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Chapter 5

Up1q gauge theory reloaded

We will start the term with a reminder of the formulation of Up1q gauge theories. I will in- 

troduce my conventions, which slightly differ from Andreas’ conventions, and I will make a 

number of remarks, some of which you might be familiar with already, and some of which you 

won’t. This will set the stage for the formulation of non-abelian gauge theories in the chapter
6, and along the way I will also give a few appetizers of what’s to come later in the term.

5.1 Up1q global symmetry
Consider a complex scalar field ϕpxq.1 The action2

 \label {action_scalar_global_U(1)} \begin {split} S_0[\phi ,\bar \phi ] &= \int d^4x~ \cL _0(\phi , \bar \phi , \de _\mu \phi , \de _\mu \bar \phi )~,\\ \cL _0 &= -|\de _\mu \phi |^2 - V(\phi , \bar \phi ) = - |\de _\mu \phi |^2 - U(|\phi |^2) \\ &= |\dot \phi |^2 - |\nabla \phi |^2-U(|\phi |^2) \end {split}  



   


 


    






 









(5.1) 

is invariant under global G “ Up1q transformations

g : ϕpxq ÞÑ eiαϕpxq

1Recall that mathematically, this is a map from Minkowski space-time R1,3 to C, which associates a complex 

number to each point in space-time:
ϕ: R1,3 Ñ C

xµ ÞÑ ϕpxq

Greek indices µ, ν , . . . are space-time indices running from 0 to 3. (Roman indices i, j , . . . are spatial indices 

running from 1 to 3. Index 0 is for time.) 

Unless we explicitly state otherwise, we will typically assume that all fields are smooth.
2|Bµϕ|2 is a short-hand notation for Bµϕ̄Bµϕ, where Einstein summation convention (repeated indices are 

summed over) is understood. Recalling that we work with Minkowski metric rηµνs “ p´1,`1,`1,`1q, this 

means that |Bµϕ|2 “ ´|B0ϕ|2 ` |Biϕ|2 “ ´| 9ϕ|2 ` |∇ϕ|2.

2
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where α „ α ` 2π is a constant parameter, and g “ eiα P Up1q is a constant group element. 

The requirement of Up1q invariance restricts the scalar potential V pϕ, ϕ̄q to only depend on 

the invariant |ϕ|2. Because the scalar field ϕ is multiplied by a single power of the Up1q group 

element g “ eiα, we say that it has charge 1.

REMARKS:

1. The continuous Up1q symmetry ensures the existence of a conserved current

 \label {conserved_current} \begin {split} j^\mu &= i(\bar \phi \de ^\mu \phi - \phi \de ^\mu \bar \phi )\\ &\de _\mu j^\mu =0 \end {split}  
 







(5.2) 

and of a conserved charge

 \label {conserved_current} \begin {split} Q &= \int d^3 x~ j_0\\ &\frac {d}{dt}Q=0 \end {split} 









 

(5.3) 

by Noether’s theorem.

2. A global symmetry relates physically distinct configurations.

˚ EXERCISE:

[Ex 1] Consider a field theory with action (5.1) and scalar potential

V pϕ, ϕ̄q “ λp|ϕ|
2

´ a2q
2 ,

with parameters λ, a ą 0, see figure 5.1.

1. Calculate the energy (or “Hamiltonian”)

  \begin {split} E&=\int d^3x ~\left (|\de _0\phi |^2+|\de _i\phi |^2+V(\phi ,\bar \phi ) \right )~\\ &=\int d^3x ~\left (|\dot \phi |^2+|\nabla \phi |^2+V(\phi ,\bar \phi ) \right )~. \end {split} 












  















  





You may use the relation between the Lagrangian and Hamiltonian densities, 

or calculate the Noether charge associated to invariance under time translations
t ÞÑ t ` c.

2. Show that the configurations of least energy (“vacua”, or “ground states”) parametrize 

a circle in field space.

3. Show that different vacua are related by global Up1q transformations.
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Figure 5.1: The scalar potential V pϕ, ϕ̄q “ λp|ϕ|2 ´ a2q2.

5.2 Up1q gauge symmetry
To make the global symmetry local, or a gauge symmetry, we promote the constant param- 

eter α to a function of spacetime αpxq. For subtle reasons that we might return to later, the 

parameter αpxq of a gauge transformation should approach 0 (sufficiently fast) at infinity. 

The action

 \label {action_scalar_ED} \begin {split} S_[\phi ,\bar \phi ,A_\mu ] &= \int d^4x~ \cL (\phi , \bar \phi ,A_\nu , \de _\mu \phi , \de _\mu \bar \phi ,\de _\mu A_\nu )~,\\ \cL &= \cL _0(\phi , \bar \phi ,D_\mu \phi , \overline {D_\mu \phi }) + \cL _{\rm Maxwell}(\de _\mu A_\nu )\\ &= -\overline {D_\mu \phi }D^\mu \phi - U(|\phi |^2) -\frac {1}{4g^2} F_{\mu \nu }F^{\mu \nu }~, \end {split}   



     
 

     


 











(5.4) 

where Aµ is a real gauge field (or mathematically, a “gauge connection”) and

 \label {covar_der_fieldstrength_U(1)} \begin {split} D_\mu \phi &:= (\de _\mu -iA_\mu )\phi \qquad \quad ~~\text {{\bf covariant derivative} of $\phi $}\\ F_{\mu \nu }&:= \de _\mu A_\nu - \de _\nu A_\mu \quad \qquad \,\text {{\bf field strength} of $A_\mu $} \end {split}        

       

(5.5) 

is invariant under G “ Up1q gauge transformations

 \label {gauge_transfo_U1} \begin {split} \phi (x) &\mapsto e^{i\alpha (x)} \phi (x) \\ A_\mu (x) & \mapsto A_\mu (x) + \de _\mu \alpha (x)~. \end {split}  

    
(5.6)

REMARKS:

1. To linear order in the gauge field Aµ

 \label {minimal_coupling} \cL = \cL _0 - j^\mu A_\mu + \dots         (5.7) 

The scalar field is coupled (via covariant derivatives) to the gauge fieldAµ, and not to the 

field strength Fµν . To leading order, the gauge fieldAµ couples directly to the conserved
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current jµ of the theory withUp1q global symmetry, which is built out of the scalar field. 

This type of coupling is called the minimal coupling. 

A common alternative normalization to the one we use is obtained by rescaling the 

gauge field by one power of the gauge coupling: Aµ Ñ g Aµ. In that normalization the 

Lagrangian density is

 \cL &= -\left ((\de ^\mu + i g A^\mu )\bar \phi \right ) (\de _\mu - i g A_\mu ) \phi - U(|\phi |^2) -\frac {1}{4} F_{\mu \nu }F^{\mu \nu } \\ &= \cL _0 - g j^\mu A_\mu + \dots 










   










      

where the ellipses denote terms quadratic in the gauge field. This normalization makes 

it clear that the gauge coupling g controls the strength of the coupling between the 

conserved current jµ of the theory with Up1q global symmetry and the gauge field Aµ. 

In the following we will typically stick to the convention in which the gauge coupling g
appears in front of the kinetic term for the gauge field, rather than inside gauge covariant 

derivatives.

2. The group of gauge transformations

  \cG = \cU (1) := \left . \begin {cases} \begin {tabular}{crcl} $g:$ & $\bR ^{1,3}$ & $\to $ & $G=U(1)$ \\ & $x^\mu $ & $\mapsto $ & $g(x)=e^{i\alpha (x)}$ \end {tabular} \end {cases} \right \}  



     

   



(5.8) 

is infinite-dimensional, since it associates independent transformations gpxq for the 

fields at different points xµ, and there are infinitely many points in space-time. We use 

calligraphic letters to distinguish the gauge group from the associated finite-dimensional 

(for G “ Up1q, one-dimensional) Lie group. Later on, once we have familiarized our- 

selves with this distinction, we might drop this notation and simply useG for the gauge 

group, with a common abuse of notation.

3. A “gauge symmetry” relates physically equivalent configurations, which are to be
identified. The term “ gauge symmetry” is therefore a misnomer: it isnot a symmetry, 

but rather a redundancy in our description of the theory. 

The identification of field configurations which differ by a gauge transformation3 leads 

to non-trivial topological properties of gauge fields, which in turn ensure the existence 

of topological solitons and instantons, non-trivial gauge field configurations which are 

stable for topological reasons. We will study these configurations in chapter 9. 

From now on we omit writing the dependence on the space-time coordinate x. It is 

understood that all fields and all gauge transformation parameters depend on x.
3See section 2.6 of [Manton and Sutcliffe, 2004] if you want to read more about this.
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4. Under a Up1q gauge transformation (5.6),

  \begin {split} D_\mu \phi & \mapsto e^{i\alpha } D_\mu \phi ~,\\ F_{\mu \nu } &\mapsto F_{\mu \nu } \end {split}   

 

(5.9) 

We say that the covariant derivativeDµϕ of ϕ is gauge covariant, because it transforms 

in a representation of G for all x (the same representation of ϕ, namely the charge 1
representation here), and that the field strength Fµν is gauge invariant, because it does 

not change under a gauge transformation (in fancy language, it transforms in the trivial, 

or “singlet”, representation).

5. It proves very useful to think of the covariant derivative Dµ “ Bµ ´ iAµ as a differen- 

tial operator, which acts on everything to its right. The partial derivative Bµ acts by 

differentiating all that appears to its right, which the gauge field Aµ, like all functions 

of x, acts by multiplying all that appears to its right. Requiring that under a Up1q gauge 

transformation

 \label {D_mu_abelian_gauge_transfo} D_\mu \equiv \de _\mu - i A_\mu \mapsto D'_\mu \equiv \de _\mu - i A'_\mu = e^{i\alpha } D_\mu e^{-i\alpha }~,      
   

 
  (5.10) 

so that
  D_\mu \phi \mapsto e^{i\alpha } D_\mu e^{-i\alpha } e^{i\alpha } \phi = e^{i\alpha } D_\mu \phi  

   (5.11) 

as desired, implies the gauge transformation of the gauge field

 \label {A_mu_abelian_gauge_transfo} A_\mu \mapsto A'_\mu = A_\mu + \de _\mu \alpha  
     (5.12) 

and vice versa.

Proof. For the implication (5.10) ñ (5.12), we expand (5.10) and act with Bµ on every- 

thing to its right. There are two options: either Bµ acts on e´iα, which produces the 

function pBµe
´iαq “ ´i e´iαpBµαq, or Bµ goes through e´iα, which produces the differ- 

ential operator e´iαBµ.4 Then we find

  \begin {split} D_\mu \equiv \de _\mu - i A_\mu \mapsto D'_\mu &\equiv \de _\mu - i A'_\mu = e^{i\alpha } (\de _\mu - i A_\mu )e^{-i\alpha }\\ &= e^{i\alpha }e^{-i\alpha }(\de _\mu \alpha ) + e^{i\alpha }e^{-i\alpha } \de _\mu - i e^{i\alpha }e^{-i\alpha } A_\mu \\ &=\de _\mu - i(A_\mu +\de _\mu \alpha )~, \end {split}      
   

   


 

 

     

which comparing the initial expression and the final results implies

Aµ ÞÑ A1
µ “ Aµ ` Bµα .

4If you are confused by these statements and manipulations, act with the differential operator on any smooth 

test function fpxq. If X and Y are two differential operators, then X “ Y iff X f “ Y f for all smooth test 

functions. Similarly X ÞÑ Y iff X f ÞÑ Y f for all smooth test functions.
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I leave it to you to prove the opposite implication (5.10) ð (5.12). That is simply a 

reminder from last term. You can assume that Dµ acts on a field of charge 1. 

Furthermore, defining the commutator rX , Y s :“ X Y ´ Y X , we have

 \label {F=[D,D]} [D_\mu , D_\nu ]=-iF_{\mu \nu }~,      (5.13) 

so the field strength controls the non-commutativity of covariant derivatives. We will 

learn more about this later when we study “curvatures”, which is the mathematical term 

for the mathematical object that the field strength Fµν is.

Proof. [Ex 2]

6. The gauge field Aµ is only defined locally, namely in a patch, which we take to be 

contractible to a point so that the Poincaré lemma applies. Indeed, in the gauge theory 

formulation of electromagnetism, the Bianchi identity ϵµν ρσBνFρσ “ 0 implies Fµν “ 

BµAν ´ BνAµ only if the Poincaré lemma applies. 

What this means is the following. Consider two patches U p1q and U p2q with a non-trivial 

overlap U p1q XU p2q ‰ H. Then the gauge fieldsAp1q
µ andAp2q

µ defined in the two patches 

are related by a gauge transformation

Ap1q
µ “ Ap2q

µ ` Bµα
p12q

on the overlap U p1q X U p2q.5 Mathematically, the gauge transformation parameter αp12q

that relates the gauge fields in the two patches is called a “transition function”. We will 

learn more about how gauge fields/connections defined in different patches are glued 

together as we move to a different patch in chapter 7. Charged fields are also defined 

locally, in patches. For consistency, they also transform by a gauge transformation when 

we switch to another patch. We will study this in chapter 8. 

This local definition ofAµ is responsible for most of the topological and geometric prop- 

erties of gauge theories. To give you an appetizer, consider a space-time of the form
R ˆ pR3zpq, where the first factor of R is parametrized by time, and the second factor 

is space, which is flat Euclidean space R3 except that we excise the point p (we could 

equally excise a 3-ball).6 It turns out that this space-time is not contractible to a point, 

but only to a 2-sphere surrounding the point p. (Perhaps you can figure it in your mind.

5Naively you might want to impose the simpler identificationAp1q
µ “ A

p2q
µ , but taking into account that gauge 

fields are only defined modulo gauge transformations, one is led to the more general (and mathematically correct) 

identification in the main text. It took physicists several decades to appreciate this point.
6I use the symbol z to denote set difference. If you are use to the ordinary sign to denote set difference as 

well, please let me know and I’ll change my notation accordingly.
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Figure 5.2: Two patches which cover a 2-sphere S2, and their overlap.

If not, just trust me for now.) Last term, when you learned about stereographic projec- 

tions, you saw that a 2-sphere can be covered by two patches, see figure 6. For instance, 

we can take patch U p1q to cover everything north of the southern tropic, and patch U p2q

to cover everything south of the northern tropic. The two patches overlap in the region 

between the two tropics near the equator, so we need to specify how the gauge field in 

the northern patch and the gauge field in the southern patch are related in this region 

where both are defined. As we will see, this freedom allows us to define a magnetic 

monopole, namely a pointlike magnetic charge, sitting at point p. This is very sur- 

prising, because Maxwell’s equations allow electric charge densities but not magnetic 

charge densities in the right-hand sides. As we will study in chapter 9, we can by-pass 

this limitation by exploiting the topology of the gauge field.

˚ EXERCISE:

[Ex 3] So far I have assumed for simplicity that the complex scalar field ϕ has charge
1. Go through this chapter and work out how all formulae change if ϕ has charge q
rather than charge 1.

5.3 Gauge redundancy and gauge fixing
A good reference for this topic is section 6 of David Tong’s QFT lecture notes [Tong, 2006]. 

Let us start from the equations of motion (EoM) of the theory of scalar electrodynamics, 

which is described by the action (5.4). We recall here the Lagrangian density

L “ ´|Dµϕ|
2

´ V pϕ̄, ϕq ´
1

4g2
F 2
µν ,

where F 2
µν ” FµνF

µν etc, and the scalar potential takes the form V pϕ̄, ϕq “ Up|ϕ|2q to ensure
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gauge invariance. Then the Euler-Lagrange equations are

 \label {scalarED_EoM} \begin {split} 1) \quad & D_\mu D^\mu \phi = -\frac {\de V}{\de \bar \phi } \equiv - U'(|\phi |^2) \phi \\ 2) \quad & ~~\de _\mu F^{\mu \nu } = g^2 J^\nu \end {split} 
 




 










(5.14) 

where
 \label {cons_curr_scalarED} J_\mu = i (\bar \phi D_\mu \phi - \phi D_\mu \bar \phi ) = j_\mu + 2 A_\mu |\phi |^2    

   
 (5.15) 

is a conserved current. The EoM for ϕ̄ is the complex conjugate of the EoM for ϕ, so I will not 

write it explicitly. Note that upon gauging the global U(1) symmetry, the conserved current
jµ (5.3) of the scalar field theory with global Up1q symmetry gets a correction term due to the 

presence of the gauge field Aµ in the covariant derivatives.

Proof. [Ex 5]

Let us now consider the transformation properties of the EoM (5.1) under a Up1q gauge trans- 

formation (5.6). The equations transform as

 \label {scalarED_EoM_gaugetransfo} \begin {split} 1) &\mapsto e^{i\alpha } 1) \qquad (\text {gauge covariant})\\ 2) &\mapsto 2) \qquad ~~~~~ (\text {gauge invariant}) \end {split}    
   

(5.16) 

Therefore, if a field configuration pϕ, Aµq solves the EoM (5.14), then any gauge transformed 

field configuration pϕ1 “ eiαϕ, A1
µ “ Aµ ` Bµαq also solves the EoM (5.14): the EoM only 

determine EoM pϕ, Aµq up to a gauge transformation. 

Given some initial data pϕp0q, A
p0q
µ specifying the field configuration at an initial time t0, we 

cannot uniquely determines the field configuration pϕ, Aµq at a later time t ą t0. Indeed
pϕ1 “ eiαϕ, A1

µ “ Aµ ` Bµαq is as good a solution of the EoM as pϕ, Aµq, and obeys the same 

initial condition provided that the gauge parameter α “ 0 at the initial time t0. 

We appear to be in trouble: we would like the EoM to define awell-posed initial value prob- 

lem and determine uniquely physically observable fields at later times. This is not the case if 

we regard field configurations which differ by a gauge transformation as physically inequiv- 

alent. If instead we declare field configurations which differ by a gauge transformation to be 

physically equivalent, then the issue disappears and the initial value problem is well-posed. 

We will therefore identify field configurations related by a gauge transformation,

 \label {gauge_equivalence} (\phi , A_\mu )~\sim ~(\phi '=e^{i\alpha }\phi , A_\mu '=A_\mu +\de _\mu \alpha )~.   
 

      (5.17)

Physically observable quantities must then be gauge invariant, such as for example the 

field strength Fµν , the magnitude of the scalar field |ϕ|2, or the conserved current Jµ. This 

explains remark 3 in the previous section.
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Figure 5.3: The space of all field configurations decomposes into the disjoint union of gauge 

orbits, each represents a single physical configuration. A complete gauge fixing selects a single 

representative for each orbit.

The picture to keep in mind for gauge theories is that field spaceF “ tϕpxq, Aµpxqu is foliated7
by gauge orbits traced by the action of the gauge group

G ¨ pϕpxq, Aµpxqq “ tpeiαpxqϕpxq, Aµpxq ` Bµαpxq | αpxq „ αpxq ` 2πu .

In down to earth terms, a gauge orbit simply consists of all the field configurations which are 

related by a gauge transformation. 

Then the identification (5.17) of field configurations related by gauge transformations states 

the correspondence8

Physical configuration ÐÑ Gauge orbit .

Rather than working with the redundant description of field space F subject to the gauge 

symmetry G, it is often useful to “fix a gauge” (or pick a gauge, that is, picking a single
representative for each gauge orbit. Any representative does the job – after all any two 

representatives of a given gauge orbit are physically equivalent – but we need to ensure that 

the gauge fixing cuts each orbit once and only once, as in figure 5.3. If that is not the case, 

and there is some leftover gauge symmetry that is not fixed, we refer to the gauge fixing as 

partial or incomplete, and further conditions must be specified in order to have a complete 

gauge fixing. The topic of gauge fixing is rather technical, and plays an important role in the 

quantization of gauge theories. Here we will content ourselves with giving a few standard 

examples of (partial) gauge fixing, which may be useful later on.
7Foliation is a mathematical term, from ‘folia’, Latin for ‘leaf’. You can look up the technical definition if you 

are interested. For our purposes, you can take it to mean that field space is a union of disjoint orbits of the gauge 

group.
8If you are formally minded, you would say that the physical configuration space C is the quotient of the field 

space F by the gauge group G,
C “ F{G ,

namely the set of equivalence classes of field configurations under the equivalence relation (5.17).
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EXAMPLES:

1. Lorenz gauge: 

This gauge is defined by imposing the constraint

 \label {Lorenz_gauge} \de _\mu A^\mu = 0 


  (5.18) 

on the gauge field 4-vector Aµ. This can always be achieved. Indeed, if we are given a 

representative Aµ which does not obey the Lorenz gauge condition (5.18), then we can 

find another representative A1
µ “ Aµ ` Bµα in the same gauge orbit which obeys the 

Lorenz gauge constraint

  0 = \de _\mu A'^\mu = \de _\mu A^\mu + \de _\mu \de ^\mu \alpha 






 (5.19) 

by picking α to be a solution of the

 \label {Lorenz_gauge_Poisson} \de _\mu \de ^\mu \alpha = - \de _\mu A^\mu ~, 
 

  (5.20) 

which exists.9

Let us discuss pros and cons of the Lorenz gauge. The main advantage of the Lorenz 

gauge is that the constrain (5.18) is Lorentz invariant.10 The main disadvantage of the 

Lorenz gauge is that it only fixes the gauge partially. Indeed, if we are in Lorenz gauge 

we are free to perform gauge transformations with parameters α such that BµBµα “ 0
and we will remain in the Lorenz gauge. (This corresponds to adding a solution of the 

homogeneous equation in .)

2. Coulomb gauge (or radiation gauge): 

This gauge is defined by imposing the constraint

 \label {Coulomb_gauge} \nabla \cdot \vec {A} = 0     (5.21) 

on the vector potential A⃗, which is the spatial part of the 4-vector Aµ. This can always 

be achieved, by a similar reasoning to above. 

Compared to the Lorenz gauge, the Coulomb gauge has the clear drawback of not being 

Lorentz covariant. So this gauge fixing spoils the manifest relativistic symmetry of the 

formalism, which is not ideal. (The physics of the system remains Lorentz invariant,
9Here the right-hand side ´BµA

µ is given and acts as a source in a relativistic Poisson equation for α. Solu- 

tions can be found by the method of Green’s functions.
10The Lorenz gauge is due to the Danish physicist Ludvig Lorenz, not to be confused with the more famous 

Dutch physicist Hendrik Lorentz, who is responsible for the Lorentz transformations which leave the laws of 

special relativity invariant, as well as for introducing the Lorentz force which acts on relativistic particles moving 

in a magnetic field. Click on the names of the physicists to see who is who.

https://en.wikipedia.org/wiki/Ludvig_Lorenz
https://en.wikipedia.org/wiki/Hendrik_Lorentz
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because gauge transformations are unphysical.) Another drawback, in common with the 

Lorenz gauge, is that the Coulomb gauge constraint (5.21) only fix the gauge partially. 

The argument is the same as for the Lorenz gauge, except that we are using spatial 

indices only instead of full space-time indices. 

On the other hand, a pro of the Coulomb gauge is that the temporal componentA0 of the 

gauge potential (aka the ‘electric scalar potential’ in electromagnetism) is determined by 

the charge density ρ “ J0 as in electrostatics:

 \label {A_0_Coulomb_gauge} A_0(t, \vec x) \propto \int d^3 x'~ \frac {\rho (t,\vec {x}')}{|\vec {x}-\vec {x}'|}~. 



 

 
 (5.22) 

So if the charge density ρ “ 0, for instance for ‘pure electromagnetism’, in which there 

is no charged matter ϕ, we have
A0 “ 0

in Coulomb gauge. On the other hand, if there are charged fields and hence ρ ‰ 0, then
A0 ‰ 0.

˚ EXERCISE:

Determine the proportionality factor in (5.22). [Hint: use∇2 

1
4π|x⃗|

“ δp3qpx⃗q.]

REMARK: [Ex 6]
It is often possible to fix a gauge where11

A0 “ 0 .

In this gauge the energy of scalar electrodynamics (5.4) is

 \label {energy_scalar_ED} E = \int d^3 x~\left [ |\de _0 \phi |^2 + |(\nabla -i\vec {A})\phi |^2 + U(|\phi |^2) + \frac {1}{2g^2}(\vec {E}^2+\vec {B}^2) \right ] 










  


















(5.23) 

where
  E_i = \de _0 A_i~, \qquad B_i = -\frac {1}{2} \epsilon _{ijk} F_{jk}      




 (5.24) 

are the electric and magnetic field.

5.4 Up1q Wilson line and Wilson loop
Let us conclude this chapter with an appetizer of chapters 7 and 8. A good reference for this 

section is section 15.1 of the book by Peskin and Schroeder [Peskin, 1995].
11This is allowed because A0 has no kinetic term which involves its time derivative in (5.4). A0 is therefore 

non-dynamical: it can be determined at all times from Ai and the values of other charged fields in the theory.
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We start by recalling that if ϕ is a charged scalar (of charge 1 for definiteness), then its partial 

derivative is not gauge covariant, that is, it does not transform under a well-defined repre- 

sentation of the Up1q gauge group. You have seen this explicitly in the first term, when you 

worked out how Bµϕ transforms under a Up1q gauge transformation (5.6). One can fix this 

problem by introducing the gauge covariant derivativeDµϕ “ pBµ ´ iAµqϕ, which transform 

covariantly as a field of charge 1 under the gauge transformation (5.6). Hopefully this is all 

clear by now at a technical level. But why is this, conceptually? 

To analyze all the partial derivatives in one fell swoop, let us consider the total differential
of ϕpxq,

 \label {total_diff} d\phi (x)= \lim _{\epsilon \to 0} \frac {\phi (x+\epsilon dx)-\phi (x)}{\epsilon }= \de _\mu \phi (x) dx^\mu ~,  


   


   (5.25) 

where I have introduced an infinitesimal book-keeping parameter ϵ in front of the increment
dxµ, so that I could write the total differential as a limit. The final expression, which expresses 

the total differential of ϕpxq as the 4-vector Bµϕpxq contracted with the differential increment
dxµ, follows from Taylor expanding the numerator inside the limit and by taking the limit. 

The reason why the total differential (5.25) of ϕ (and hence its partial derivatives) does not 

transform covariantly under gauge transformations is that the two terms that we are sub- 

tracting inside the limit have different gauge transformation properties

  \begin {split} \phi (x+\epsilon dx) & \mapsto e^{i\alpha (x+\epsilon dx)} \phi (x+\epsilon dx)\\ \phi (x) & \mapsto e^{i\alpha (x)} \phi (x) \end {split}      

 

because αpx ` ϵdxq ‰ αpxq. 

This problem can be fixed by introducing the ‘Wilson line’, or, as we will learn in later chapters, 

the mathematical notion of ‘parallel transport’. 

Let C be an open curve from point x1 to point x2, see figure 5.4. Mathematically, this is a 

smooth map from an interval to space-time R1,3

C:\quad ~I=[\tau _1&, \tau _2] && \mapsto ~ \bR ^{1,3}\\ &\tau && \mapsto ~ x^\mu (\tau )      

 


with xpτ1q “ x1 and xpτ2q “ x2 at the endpoints. 

The Wilson line (of charge 1) along the curve C is defined to be

 \label {Wilson_line} W_C(x_2,x_1) := \exp \left [ i \int _{x_1,\,C}^{x_2} A_\mu (x) dx^\mu \right ] \equiv \exp \left [i \int _{\tau _1}^{\tau _2} A_\mu (x(\tau )) \dot x^\mu (\tau ) d\tau \right ]~,   




























 (5.26) 

where the first integral is the line integral from x1 to x2 along curveC , and the second integral 

is its expression in the parametrization xµpτq. If C is a closed curve (or a ‘loop’), namely if
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Figure 5.4: An open curve from point x1 to point x2.

Figure 5.5: A closed curve (or ‘loop) with base-point x1 “ x2.

x1 “ x2 as in figure 5.4, then

 \label {Wilson_loop} W_C:= \exp \left [ i \oint _C A_\mu (x) dx^\mu \right ]  













 (5.27) 

is called the Wilson loop (of charge 1) along the curve C . By standard results from multi- 

variate calculus, the line integral
ű

C
Aµpxqdxµ only depends on the curve C and not on the 

base-point x1 “ x2. 

Under a Up1q gauge transformation (5.6), we claim that the Wilson line (5.26) transforms as12

 \label {Wilson_line_gauge_transfo} W_C(x_2,x_1) \mapsto e^{i \alpha (x_2)} W_C(x_2,x_1) e^{-i\alpha (x_1)}~.    
  (5.28)

 W_C(x_2,x_1)= e^{i \int _{x_1,\,C}^{x_2} A_\mu dx^\mu } \mapsto ~ & e^{ i \int _{x_1,\,C}^{x_2} (A_\mu +\de _\mu \alpha ) dx^\mu }\\ =&e^{ i \int _{x_1,\,C}^{x_2} A_\mu dx^\mu } e^{ i \int _{x_1,\,C}^{x_2} \de _\mu \alpha dx^\mu }\\ =& W_C(x_2,x_1) e^{i(\alpha (x_2)-\alpha (x_1))}\\ =& e^{i\alpha (x_2)} W_C(x_2,x_1) e^{-i\alpha (x_1)} ~.                 

               

  W_C(x_2,x_1) \mapsto e^{i (\alpha (x_2)-\alpha (x_1))} W_C(x_2,x_1)~.     

I wrote the result like (5.28) for comparison to the case of a non-abelian gauge group, which we will study later.
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Proof.

WCpx2, x1q “ ei
şx2
x1, C Aµdxµ

ÞÑ ei
şx2
x1, CpAµ`Bµαqdxµ

“ei
şx2
x1, C Aµdxµ

ei
şx2
x1, C Bµαdxµ

“WCpx2, x1qeipαpx2q´αpx1qq

“eiαpx2qWCpx2, x1qe
´iαpx1q .

To go from the second to the third line, we have used the fact that Bµα dxµ “ dαpxq is an exact 

differential, so its integral along a curve C only receives contribution from the boundary (or 

‘surface’) terms. 

A corollary of the gauge transformation (5.28) is that the U(1) Wilson loop (5.27) is gauge in- 

variant. To see that, simply set x1 “ x2, or use the fact that the integral of an exact differential 

along a closed curve vanishes. 

Now we can combine the gauge transformation of a charged scalar field and of a Wilson line 

both of charge 1 to find that the gauge transformation of the product of the charged scalar
ϕpx1q at x “ x1 and the Wilson line from x1 to x2 along C

 \label {parallel_trasnsported_phi} \begin {split} W_C(x_2,x_1)\phi (x_1) \mapsto ~~~& e^{i\alpha (x_2)} W_C(x_2,x_1) e^{-i\alpha (x_1)} e^{i\alpha (x_1)}\phi (x_1)\\ =& e^{i\alpha (x_2)} W_C(x_2,x_1) \phi (x_1) \end {split}    



(5.29) 

is by the same phase eiαpx2q as for ϕpx2q. 

Therefore it makes sense to consider the total covariant differential

 \label {total_cov_diff} D\phi (x) = \de _\mu \phi (x) dx^\mu := \lim _{\epsilon \to 0} \frac {\phi (x+\epsilon dx)-W_{dC}(x+\epsilon dx,x)\phi (x)}{\epsilon }~,    


      



 (5.30) 

where we have inserted the Wilson line along an infinitesimal line element dC connecting x
to x ` ϵdx in front of ϕpxq. This ensures that the terms which are subtracted inside the limit 

have the same gauge transformation property. 

Expanding to first order in ϵ,

ϕpx ` ϵdxq “ ϕpxq ` ϵBµϕpxqdxµ
` Opϵ2q

and

  \begin {split} W_{dC}(x+\epsilon dx,x) &= \exp \left [i \int _{x,\,dC}^{x+\epsilon dx} A_\mu (x') dx'^\mu \right ]\\ &= \exp \left [i A_\mu (x) \epsilon dx^\mu +(\epsilon ^2)\right ]\\ &= 1+i \epsilon A_\mu (x) dx^\mu + O(\epsilon ^2)~, \end {split}     






















  
 

(5.31)
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and substituting in (5.30) we find

 \label {total_cov_diff_2} \begin {split} D\phi (x) &= \lim _{\epsilon \to 0} \frac {1}{\epsilon } \left [\phi (x) + \epsilon \de _\mu \phi (x) dx^\mu - \phi (x) -i \epsilon A_\mu (x)\phi (x) dx^\mu +O(\epsilon ^2)\right ]~, \\ &= \left ( \de _\mu \phi (x) -i \epsilon A_\mu (x)\phi (x)\right ) dx^\mu \equiv D_\mu \phi (x) dx^\mu ~, \end {split}  








 
  






   
 

(5.32) 

which precisely reproduces the previous definition (5.5) of the covariant derivative of a scalar 

field ϕpxq of charge 1! 

We will return to this important point in chapters 7 and 8 when we study fibre bundles, asso- 

ciated vector bundles and sections.

REMARKS:

1. In QM, the Wilson line WCpx2, x1q is the phase picked up by the wave-function of a 

charged point particle slowly (‘adiabatically’) moving from x1 to x2 along a curve C in 

the presence of a gauge field.

2. The Wilson loop (5.27) is gauge invariant and therefore physically observable. It is the 

phase picked up by the wave-function of a charged point particle slowly moving along a 

loop C . This phase controls the Aharonov-Bohm effect in QM, a subtle and unexpected 

form of quantum interference which is due to the fact that the wave-function couples 

directly to the gauge potentialAµ rather than to the physical electric and magnetic fields
E⃗, B⃗. As we will see later, if the loop C is not contractible to a point it may happen that
Aµ ‰ 0 and therefore

¿

C

Aµdx
µ

‰ 0

even if the field strength Fµν “ 0 vanishes everywhere in the region probed by a 

quantum-mechanical particle (or by a charged scalar field). This happens for instance 

in a space of the form R2zp, for loops which encircle the removed point p. 

Time permitting, we might return to the Aharonov-Bohm effect and its underlying geometry 

in a later chapter. For an accessible summary, see section 10.5.3 of [Nakahara, 2003], up to 

equation (10.100). 

This is enough for our revisitation of Up1q gauge theory. It is now time to follow the steps of 

Yang and Mills and to study the formulation of gauge theories with non-abelian gauge group.



Chapter 6 

Non-abelian gauge theories

In this chapter we will learn how to formulate gauge theories with a non-abelian (that is, 

non-commutative) gauge group. Non-abelian gauge theories are namedYang-Mills theories, 

after Chen-Ning Yang and Robert Mills, who developed the formalism in 1954 [Yang and Mills, 

1954]. 

The formalism of Yang and Mills became prominent in the late 1960s, and has remain central 

in modern physics ever since. Non-abelian gauge theories are the language of the Stan- 

dard Model of Particle Physics, and have also established very fruitful interactions between 

Physics and Maths, which have led to numerous developments in both subjects and quite a 

few Nobel prizes and Fields medals. 

We will spend the rest of the term studying the geometry (and some topology) underlying 

non-abelian gauge field configurations. But let’s start by introducing our main characters.

6.1 Compact Lie algebras
This section is mostly a review of material from the previous term, but I will introduce new 

conventions following the Physics literature. I will also introduce some new terminology and 

definitions along the way. There will be a number of exercise that I recommend attempting to 

make sure that you understand the concepts. An excellent reference is section 1.8.1 of Argyres’ 

supersymmetry lecture notes [Argyres, 2001], of which this section is a shameless rip-off. 

We start by recalling that a Lie algebra g is a vector space1 endowed with an additional
1We will only consider finite-dimensional vector spaces. We refer to the dimension of this vector space as the 

dimension of the Lie algebra, which we denote as dim g.

17
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structure, the Lie bracket
r , s : g ˆ g Ñ g ,

which is antisymmetric and bilinear. The vector space has a basis ttau
dim g
a“1 of so called gen- 

erators ta. In this basis the Lie bracket reads

 \label {Lie_bracket} [t_a, t_b] = i f_{ab}{}^c t_c \qquad (a,b,c=1,\dots ,\dim \g )   

            (6.1) 

where fab 

c are real structure constants, which express the component of the Lie bracket
rta, tbs along the generator tc. Repeated indices are summed over. Note the i in the right-hand 

side in my conventions. I’ll return to why that might be useful shortly. In the rest of the 

course we will content ourselves with matrix Lie algebras, in which case the Lie bracket is 

simply the commutator of two matrices, that you are familiar with from Linear Algebra. You 

can always keep that in mind whenever I use the term Lie bracket. But the abstract definition 

of Lie algebras and the Lie bracket (6.1) is more general. 

The associativity of the Lie bracket is expressed by the Jacobi identity

 \label {Jacobi1} [[t_a,t_b],t_c]+[[t_b,t_c],t_a]+[[t_c,t_a],t_b]=0 ~              (6.2) 

which expressed in the basis of generators is the identity

 \label {Jacobi2} f_{ab}{}^d f_{dc}{}^e + f_{bc}{}^d f_{da}{}^e + f_{ca}{}^d f_{db}{}^e =0 














  (6.3) 

for the structure constants. 

An r-dimensional representation (rep) of g is a realization of the generators ttau as a set of
rˆrmatrices satisfying (6.1), where now r , s is interpreted as the commutator of matrices:
rA, Bs “ AB ´B A. We will often denote an r-dimensional representation as r and its gener- 

ators as tprq
a . If there are multiple representations with the same dimension we will distinguish 

them by primes or other notation. We might omit the subscript tprq
a when it is clear from the 

context which representation we are discussing. 

A compact Lie algebra is one which can be represented by finite-dimensional hermitian
matrices:

 \label {compact_hermiticity} t_a^\dagger = t_a~. 
    (6.4)

REMARK: 

The imaginary unit i “
?

´1 in the right-hand side of the Lie bracket (6.1), which is common in 

the physics literature, is there to ensure the hermiticity of generators of compact Lie algebras 

(6.4). This convention is convenient to manifest the reality (and positive definiteness) of energy 

functionals or other physical quantities. The maths literature (and Andreas) typically uses
t̃a “ ita as generators, which are anti-hermitian for compact Lie algebras: t̃:

a “ ´t̃a.
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It is a theorem that any compact Lie algebra can be decomposed into the direct sum of up1q

Lie alegbras and of simple Lie algebras:

 \label {cpct_semisimple} \g = (\oplus _{i=1}^h u(1)) \oplus (\oplus _{i=1}^l \g _i) = u(1) \oplus \dots \oplus u(1) \oplus \g _1 \oplus \dots \oplus \g _l~. 


 


                  (6.5) 

Let’s recall up1q and semisimple Lie algebras in turn:

1. The up1q Lie algebra is the compact Lie algebra with a single generator t. By the anti- 

symmetry of the Lie bracket, we have

 \label {u(1)_algebra} [t,t]=0~,      (6.6) 

so the algebra is abelian. Its irreducible representations (irreps) are 1-dimensional

 \label {u(1)_irreps} t = q \id ~ \qquad (q \in \bZ )      (6.7) 

where the integer q is called the charge of the representation and 1 is the identity 

operator.

2. a simple Lie algebra is characterised by structure constants such that

 \label {simpleLie} f_{ab}{}^c \neq 0 \qquad \forall a 


   (6.8) 

(or equivalently for all b, or for all c, it turns out).

[Ex 9.1] ˚ EXERCISE:

Show that for any representation r of a simple Lie algebra

 \label {traceless_generators} \tr _{\rr } (t_a^{(\rr )}) = 0~, 

     (6.9) 

where trr is the trace in the representation r, which is nothing but the trace of r ˆ r
matrices. 

One can show that there is a basis of generators, which we will adopt from now on, such that

 \label {quadratic_invariant} \tr _\rr (t_a^{(\rr )}t_b^{(\rr )}) = C(\rr ) \delta _{ab}~, 





     (6.10) 

The real number Cprq, which is positive for representations of compact Lie algebras, is called 

the quadratic invariant of the representation r.

REMARKS:

1. There is a normalization ambiguity: rescaling

 \label {rescale_normalization} (t_a, f_{ab}{}^c, C(\rr )) \longrightarrow (\lambda t_a, \lambda f_{ab}{}^c, \lambda ^2 C(\rr )) 

   

  (6.11) 

by a constant λ ‰ 0 leaves all the previous equations invariant.
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2. For the adjoint representation r “ adj, which we will review later, equation (6.10) 

defines the Killing form2

 \label {Killing_form} \begin {tabular}{rccl} $K$: & $\g \times \g $ & $\to $ & $\bR $\\ & $(v,w)$ & $\mapsto $ & $K(v,w):=\tr (\ad _v \circ \ad _w)$ \end {tabular}     
       

(6.12) 

where v “ vata, w “ wata, and adx denotes the adjoint action of x on the Lie algebra. 

The Killing form K is bilinear and symmetric.

3. We can use δab / its inverse δcd to lower/raise Lie algebra indices.3

[Ex 9.2] ˚ EXERCISE:

Show that fabc is totally antisymmetric in its indices:

 \label {antisym_structure_constants} f_{abc}=-f_{bac} = -f_{cba}~.       (6.13) 

We can obtain a Lie group G from a Lie algebra g by applying the exponential map4

 \label {exp_map} \begin {tabular}{rccl} exp: & $\g $ & $\to $ & $G$\\ & $\alpha =\alpha ^a t_a$ & $\mapsto $ & $g= e^{i \alpha ^a t_a}$ \end {tabular}   

     
 (6.14) 

where αa P R. 

Substituting the abstract generators ta of the Lie algebra by their realizations tprq
a in a repre- 

sentation r, we obtain representations of the Lie group G. In an r-dimensional rep r, the 

group element g is realized as an r ˆ r unitary matrix:

 \label {group_rep_1} g: ~~ \phi \mapsto (g \phi ) \equiv r(g)\cdot \phi = e^{i \alpha ^a t_a^{(\rr )}}\cdot \phi ~,         



    (6.15) 

where ϕ and its transormed pg ϕq are r-vectors, while rpgq “ exp
”

iαat
prq
a

ı

is an r ˆ r matrix. 

In components,
 \label {group_rep_2} g: ~~ \phi ^j \mapsto (g \phi )^j = r(g)^j{}_k \phi ^k = (e^{i \alpha ^a t_a^{(\rr )}})^j{}_k \phi ^k ~, 



















  (6.16)

2Named after Wilhelm Killing. No humans or animals were harmed in the production of this lecture course.
3More precisely, one should use the Killing form and its inverse to lower and raise indices. Since we can pick a 

basis in which the Killing form is proportional to the identity and since the normalization is arbitrary, we do not 

lose much by using δab instead of the Killing form. It may sound silly to distinguish upper and lower indices if we 

are raising and lowering them using the identity matrix. I am mentioning this distinction because in a different 

basis of the Lie algebra the Killing form might be a less trivial non-degenerate symmetric matrix Kab. In such a 

basis You would use this matrix Kab to lower Lie algebra indices, and its inverse Kab to raise indices. (This is 

completely analogous to raising/lowering spacetime indices with the Minkowski metric ηµν and its inverse ηµν .)
4More precisely, the exponential map of the Lie algebra produces a subgroup whose elements are continuously 

connected to the identity (aka the connected component of the identity).
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We will refer to the action (6.15)-(6.16) of a group element on ϕ as the finite transformation
of ϕ. 

Conversely, we recover the action of the Lie algebra if the parameters αa are infinitesimal. 

Then to linear order ϕ ÞÑ ϕ ` δαϕ, with

 \label {infinitesimal_transfo} \delta _\alpha \phi ^j = i \alpha ^a (t_a^{(\rr )})^j{}_k \phi ^k~, 









  (6.17) 

which we will refer to as the infinitesimal transformation of ϕ. 

Next we define the complex conjugate representation r̄ of a representation r as the repre- 

sentation with complex conjugate representation matrix:

 \label {cplx_conj} \bar {r}(g):= r(g)^*\equiv \overline {r(g)}~,  


   (6.18) 

where we use star or bar interchangeably to denote complex conjugation.

[Ex 10] ˚ EXERCISE:

1. Show explicitly that if the r-vector ϕ transforms in irrep r, then its complex 

conjugate ϕ˚ ” ϕ̄, which is also an r-vector, transforms in irrep r.

2. Show that, as r ˆ r matrices,

 \label {t_a_cplx_conj} t_a^{(\bar \rr )} = - (t_a^{(\rr )})^T~, 
 


  (6.19) 

where the subscript T denotes the transposition of a matrix.

3. Denote ϕ̄j :“ pϕjq˚ and construct the row r-vector ϕ: “ ϕ̄T “ pϕ̄1, . . . , ϕ̄rq. 

Show that the inner product ϕ:ϕ is invariant under the action of G. 

Next we introduce the adjoint representation adj, which is the pdim gq - dimensional irrep 

defined by
 \label {adjoint_rep} (t_a^{(\adj )})^b{}_c = i f_{ac}{}^b \qquad (b,c =1,\dots ,\mathrm {dim}\, \g )~. 




 


           (6.20)

[Ex 11] ˚ EXERCISE:

1. Check that (6.18) defines a representation of g.

2. Recall that the adjoint action of the Lie algebra g on itself is given by

 \label {ad_action} \begin {tabular}{rccl} ad: & $\g $ & $\to $ & $\g $\\ & $y$ & $\mapsto $ & $\ad _x(y):=[x,y]$ \end {tabular}   
    

(6.21)
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for all Lie algebra elements x P g. Show that

 \label {ad_vs_adj} \ad _{t_a}(y^b t_b) = (t_a^{(\adj )})^b{}_c y^c t_b~.  





  (6.22) 

[Remark: this has a nice interpretation: the adjoint representation (6.20) is 

nothing but the adjoint action of the Lie algebra on itself, expressed in a basis.

3. Show that the quadratic invariant of the adjoint representation is

 \label {quadratic_invar_adj} C(\adj )=\frac {f_{abc}f^{abc}}{\dim \g }~, 





 (6.23) 

where Lie algebra indices are raised (/lowered) using δab (/δabq. 

Finally we introduce the notion of fundamental representation. Consider amatrix group G, 

that is a group whose elements are square matrices and where the group composition law is 

matrix multiplication. Let n be the size of the matrices. The fundamental representation (or 

defining representation) of a matrix group G is the representation in which G acts by matrix 

multiplication:
  r(g)^i{}_j = g^i_j 



 

 (6.24) 

where g P G is a matrix. We denote the fundamental representation by fund or by n according 

to its dimension.

[Ex 12] ˚ EXERCISE:

LetMatnpFq denote nˆnmatrices whose entries are in the field F , and 1n the nˆn
identity matrix. The classical compact simple Lie groups are5

S UpNq “ tg P MatNpCq | g:g “ 1N , det g “ 1u

S OpNq “ tg P MatNpRq | gTg “ 1N , det g “ 1u

U S pp2Nq “ tg P Mat2NpCq | g:g “ 12N , gTJg “ 12Nu

where the p2Nq ˆ p2Nq antisymmetric matrix

J “

ˆ

0N 1N

´1N 0N

˙

is called the symplectic form.
5The term ‘classical’ comes from Cartan’s classification of simple Lie algebras. The classification consists of 

a few classical families each labelled by an integer N , which are the Lie algebras of the above Lie groups, along 

with a few exceptional Lie algebras which are not of matrix type. We will ignore the latter in this course
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1. Characterize the Lie algebras supNq, sopNq, and uspp2Nq as vector spaces of 

matrices subject to certain linear conditions, which you should find. 

[Hint: You can assume that a group element takes the exponential form g “

exppiαataq and Taylor expand for infinitesimal α.]

2. Find the generators of the fundamental representation fund and its complex con- 

jugate rep fund (the so called antifundamental representation) for G “ S UpNq,
S OpNq, U S pp2Nq. For G “ S OpNq, U S pp2Nq, show that fund and fund are 

representations, namely

tpfundq
a “ V tpfundq

a V ´1
@a

for some invertible matrix V .6

6For compact Lie groups and algebras, V is unitary: V : “ V ´1.
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