given F µν in equation (5.7) of the notes, show that Fµν = ηµρηνσF
ρσ are the

components of the matrix in equation (5.8) of the notes.

2. Find ϵµ′ν′ρ′σ′ = ηµµ′ηνν′ηρρ′ησσ′ϵµνρσ, where ϵµνρσ is the totally antisymmetric rank
4 tensor (i.e.tensor with 4 indices) normalized such that ϵ0123 = 1.

3. Starting from the non-relativistic form of the Maxwell equations (5.1) in the notes,
the field strength F µν in equation (5.7) of the notes and the 4-current (Jµ) = (ρ, j),
show that the Maxwell equations can be rewritten in the relativistic form

∂νF
µν = Jµ , ϵµνρσ∂νFρσ = 0 .

4. Write F µνFµν in terms of electric and magnetic fields E and B.

5. Using the transformation properties of the tensors Jµ and F µν , work out how ρ, j,
E and B transform under a Lorentz boost

Λ = (Λµ
ν) =


coshλ sinhλ 0 0
sinhλ coshλ 0 0
0 0 1 0
0 0 0 1

 .

Ex 2 Let Fµν = ∂µAν − ∂νAµ.

1. Using the expression of Fµν in terms of electric and magnetic field E and B and
(Aµ) = (ϕ,A), show that

E = −∇ϕ− ∂A

∂t
, B = ∇×A .

2. Write the relativistic form of the Maxwell equations in terms of Aµ, and then
express them in terms of ϕ and A.

Ex 3 Consider two independent rank-n tensors X and Y in d spacetime dimensions.

1. Show that

∂

∂Xa1...an

(Xb1...bnYb1...bn) =
∂

∂Xa1...an

(Xb1...bnY
b1...bn) = Y a1a2...an

and
∂

∂Xa1...an

(Xb1...bnXb1...bn) = 2Xa1a2...an .
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2. Now set n = 3. Show that
∂

∂Xabc

Xabe = d2δec .

Ex 4 Let Fµν = ∂µAν − ∂νAµ.

1. Show that the vacuum Maxwell equations, which are obtained by setting Jµ = 0,
have plane wave solutions of the form

Aµ = Re(pµe
ikνxν

)

for constant vectors pµ and kµ. Which conditions must pµ and kµ obey?

2. Taking into account the freedom of gauge transformations, how many physically
independent components of pµ appear in a general plane wave solution? [Hint: try
plane waves α = Re(ceikνx

ν
).]

Ex 5 1. Work out the components of

F̃ µν :=
1

2
ϵµνρσFρσ

and of F̃µν in terms of the electric and magnetic field.

2. Find the solutions to the equations Fµν = ±iF̃µν in terms of electric and mag-
netic field, and count the number of degrees of freedom that they contain. Which
representations of the Lorentz group do they correspond to? Work out how the
components transform under rotations and boosts.

Ex 6 Consider a complex scalar field ϕ with Lagrangian density

L = −|∂µϕ|2 − V (ϕ, ϕ̄) = −|∂µϕ|2 − λ(|ϕ|2 − a2)2 ,

with parameters λ, a > 0.

1. Show that the energy (or “Hamiltonian”) is1

E =

∫
d3x

(
|∂0ϕ|2 + |∂iϕ|2 + V (ϕ, ϕ̄)

)
.

1You may use the relation between the Lagrangian and Hamiltonian densities

H =
∂L
∂∂0ϕ

∂0ϕ+
∂L
∂∂0ϕ̄

∂0ϕ̄− L

that you learned in Mathematical Physics. Alternatively, you may use that E is the Noether charge associated
to invariance under time translations t 7→ t+ c.
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2. Find the configurations of least energy (“vacua”, or “ground states”) and show that
they parametrize a circle in field space.

3. Show that any two vacua are related by a global U(1) transformation.

Ex 7 Show that the commutator of two covariant derivatives Dµ = ∂µ − iAµ is given by

[Dµ, Dν ] = −iFµν = −i(∂µAν − ∂νAµ) .

[Hint: start by calculating the commutators [∂µ, ∂ν ], [∂µ, g] and [g, h], where g and h
are functions of x. If you are confused, apply the above commutators to smooth test
functions f(x).]

Ex 8 The scalar field ϕ in chapter 5 was assumed for simplicity to have charge 1.

1. Go through the chapter and adjust formulae where necessary to generalize to a
complex scalar field ϕ of charge q ∈ Z.

2. Let ϕ be a charge q field and D
(q)
µ be the covariant derivative that acts on it. Check

that for its complex conjugate ϕ̄, which has the opposite charge −q, the covariant
derivative satisfies

D
(q)
µ ϕ = D(−q)

µ ϕ̄ .

Ex 9 Write down the most general real gauge invariant Lagrangian with at most two deriva-
tives for two complex scalar fields, ϕ of charge 1 and χ of charge 2, and a U(1) gauge
field Aµ, which comprises:

1. kinetic terms for ϕ and χ;

2. a kinetic term for Aµ;

3. a real gauge invariant potential which is a polynomial of degree at most 4 in ϕ, χ
and their complex conjugates.

Ex 10 Consider “scalar electrodynamics”, the field theory with Lagrangian density

L = −DµϕD
µϕ− U(|ϕ|2)− 1

4g2
FµνF

µν , (5.1)

where
Dµϕ = (∂µ − iAµ)ϕ , Fµν = ∂µAν − ∂νAµ .
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1. Show that the equations of motion (Euler-Lagrange equations) for the complex
scalar field ϕ and for the real U(1) gauge field Aµ are

DµD
µϕ = U ′(|ϕ|2)ϕ , ∂νF

µν = g2Jµ ,

where
Jµ = −i(ϕ̄Dµϕ− ϕDµϕ) .

2. Show that the current Jµ is real, gauge invariant, and conserved (∂µJ
µ = 0) upon

using the equations of motion.

3. Show that the conserved current Jµ in the gauge theory and the conserved current
jµ in the scalar field theory with U(1) global symmetry, which is obtained by setting
Aµ = 0 in the Lagrangian (5.1), are related by

Jµ = jµ + bAµ|ϕ|2 ,

for a constant b that you should find.

‘

Ex 11 Consider scalar electrodynamics, the field theory introduced in Ex 10.

1. Show that it is always possible to (partially) fix a gauge where A0 = 0.
[Hint: show that if A0 ̸= 0, then one can perform a suitable gauge transformation
so that A′

0 = 0. Find this gauge transformation explicitly.]

2. * The previous argument is too fast. Where can it fail?
[Note: * signals advanced optional questions. I include them for you to think
about them, but don’t worry if you don’t know how to answer them.]

3. Working in the gauge A0 = 0, calculate the Hamiltonian density and show that the
total energy (or Hamiltonian) is

E =

∫
d3x

(
|∂0ϕ|2 + |(∇− iA⃗)ϕ|2 + U(|ϕ|2) + 1

2g2
(E⃗2 + B⃗2)

)
,

where Ei = ∂0Ai and Bi =
1
2
ϵijkFjk are the electric and magnetic field respectively.

Ex 12 Consider the U(1) Wilson loop (of charge 1) associated to the perimeter C of an in-
finitesimal rectangle in the (x1, x2) plane. Let the vertices of the rectangle be

(x1, x2) , (x1 + ϵdx1, x2) , (x1 + ϵdx1, x2 + ϵdx2) , (x1, x2 + ϵdx2) ,

where the increments ϵdx1, ϵdx2 are infinitesimal (ϵ≪ 1).
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1. Write the Wilson loop WC = exp
[
i
∮
C
Aµdx

µ
]
in terms of the Wilson lines associ-

ated to the four sides of the rectangle.

2. Calculate the Taylor expansion of the above Wilson loop up to and including the
order ϵ2, and express it in terms of known quantities.

Ex 13 Consider a U(1) gauge field Aµ, with field strength Fµν and dual field strength F̃µν :=
1
2
ϵµν

ρσFρσ.

1. Write the Lagrangian

L = LMaxwell + Lθ = − 1

4g2
FµνF

µν +
θ

16π2
FµνF̃

µν

in terms of the electric and magnetic field. θ is a constant parameter, called the
theta angle.

2. Show that
FµνF̃

µν = ∂µω
µ ,

where ωµ is a 4-vector that you should find. Then show that the equations of
motion for the gauge field Aµ with the action S =

∫
d4x L are independent of the

theta angle.
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6 Applications of abelian gauge theories

Ex 14 Consider a complex scalar field ϕ with Lagrangian density

L = −|∂µϕ|2 − U(|ϕ|2) = −|∂µϕ|2 −
λ

2
(|ϕ|2 − v2)2 ,

with parameters λ, v > 0. For the purpose of this exercise, you can take for granted that
the energy of field configurations is

E =

∫
d2x

[
|ϕ̇|2 + |∇ϕ|2 + U(|ϕ|2)

]
.

Working with static field configurations (that is, ϕ̇ ≡ ∂tϕ = 0), show that field configu-
rations which extremize the energy obey the Euler-Lagrange equations and vice versa.

Ex 15 Let x⃗ = (x1, x2) ∈ R2 and ϕ(x⃗) ∈ C a complex scalar field varying over two-dimensional
space. Identify space R2 ∼= C, with complex coordinate z = x1 + ix2. Associate to any
loop (or closed curve) C in space the vorticity (or vortex number, or winding number)

N [C] =
1

2π

∮
C

∇ arg(ϕ) · d⃗l ≡ 1

2π

∮
C

∂i arg(ϕ) dx
i .

1. Parametrize the loop C by a periodic coordinate τ ∼ τ + 2π, with τ = 0 at the
start point of the loop, and τ = 2π at the endpoint (which coincide with the start
point.) Using that ϕ is a single-valued function, show that N [C] is an integer as
long as arg(ϕ) is well-defined along C.

2. Use Stokes’ theorem to write the vortex number as a surface integral, and show
that it can only receive contributions from points where ϕ = 0 or 1/ϕ = 0 (you can
assume that ϕ is smooth otherwise).

3. Assume for simplicity that ϕ is a holomorphic function of z. Let z0 be a zero of ϕ
of order n if n > 0, and a pole of order |n| if n < 0, that is ϕ(z) ≈ c(z − z0)

n near
z = z0, where c ̸= 0. Show that N [Cz0 ] = n for any infinitesimal loop Cz0 which
encircles z0 counterclockwise.

4. Generalize the previous calculation to ϕ(z, z̄) ≈ c(z − z0)
n(z − z0)

m
.

Ex 16 A static complex field ϕ(x⃗) which varies in two space dimensions obeys the field equation

∇2ϕ− λ(|ϕ|2 − v2)ϕ = 0 .

Let z = x1 + ix2 = reiθ, where x⃗ = (x1, x2) are real Cartesian coordinates, and (r, θ) are
real polar coordinates, with r ≥ 0 and θ ∼ θ + 2π.
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1. Show that the ansatz ϕ(x⃗) = f(r)eiθ, where f(r) ∈ R, has total vorticity N ≡
N [S1

∞] = 1.

2. Show that f(r) obeys the ODE

f ′′ +
1

r
f ′ − 1

r2
f + λ(v2 − f 2)f = 0 ,

where primes denote derivatives with respect to the radial coordinate r.

Ex 17 A static field ϕ(x⃗) in two space dimensions has energy

E =

∫
d2x

[
|∇ϕ|2 + λ

2
(|ϕ|2 − v2)2

]
≡

∫
d2x E .

1. Let ϕ(x⃗) = ρ(x⃗) exp(iα(x⃗)), where ρ(x⃗), α(x⃗) are real functions. Show that

E =

∫
d2x

[
(∇ρ)2 + ρ2(∇α)2 ++

λ

2
(ρ2 − v2)2

]
.

2. Let ϕ = f(r) exp(iθ) where (r, θ) are polar coordinates on the spatial plane, and
f(r) is a real function which obeys the boundary conditions f(0) = 0 and f(∞) = v.
Show that

ρ2(∇α)2 = f 2

r2

and use the boundary conditions to show that this causes a logarithmic divergence
of the energy E as r → ∞. That is, let

ER ≡
∫
r≤R

d2x E

and show that ER ∼ logR as R → ∞.

Ex 18 A scalar field theory in D space and 1 time dimensions has Lagrangian density

L = −1

2
Gab(ϕ)∂µϕ

a∂µϕ
b − V (ϕ) ,

where µ, ν = 0, 1, 2, . . . , D and x = (xµ) = (x0, x⃗). The matrix Gab(ϕ) is positive definite,
and the scalar potential is assumed to be non-negative: V (ϕ) ≥ 0.

The energy of static field configurations ϕ(x⃗), which obey ∂0ϕ(x) = 0, is given by

E[ϕ] = EK [ϕ] + EV [ϕ] ,

EK [ϕ] =

∫
dDx

1

2
Gab(ϕ)∂iϕ

a∂iϕ
b

EV [ϕ] =

∫
dDx V (ϕ) .
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1. Show that any finite energy static solution of the Euler-Lagrange field equations is
a stationary point of the static energy E[ϕ].

2. Let ϕ(x⃗) = ϕ1(x⃗) be a static solution of the field equations, and consider the one-
parameter family of field configurations

ϕ(x⃗) = ϕλ(x⃗) := ϕ1(λx⃗)

labelled by the parameter λ > 0. Show that

E[ϕλ] = EK [ϕλ] + EV [ϕλ] = λ2−DEK [ϕ1] + λ−DEV [ϕ1] .

Ex 19 The Abelian Higgs model in 2 space and 1 time dimensions has Lagrangian density

L = − 1

4g2
FµνF

µν −DµϕD
µϕ− λ

2
(|ϕ2| − v2)2 ,

where
Fµν = ∂µAν − ∂νAµ , Dµϕ = ∂µϕ− iAµϕ ,

and g, λ, v are positive constants.

1. Find the equations of motion for ϕ and Aµ.

2. Work in the gauge A0 = 0, and consider static solutions of the form

ϕ(x⃗) = veiθf(vr)

Aj(x⃗) = ϵjkx̂
k a(vr)

r
,

where (r, θ) are polar coordinates on the spatial plane, that is x1 = r cos θ, x2 =
r sin θ. Show that under the above ansatz the equations of motion reduce to a
system of two ODEs for f(r) and a(r), that you should find.

Ex 20 Let ϕ1,2(x) be two real scalar fields in two space and one time dimensions (x0, x1, x2),
and ϕ(x) = ϕ1(x) + iϕ2(x).

1. Show that the current

jµ = c
1

2
ϵabϵ

µνρ∂ν(ϕ
a∂ρϕ

b)

is conserved, that is ∂µj
µ = 0, regardless of the equations of motion. Here c is

a normalization constant, ϵµνρ is the totally antisymmetric tensor in three indices
with ϵ012 = 1, and ϵab is the totally antisymmetric tensor in two indices with ϵ12 = 1.
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2. Assume that |ϕ| → v at spatial infinity, where v is a constant. Write down the
conserved charge Q associated to the current jµ, and show that Q is equal to the
total winding number of the argument of ϕ,

N =
1

2π

∫
S1
∞

∇ arg(ϕ) · d⃗l ,

for a suitable choice of the normalization constant c that you should find.

3. Let z = x1 + ix2 be a complex coordinate on the spatial plane. For each choice of
the sign ϵ = ±1, rewrite the Bogomol’nyi equations for the abelian Higgs model

(D1 − iϵD2)ϕ = 0

F12 = ϵg2(|ϕ|2 − v2)

in terms of the complex coordinates (z, z̄) rather than (x1, x2). Solve the first Bo-
gomol’nyi equation to determine the holomorphic and antiholomorphic components
Az, Az̄ of the gauge field (remember that Aµ is real if µ = x1, x2). Substitute the
result in the second Bogomol’nyi equation to obtain a partial differential equation
for |ϕ|2 only.

Ex 21 A magnetic monopole of magnetic charge m located at the origin O of three-dimensional
space is described by a divergence-free magnetic field B⃗ in R3 \ O, with non-vanishing
magnetic flux though the 2-sphere that surrounds the origin O:

1

2π

∫
S2

B⃗ · dσ⃗ = m ̸= 0.

1. Show that all of the above can be reformulated as the equation

∇ · B⃗ = 2πm δ(3)(x⃗)

in R3.

2. Using that

∇1

r
= − x⃗

r3
, ∆

1

r
= −4π δ(3)(x⃗) ,

where r = |x⃗| and ∆ = ∇2 is the Laplacian, show that

B⃗ =
m

2

x⃗

r3

solves the equation in part 1.
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3. Show that the vector potentials A⃗± for a Dirac monopole, with components

A±
x = ∓m

2

y

r(r ± z)
, A±

y = ±m
2

x

r(r ± z)
, A±

z = 0

satisfy the equations

∇× A⃗± =
m

2

x⃗

r3

in the regions where they are defined.

Ex 22 In the formulation of Wu and Yang, the gauge field of a Dirac monopole is described
in two patches for R+ × S2, which are given by R+ × U+ and R+ × U−, where U+ is
the region of S2 north of the Southern tropic, and U− is the region of S2 south of the
Northern tropic. The vector potentials in the two patches are

A+
x = −m

2

y

r(r + z)
, A+

y =
m

2

x

r(r + z)
, A+

z = 0

in the northern patch R+ × U+, and

A−
x =

m

2

y

r(r − z)
, A−

y = −m
2

x

r(r − z)
, A−

z = 0

in the southern patch R+ × U−.

1. Switching from cartesian coordinates (x, y, z) to polar coordinates (r, θ, φ) for R3,
and using

A± = A±
x dx+ A±

y dy + A±
z dz = A±

r dr + A±
θ dθ + A±

φdφ ,

find expressions for A± in polar coordinates. Show that2

F± = dA± =
m

2
sin θ dθ ∧ dφ

and that on the overlap of the two patches

A+ − A− = m dφ .

2. Show that the energy of a Dirac monopole

E =
1

2g2

∫
d3x B⃗2

is infinite, where B⃗ = B⃗± := ∇× A⃗± in the regions where the two vector potentials
A⃗± are defined.

2This requires a part of the crash course on differential geometry which I skipped in the lecture, but please
try if you are interested.
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7 Non-abelian gauge theories

Ex 23 1. Consider a compact simple Lie algebra, with generators ta, the Lie bracket

[ta, tb] = ifab
ctc ,

and Killing form3

Kab := tr(tatb) .

Use the antisymmetry of the Lie bracket to show that the structure constants with
lowered indices, defined as

fabc := fab
dKdc

are completely antisymmetric in their indices:

fabc = −fbac = −fcba .

2. Show that for any representation r of a simple Lie algebra

trr(t
(r)
a ) = 0 ,

where trr is the trace in the representation r.

Ex 24 1. Consider a representation r of a compact Lie G, with generators t
(r)
a . Show that

the set of generators
t(r̄)a := −(t(r)a )T

defines another representation of G, which is called the complex conjugate repre-
sentation r̄. (The subscript T denotes the transposition of matrices.)

2. Show that if the column vector ϕ transforms in the irrep r, then its complex con-
jugate ϕ∗ ≡ ϕ̄, which is also a column vector, transforms in the complex conjugate
irrep r̄.

3. Denote ϕ̄j := (ϕj)∗ and construct the row vector ϕ† = ϕ̄T = (ϕ̄1, . . . , ϕ̄r). Show
that the inner product ϕ†ϕ is invariant under the action of G.

3The Killing form as defined in the lecture notes is K(v, w) = Kabv
awb. So Kab is the matrix expression

of the Killing form in the basis of generators.
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Ex 25 1. The adjoint action of the Lie algebra g on itself is given by

ad: g → g
y 7→ adx(y) := [x, y]

for all Lie algebra elements x ∈ g. Show that

adta(y
btb) = (t(adj)a )bcy

ctb .

where
(t(adj)a )bc := ifac

b

are the generators in the adjoint representation.

2. Express the Killing form
Kab = tradj(t

(adj)
a t

(adj)
b )

in terms of the structure constants.

3. Show that in a basis where the Killing form is

Kab = C(adj)δab

the quadratic invariant C(adj) of the adjoint representation is given by

C(adj) =
δabfacdfb

cd

dim g
.

Ex 26 Let Matn(F) denote the set of n × n matrices whose entries are in the field F , and 1n
the n× n identity matrix. The classical compact simple Lie groups are

SU(N) = {g ∈ MatN(C) | g†g = 1N , det g = 1}
SO(N) = {g ∈ MatN(R) | gTg = 1N , det g = 1}

USp(2N) = {g ∈ Mat2N(C) | g†g = 12N , gTJg = J}

where the (2N)× (2N) antisymmetric matrix

J =

(
0N 1N
−1N 0N

)
is called the symplectic form.

1. Characterize the Lie algebras su(N), so(N), and usp(2N) as vector spaces of ma-
trices subject to certain linear conditions, which you should find.
[Hint: You can assume that a group element takes the exponential form g =
exp(iαata) and Taylor expand for infinitesimal α.]
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2. Find the generators of the fundamental representation fund and its complex con-
jugate rep fund (the so called antifundamental representation) for G = SU(N),
SO(N), USp(2N).

3. ForG = SO(N), USp(2N), show that fund and fund are equivalent representations,
namely

t(fund)a = V t(fund)a V −1 ∀a

for some invertible matrix V that you should find.

Ex 27 The Lie algebra su(2) of the group SU(2) has three generators t1, t2, t3 and Lie brackets

[t1, t2] = it3 , [t2, t3] = it1 , [t3, t1] = it2 ,

where we have fixed the normalization once and for all.

1. Write down all the structure constants fab
c of the Lie algebra su(2).

2. Write down generators t
(2)
a for the doublet (2-dimensional, or fundamental) repre-

sentation 2, in the above normalization. Calculate the trace tr2(t
(2)
a t

(2)
b ) and hence

the quadratic invariant C(2) of the doublet representation.

3. Write down generators t
(3)
a for the triplet (3-dimensional, or adjoint) representa-

tion 3, in the above normalization. Calculate the trace tr3(t
(3)
a t

(3)
b ) and hence the

quadratic invariant C(3) of the triplet representation.

Ex 28 By considering infinitesimal gauge transformations (|αa| ≪ 1)

g = eiα
ata ≡ eiα = 1 + iα +O(α2)

and Taylor expanding finite gauge transformations to leading order in α ∈ g = Lie(G),
show that the infinitesimal gauge variations of the fields are

δαϕ = iαϕ

δαAµ = i[α,Aµ] + ∂µα

δαFµν = i[α, Fµν ] ,

where ϕ 7→ ϕ+ δαϕ+O(α2) and so on.



7 NON-ABELIAN GAUGE THEORIES 15

Ex 29 Specialize the equations written in section 7.2 of the lecture notes to the case of the
gauge group G = U(1), and show that they reduce to the equations written in chapter
5. Do it both for the charge 1 representation, which is analogous to the fundamental
representation, and for the more general charge q representation.

Ex 30 Consider a field ϕ transforming in the adjoint representation adj, with components ϕa,
where a = 1, . . . , dim g.

1. Show that
(Aµϕ)

a = ifbc
aAb

µϕ
c

and similarly for (Fµνϕ)
a.

2. Let Φ := ϕata, and Aµ = Aa
µta, Fµν = F a

µνta as usual. Show that

(Aµϕ)
ata = [Aµ,Φ]

and similarly for Fµνϕ. Show that therefore

DµΦ = ∂µΦ− i[Aµ,Φ]

[Dµ, Dν ]Φ = −i[Fµν ,Φ] .

Ex 31 Consider a gauge group G, with Lie algebra g. Show by explicit calculation that a
non-abelian gauge field configuration of the form

Aµ = ih(∂µh
−1) ,

where h(x) is a (space-time dependent) element of G, has vanishing field strength:

Fµν := ∂µAν − ∂νAµ − i[Aµ, Aν ] = 0 .

Can you think of a simpler argument to reach the same conclusion?

Ex 32 Show that, for any irreducible representation r of the gauge group G, the Yang-Mills
Lagrangian can be written as

LYM = − 1

2g2YM

1

T (r)
trr(F

(r)
µν F

(r)µν) ,

where the Dynkin index

T (r) :=
C(r)

C(fund)

of the irreducible representation r is invariant under changes of normalization of the Lie
algebra.
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Ex 33 1. Express the Lagrangian density

Lgauge = − 1

2g2YM

tr(FµνF
µν) +

θ

16π2
tr(FµνF̃

µν)

in terms of Aa
µ and the structure constants fab

c, and identify quadratic terms in the
gauge field (and derivatives thereof), and cubic and quartic terms, which represent
interactions.

2. Show that the theta term action

Sθ[A] =
θ

16π2

∫
d4x tr(FµνF̃

µν) =
θ

32π2
ϵµνρσ

∫
d4x tr(FµνFρσ)

can be written as a surface (or ‘boundary’) term:

Sθ[A] =
θ

8π2

∫
d4x ∂µK

µ ,

Kµ = ϵµνρσ tr(Aν∂ρAσ −
2i

3
AνAρAσ) .

3. Show that the equations of motion obtained from the Lagrangian density Lgauge are

DµF
µν ≡ ∂µF

µν − i[Aµ, F
µν ] = 0 .

4. Show, without using the equations of motion, that the Bianchi identity

DµF̃
µν = 0 .

holds.

Ex 34 Consider a gauge theory with Lagrangian density

L = Lgauge + Lmatter

= − 1

2g2YM

tr(FµνF
µν) +

θ

16π2
tr(FµνF̃

µν)− (Dµϕ)
†Dµϕ− V (ϕ, ϕ†) ,

where the scalar potential V (ϕ, ϕ†) is a gauge invariant function of ϕ, which transforms

in the fundamental representation of the gauge group G, and of ϕ† = ϕ
T
.

1. Show that the equations of motion are

DµD
µϕ =

∂V

∂ϕ†

DνF
µν = g2YMJ

µ

for a current Jµ = Ja
µta that you should find.
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2. Show that the current Jµ transforms as

Jµ 7→ gJµg−1

under a gauge transformation with group element g = g(x), and that it is covari-
antly conserved, namely

DµJ
µ = 0 .

Ex 35 Let the gauge group G be one of the classical compact simple Lie groups in exercise 26.
For each of the three infinite families G = SU(N), G = SO(N) and G = USp(2N):

1. Write down the finite and the infinitesimal gauge transformations for the gauge
field Aµ, the field strength Fµν , a scalar field χ transforming in the fundamental
representation, and a scalar field Φ transforming in the adjoint representation.

2. Write down a gauge invariant Lagrangian density for the above fields, including
kinetic terms and mass terms for the scalar fields. You can ignore the theta term and
assume the reality property χ = χ̄ for G = SO(N), and χ = Jχ̄ for G = USp(2N).
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8 Topological solitons in gauge theories

Ex 36 The Georgi-Glashow model, or SU(2) adjoint Higgs model, consists of a scalar field
Φ = ϕaσa transforming in the adjoint representation of an SU(2) gauge group, with
Lagrangian density

L = − 1

2g2YM

tr(FµνF
µν)− tr((DµΦ)(D

µΦ))− V (Φ) ,

where the gauge invariant scalar potential is

V (Φ) = λ

(
1

2
tr(Φ2)− v2

)2

and

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]

DµΦ = ∂µΦ− i[Aµ,Φ] .

1. Show that the energy of static field configurations (or ‘static energy’) in the gauge
A0 = 0 is

E =

∫
d3x

[
1

g2YM

tr(BiBi) + tr((DiΦ)(DiΦ)) + V (Φ)

]
.

2. Show that the static energy is minimized by constant field configurations with
A = 0 and

(ϕ1)2 + (ϕ2)2 + (ϕ3)2 = v2 ,

up to a gauge transformation.

3. Show that by a constant gauge transformation, any field configuration of least
energy (or vacuum) as in part 2 can be written in the form

Φ = vσ3 =

(
v 0
0 −v

)
,

and that this is invariant under a H = U(1) subgroup of the gauge group G =
SU(2). (One says that the gauge symmetry G is spontaneously broken to H.)

4. * Expand the fields about this vacuum configuration (namely setX = Xvacuum+δX)
and substitute this expansion in the Lagrangian density, assuming that there are
no gauge fields so that the symmetry G is a global symmetry. Show that the
components of Φ in the directions of the broken symmetries (e.g. ϕ1 and ϕ2 in the
parametrization of part 2) are massless, having no quadratic scalar potential terms.
(These massless scalar fields are called Nambu-Goldstone bosons in physics. They
arise whenever a continuous global internal symmetry is spontaneously broken.)



8 TOPOLOGICAL SOLITONS IN GAUGE THEORIES 19

5. * Repeat the exercise for the full Georgi-Glashow model, which has gauge field and
G = SU(2) gauge symmetry. Show that the would-be Nambu-Goldstone bosons
can be eliminated by a gauge transformation, and that the gauge fields for the
spontaneously broken part of the gauge group gain a mass. (This is the key idea of
the Higgs mechanism.)

Ex 37 Consider again the Georgi-Glashow model of exercise 36, with Φ = ϕaσa, where (σa) are
the Pauli matrices. Let

Φ∞(θ, φ) := lim
r→∞

Φ(r, θ, φ)

be the limit of Φ at spatial infinity. The boundary conditions require that

1

2
tr(Φ2

∞) = (ϕ1
∞)2 + (ϕ2

∞)2 + (ϕ3
∞)2 = v2 ,

hence Φ∞ is a map from an S2 of unit radius to an S2 of radius v.

1. Show that the Georgi-Glashow model has a current

jµ = ϵµνρσϵabc(∂νϕ
a)(∂ρϕ

b)(∂σϕ
c)

which is conserved irrespective of the equations of motion. Calculate the associated
conserved charge Q.

2. Show that Q = cν where ν is the topological degree

ν :=
1

4πv3

∫
S2
∞

1

2
ϵijkϵabcϕ

a
∞∂jϕ

b
∞∂kϕ

c
∞ d2σi

of the map Φ∞ = ϕa
∞σa, for a suitable constant c that you should find.

3. Calculate the degree of the map

(ϕ1
∞, ϕ

2
∞, ϕ

3
∞) = v(sin θ cosφ, sin θ sinφ, cos θ) .

4. Define

FU(1)
µν :=

1

2v
tr(Φ∞Fµν)

to be the field strength of the unbroken H = U(1) subgroup of the gauge group
G = SU(2). Show that the magnetic charge

mU(1) :=
1

2π

∫
S2
∞

B⃗U(1) · d2σ⃗

of the unbroken U(1) is proportional to the topological degree ν of Φ∞, and find
the proportionality factor.
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9 Mock exam questions

Q1 (10 marks)
A U(1) gauge theory in two space and one time dimensions has Lagrangian density

L = − 1

4g2
FµνF

µν +
κ

2
ϵµνρAµ∂νAρ − AµJ

µ ,

where ϵµνρ is the completely antisymmetric tensor in three indices with normalization
ϵ012 = 1, g and κ are constants, Fµν = ∂µAν − ∂νAµ and Jµ is an external (i.e. non-
dynamical) current that the gauge field Aµ is coupled to.

1. Write down the Euler-Lagrange equation for the gauge field Aµ and show that it
implies that the current Jµ is conserved.

2. Show that the variation of the Lagrangian density under a U(1) gauge transforma-
tion Aµ 7→ Aµ + ∂µα is a total derivative term, that you should find.

Q2 (10 marks)
The gauge covariant derivative in the fundamental representation of a gauge group G,
Dµ, transforms as Dµ 7→ UDµU

−1 under a gauge transformation by the group element
U ∈ G.

1. How do a field ψ in the fundamental representation and a field ϕ in the adjoint
representation of G transform under a gauge transformation?

2. The gauge covariant derivative in the adjoint representation D
(ad)
µ is defined by its

action
D(ad)

µ ϕ := [Dµ, ϕ]

on any field ϕ in the adjoint representation. Find how D
(ad)
µ transforms under a

gauge transformation.

3. Calculate [D
(ad)
µ , D

(ad)
ν ]ϕ and express the result in terms of known quantities. You

may use without proof that the field strength acting in the fundamental represen-
tation is Fµν = i[Dµ, Dν ].
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Q3 (15 marks)
A circle of circumference L can be parametrized by a real coordinate x with the periodic
identification x ∼ x + L. Well-defined (or ‘single-valued’) functions on the circle are
periodic functions: f(x+L) = f(x). One can generalize this to a two-dimensional torus
T 2, which is the product of two circles, with coordinates xµ = (x, y) and identifications

(x, y) ∼ (x+ Lx, y) ∼ (x, y + Ly) .

Consider a U(1) gauge field (or vector potential) on T 2, with constant magnetic field

Fxy = ∂xAy − ∂yAx = B0 = const .

1. Find the general solution for a U(1) gauge field Aµ corresponding to this constant
magnetic field. Then specialize to the case that Ax = 0. Finally, specialize to
Ax = 0 in the Lorenz gauge ∂iAi = 0. You may use this final solution in part 2.

2. Impose that that the gauge field Aµ be periodic along the two circles of the torus, up
to a U(1) gauge transformation with single-valued gauge parameter g = eiα. Show
that this implies that the constant magnetic field B0 is a multiple of a fundamental
unit, that you should find.

3. Now assume that B0 = 0, and let αx, αy be constants. Find Aµ such that∫ Lx

0

dx Ax = αx ,

∫ Ly

0

dy Ay = αy .

Q4 (15 marks)
Consider three-dimensional space R3, with Euclidean coordinates (x, y, z) and with polar
coordinates (r, θ, φ). Here r ∈ R+ is a radial coordinate and (θ, φ), with θ ∈ [0, π] and
φ ∈ [0, 2π], are angular coordinates which parameterize a unit 2-sphere S2. To cover S2

we use a northern patch U+, which excludes the south pole, and a southern patch U−,
which excludes the north pole. Consider the gauge field configuration defined by the
vector potentials

A+
x = −m

2

y

r(r + z)
, A+

y =
m

2

x

r(r + z)
, A+

z = 0

in the northern patch R+ × U+, and

A−
x =

m

2

y

r(r − z)
, A−

y = −m
2

x

r(r − z)
, A−

z = 0

in the southern patch R+ × U−.

1. Switching from cartesian coordinates to polar coordinates, and using

A± = A±
x dx+ A±

y dy + A±
z dz = A±

r dr + A±
θ dθ + A±

φdφ ,

find expressions for A± in polar coordinates, and calculate A+−A− on the overlap
of the two patches.
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2. Calculate the magnetic flux through a 2-sphere of radius R centred at the origin,∫
S2
R

B⃗ · dσ⃗ =

∫
S2
R

Fθφdθdφ ,

where B⃗ = B⃗± := ∇ × A⃗± in the regions where the two vector potentials A⃗± are
defined, in both of the following two ways:

(a) By finding the magnetic field and integrating it over the 2-sphere;

(b) By reducing the surface integral over the 2-sphere to a line integral over its
equator.

How does the flux depend on the radius R?

3. Show that the energy of this gauge field configuration

E =
1

2g2

∫
R3

d3x B⃗2 =
1

4g2

∫
R3

d3x FijF
ij

is infinite. You may use without proof that F θφ = r−4(sin θ)−2Fθφ.

Q5 (15 marks)
Scalar chromodynamics is a gauge theory with gauge group G = SU(3) and Nf ‘flavours’
of scalar fields ϕi (i = 1, . . . , Nf ) transforming in the fundamental representation of the
gauge group.

1. Write down a gauge invariant action including kinetic terms for the SU(3) gauge
field Aµ and the Nf scalars ϕi but no scalar potential, and check explicitly that this
action is invariant under SU(3) gauge transformations.

2. What is the global symmetry of the gauge theory with action written in part 1?

3. Write down the most general gauge invariant real scalar potential V (ϕ, ϕ†) of degree
at most 3 in ϕ and ϕ†.

4. Repeat the exercise in part 3 under the further assumption that the global symmetry
found in part 2 is preserved.
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