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Chapter 5

Abelian gauge theories

This term we will learn how to formulate gauge theories, a special subset of field theories
which describemost forces inmodern physics. For example, the StandardModel of elementary
particles is a gauge theory based on the group G “ SUp3q ˆ SUp2q ˆ Up1q, and accounts for
the strong, weak and electromagnetic interaction.

In this chapter we will start by looking at abelian gauge theories, the formulation of which is
based on an abelian Lie group, called the gauge group. The abelian restriction will allow us to
acquaint us with the key concepts in gauge theory without complicating the underlying math-
ematics too much. As we will see in the next chapter, despite their simplicity abelian gauge
theories already exhibit interesting field configurations, which make use of the geometric and
topological properties of abelian gauge theory. We will encounter magnetic monopoles, vor-
tices and other interesting effects. In the second half of the term we will generalize all of this
to non-abelian gauge theories, which have even richer mathematical and physical properties.

5.1 Electromagnetism as a Up1q gauge theory
We will soon delve into the abstract idea that underlies abelian gauge theories, starting from
a field theory with a Up1q global symmetry and promoting the constant Up1q parameter to
a local function of spacetime. But before we do that, let us take a fresh look at Maxwell’s
theory of electromagnetism, and describe it as a relativistic field theory that can be based on
a gauge symmetry principle. Excellent references for some foundational material are [Landau
and Lifshitz, 2013], [Griffiths, 2014] and [Jackson, 2021]. The coupling of electromagnetism to
field theories, which we will study later, is a standard topic in nearly all books on quantum
field theory, see e.g. [Peskin, 1995].
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CHAPTER 5. ABELIAN GAUGE THEORIES 3

5.1.1 Maxwell’s equations and relativity
The Maxwell equations describing which electric (E) and magnetic fields (B) are induced by
the electric charge density ρ and current j are (in natural units)

∇ ¨ E “ ρ , ∇ ˆ B ´
BE

Bt
“ j ,

∇ ¨ B “ 0 , ∇ ˆ E `
BB

Bt
“ 0 .

(5.1)

We call the equations in the first line the inhomogeneous Maxwell equations, since they have
sources for the electric and magnetic fields in the right-hand side, and the equations in the
second line the homogeneous Maxwell equations, since they don’t.

The behaviour of Maxwell equations under Lorentz transformations can be worked out as
follows. Starting from an inertial frame with a charge distribution ρ at rest, we can perform a
boost

Λ “

¨

˚

˚

˝

coshλ sinhλ 0 0
sinhλ coshλ 0 0
0 0 1 0
0 0 0 1

˛

‹

‹

‚

(5.2)

to another inertial frame moving at a relative speed tanhλ, in which there is now also a non-
zero current j. As resting charges only source electric fields and steady currents source mag-
netic fields, this implies that Lorentz transformations will also mix up electric and magnetic
fields.

In order to understand how to write the Maxwell equations in a manifestly Lorentz invariant
way, and how the electric and magnetic field transform under Lorentz transformations, let
us first focus on the sources appearing in the right-hand side of the inhomogeneous Maxwell
equations. The charge density ρ and the current j can be repackaged into a Lorentz 4-vector
Jµ, such that J0 “ ρ and J i “ ji. The continuity equation (or local conservation law)

Bρ

Bt
` ∇ ¨ j “ 0 (5.3)

can then be written as
BµJ

µ
“ 0 . (5.4)

Since Jµ is a Lorentz vector, a Lorentz transformation acts as

Jµ
pxq ÞÑ J 1µ

pxq “ Λµ
νJ

ν
pΛ´1xq , (5.5)

which indeed leaves the continuity equation invariant.1

1Recall that B0 “ B
Bt and Bi “ B

Bxi “ p∇qi, and that the Lorentz transformation xµ ÞÑ x1µ “ Λµ
νx

ν of the
spacetime coordinates implies the following Lorentz transformation of the derivatives:

Bµ ÞÑ B1
µ “ Λµ

ρBρ “ pΛ´1qρµBρ .
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REMARK:
In the following I may use the shorthand notation Jµ ÞÑ Λµ

νJ
ν for the transformation law

(5.5), with the understanding that if the object in question is a field then the argument must
transform appropriately.

The transformation property of Jµ and the assumption of Lorentz symmetry (or ‘Lorentz in-
variance’) requires that the inhomogeneous Maxwell equations in the first line of (5.1) be the
temporal and spatial components of a Lorentz 4-vector equation respectively. The similar-
ity between the two rows of (5.1) suggests that the same should be true of the homogeneous
Maxwell equations in the second line of (5.1).

Let’s now focus on the left-hand side of the inhomogeneousMaxwell equations, which is equal
to the current 4-vector Jµ. Spacetime derivatives appear linearly, so we need a Bν on the left-
hand side, with the ν index suitably contracted with a tensor linear in the electric andmagnetic
field, in such a way that a µ index stays free (that is, uncontracted). The simplest option is
that the left-hand side is BµX for a scalar field X , but an equation of the form BµX “ Jµ

is immediately ruled out by counting degrees of freedom: it cannot account for the electric
and magnetic fields E and B and hence reproduce the left-hand side of the inhomogeneous
Maxwell equation. In order to match the upper index of Jµ on the right-hand side, the deriva-
tive Bν must therefore act on a second rank Lorentz tensor F µν ,2 which is linear in the electric
and magnetic field, with the ν index contracted so that only the µ index remains free.

The electric andmagnetic fieldE andB have 3`3 “ 6 components in total, whereas a second
rank tensor3 has 4 ¨ 4 “ 16 components, so there still appears to be a mismatch of degrees of
freedom. This is fixed by requiring that F µν be antisymmetric, that is F µν “ ´F νµ : then it
has 4¨3

2
“ 6 components, corresponding to the reducible representation p1, 0q ‘ p0, 1q of the

Lorentz group.

To summarize, we are led to write the inhomogeneous Maxwell equations as

BνF
µν

“ Jµ (5.6)

for a second rank antisymmetric tensor F µν “ ´F νµ which is linear inE andB. Comparing
with the first line of (5.1) determines

rF µν
s “

¨

˚

˚

˝

0 E1 E2 E3

´E1 0 B3 ´B2

´E2 ´B3 0 B1

´E3 B2 ´B1 0

˛

‹

‹

‚

. (5.7)

2Recall that by definition a Lorentz tensor with two indices transforms as

Fµνpxq ÞÑ F 1µνpxq “ Λµ
ρΛ

ν
σF

ρσpΛ´1xq

under a Lorentz transformation.
3Vocabulary: a tensor with n indices is called an n-th rank tensor or equivalently a rank-n tensor.
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Lowering indices to Fµν “ ηµρηνσF
ρσ, we have

rFµνs “

¨

˚

˚

˝

0 ´E1 ´E2 ´E3

E1 0 B3 ´B2

E2 ´B3 0 B1

E3 B2 ´B1 0

˛

‹

‹

‚

. (5.8)

In other words for i “ 1, 2, 3 we have

Fi0 “ ´F0i “ Ei , Fij “ ϵijkBk . (5.9)

Fµν used to be called the Faraday tensor, and is nowmost commonly called the field strength
tensor, because its components encode the strength of the electric and magnetic fields.

By a similar logic, it is not hard to see that the homogeneous Maxwell equations in the second
line of (5.1) can also be written covariantly – that is, in Lorentz tensor notation – as

ϵµνρσBνFρσ “ 0 , (5.10)

where ϵµνρσ is the completely antisymmetric tensor with four indices, normalized such that
ϵ0123 “ 1.

REMARKS:

1. In practice this means that one gets a relative minus sign when swapping any two in-
dices. E.g. ϵ3201 “ ´1 as one needs to swap indices an odd number of times to arrive
there from ϵ0123. One way to see that is

ϵ3201 “ ´ϵ3021 “ ϵ1023 “ ´ϵ0123 .

2. A fancier mathematical way of saying the same thing is: for any permutation σ of
0, 1, 2, 3 we set ϵσp0q,σp1q,σp2q,σp3q “ signpσq, where signpσq is the signature of σ. The
signature of a permutation σ is defined to be `1 (respectively ´1) if the permutation is
even (resp. odd), which means that pσp0q, σp1q, σp2q, σp3qq is obtained from p0, 1, 2, 3q

by an even (resp. odd) number of transpositions (or swaps).

3. Note that in a situation with four indices the ‘cyclical’ vs. ‘anti-cyclical’ method useful
for ϵijk does not work anymore.

4. If we lower all four indices using the Minkowski metric, one of them is temporal and
three of them are spatial, so we pick up a minus sign:

ϵ0123 “ η00η11η22η33ϵ
0123

“ ´1 . (5.11)
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In summary, using the field strength Fµν and the 4-current Jµ we can write the Maxwell
equations as

BνF
µν

“ Jµ , ϵµνρσBνFρσ “ 0 . (5.12)

Proof. [Ex 1]

The inhomogeneous Maxwell equations imply the local conservation equation for the electro-
magnetic current Jµ:

BµJ
µ

“ 0 . (5.13)

Proof. Using the inhomogeneous Maxwell equations we find

BµJ
µ

“ BµBνF
µν

“ 0 (5.14)

The first equality are just Maxwell’s equations and the second equality follows from the anti-
symmetry of the field strength F µν “ ´F νµ, along with the commutativity of partial deriva-
tives BνBµ “ BµBν .4 We have

BµBνF
µν

“ ´BµBνF
νµ

“ ´BνBµF
νµ

“ ´BµBνF
µν (5.15)

where we have relabelled pν, µq as pµ, νq in the last step. As we see, this expression is equal
to minus itself, so it must be zero.

5.1.2 Maxwell’s equations: variational principle
How can we write down a Lorentz invariant Lagrangian density that will give us (5.12) as its
Euler-Lagrange equations (or equations of motion, or EoM)? You can try playing around but
you will soon realise that using F µν as the dynamical field(s) will not allow you to recover
Maxwell’s equations.

Let us hence try something else. The second equation of (5.12) implies that we can write

Fµν “ BµAν ´ BνAµ (5.16)

in any star-shaped open subset in R4.5 We say that (5.16) holds locally. Conversely, (5.16)
implies

ϵµνρσBνFρσ “ ϵµνρσBνpBρAσ ´ BσAρq “ ϵµνρσBνBρAσ ´ ϵµνρσBνBσAρ “ 0 ´ 0 “ 0 (5.17)
4We assume that all fields are smooth functions, hence they have continuous second partial derivatives and

Schwarz/Clairaut’s theorem applies. It turns out that this assumption is false for generic field configurations in
quantum field theory, but we are only doing classical field theory here, and we’ll leave that story for another day.

5This is known as the Poincaré lemma, which is a generalization of the fact that∇ˆF “ 0 implies F “ ∇ϕ
locally (see AMV). An open set U is called star-shaped (or a star domain) if there exists a point p P U such that
for any q P U , the line segment from p to q is contained in U .



CHAPTER 5. ABELIAN GAUGE THEORIES 7

by using that each of the two terms is symmetric with respect to swapping the order of the
derivatives but is contracted with an epsilon tensor, which is antisymmetric in all indices. The
second equation of (5.12) is hence automatic (it is called the Bianchi identity) and we need
only worry about the first one.

In the theory of electromagnetism,Aµ is called the electromagnetic 4-vector potential: its time
component A0 “ ϕ is the electric ‘scalar potential’, and its space components Ai “ Ai are the
components of the magnetic ‘vector potential’A. (In this pre-relativistic terminology, ‘scalar’
and ‘vector’ refer to spatial rotations, not to Lorentz transformations). Using (5.16) and (5.9),
we recover the relations between electromagnetic fields and electromagnetic potentials from
the theory of electromagnetism:

E “ ´∇ϕ ´
BA

Bt
, B “ ∇ ˆ A . (5.18)

Proof. [Ex 2]

We now declare thatAµ is the dynamical field, which also enables us to include Jµ as a source
in the action. Maxwell’s equations follow from the action6

SrAµs “

ż

d4x

ˆ

´
1

4
F µνFµν ` AµJ

µ

˙

. (5.19)

Proof. We work out the Euler-Lagrange equations

BL
BAµ

´ Bν
BL

BpBνAµq
“ 0 (5.20)

for the Lagrangian density
L “ ´

1

4
F µνFµν ` AµJ

µ . (5.21)

For the first term we have

BL
BAµ

“
B

BAµ

pAνJ
ν
q “

BAν

BAµ

Jν
“ δµνJ

ν
“ Jµ . (5.22)

Remember: repeated indices are summed over and are dummy. You should never use the same
letter for different indices, or you will get wrong results: this is the reason why I relabelled

6The overall minus sign is there to ensure that the Hamiltonian of the electromagnetic field is positive definite.
More about this later.
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the dummy index as ν here. For the second term we have

BL
BpBνAµq

“
BFαβ

BpBνAµq

B

BFαβ

ˆ

´
1

4
F ρσFρσ

˙

“ ´
1

4
¨ 2Fαβ B

BpBνAµq
pBαAβ ´ BβAαq

“ ´
1

2
Fαβ

pδναδ
µ
β ´ δνβδ

µ
αq

“ ´
1

2
pF νµ

´ F µν
q “ F µν .

(5.23)

In deriving (5.23) we used the chain rule in the first line. In the second line we used the
definition (5.16) of the field strength Fαβ in terms of derivatives of Aµ, and the identity

B

BXa1...an

pXb1...bnXb1...bnq “ 2Xa1a2...an , (5.24)

which works for any tensorX [Ex 3]. In the third line of (5.23) we just calculated derivatives,
and in the final equality in the fourth line we used the antisymmetry of the field strength.

The Euler-Lagrange equations then give

Jµ
´ BνF

µν
“ 0 , (5.25)

which reproduce the inhomogeneous Maxwell’s equations.

REMARK:
It is also possible to derive the action (5.19) (without the source term) by using the Lorentz force
to show that the energy stored in the electromagnetic fields (which equals the Hamiltonian)
is 1

2

ş

d3x pE2
` B2

q, and then finding the associated Lagrangian.

5.1.3 Gauge Symmetry
The technical trick we have used has an interesting consequence: the physical fields that we
can measure are the electric and magnetic field E and B, i.e. the components of the field
strength tensor Fµν , not the dynamical field Aµ that we use to define the action and obtain
equations of motion. In fact, Aµ is not uniquely defined: we are free to shift Aµpxq by a
derivative of an arbitrary smooth function αpxq

Aµpxq ÞÑ Aµpxq ` Bµαpxq (5.26)

without altering the physical fields which appear in the Maxwell equations and which can be
measured:

Fµν “ BµAν ´ BνAµ ÞÑ BµAν ´ BνAµ ` BµBνα ´ BνBµα “ Fµν . (5.27)
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A symmetry for which the parameters of the transformation depend on space-time is called a
gauge symmetry.7 Equation (5.26) is called the gauge transformation of Aµ. The field Aµ

is then called the gauge field (or the gauge connection). Gauge field configurations which
differ by a gauge transformations are considered physically equivalent, since they give rise to
the same physically observable electric and magnetic fields.

You should contrast gauge symmetries with the symmetries you studied so far: their parame-
ters did not depend on space-time in any way. They are called global symmetries, and they
relate physically inequivalent (though isomorphic) configurations.

Performing a gauge transformation (5.26) has the following effect on the action (5.19):

SrAµs ÞÑ SrAµ ` Bµαs “

ż

d4x

ˆ

´
1

4
F µνFµν ` AµJ

µ
` pBµαqJµ

˙

“ SrAµs `

ż

d4x pBµαqJµ

(5.28)

At first sight the action does not seem to be invariant under a gauge transformation, since

δαSrAµs ” SrAµ ` Bµαs ´ SrAµs “

ż

d4x pBµαqJµ (5.29)

does not seem to vanish. But this is too fast: we can perform a partial integration of the extra
term and discard the boundary term8 to write the gauge variation of the action as

δαSrAµs “ ´

ż

d4x α pBµJ
µ
q “ 0 , (5.30)

which vanishes thanks to the conservation of the current Jµ that couples to the electromag-
netic gauge field Aµ.

REMARKS:

1. We can write
Aµ Ñ Aµ ` Bµα “ eiα pAµ ` iBµq e´iα , (5.31)

so we can think about our gauge transformations as being related to the group G “

Up1q, but now its parameter α depends on where we are in space-time. G “ Up1q is
called the gauge group. The field Aµ transforms in the adjoint representation, except
for the derivative term. This rewriting may look silly since the adjoint representation of
G “ Up1q is trivial, but we will see later that this form generalizes to other gauge groups
in a natural way. We will also understand the rôle and meaning of the extra derivative
term.

7As I will stress later, this is a misnomer: a gauge ‘symmetry’ is not really a symmetry of a physical system.
Rather, it is a redundancy in our description of the system.

8We assume that the fields obey boundary conditions such that this holds, e.g. that they vanish fast enough
at infinity, or that they obey (along with the gauge parameter) periodic boundary conditions.
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2. You have encountered field theories with Up1q global symmetries and conserved cur-
rents before, for example the Schroedinger action, problem 24 from the exercises, and
problem 2 from the 4th problem class. Can we use the currents found there to couple
them to electromagnetism? If so, can we identify the Up1q global symmetry of these
field theories with the Up1q gauge symmetry found above?

The answer to the previous question is yes, and we will learn how to do this systematically
next. But first, let us briefly remind ourselves of the concept of Up1q global symmetry and set
notation for what follows.

5.2 Up1q global symmetry
Consider (for simplicity) a complex scalar field ϕpxq.9 The action10

S0rϕ, ϕ̄s “

ż

d4x L0pϕ, ϕ̄, Bµϕ, Bµϕ̄q ,

L0 “ ´|Bµϕ|
2

´ V pϕ, ϕ̄q “ ´|Bµϕ|
2

´ Up|ϕ|
2
q

“ | 9ϕ|
2

´ |∇ϕ|
2

´ Up|ϕ|
2
q

(5.32)

is invariant under global G “ Up1q transformations

g : ϕpxq ÞÑ eiαϕpxq

where α „ α ` 2π is a constant parameter, and g “ eiα P Up1q is a constant group element.
The requirement of Up1q invariance restricts the scalar potential V pϕ, ϕ̄q to only depend on
the invariant |ϕ|2. Because the scalar field ϕ is multiplied by a single power of the Up1q group
element g “ eiα, we say that it has charge 1.

REMARKS:

1. The continuous Up1q symmetry ensures the existence of a conserved current

jµ “ ´ipϕ̄B
µϕ ´ ϕB

µϕ̄q

Bµj
µ

“ 0
(5.33)

9Recall that mathematically, this is a map from Minkowski space-time R1,3 to C, which associates a complex
number to each point in space-time:

ϕ: R1,3 Ñ C
xµ ÞÑ ϕpxq

Greek indices µ, ν, . . . are space-time indices running from 0 to 3. (Roman indices i, j, . . . are spatial indices
running from 1 to 3. Index 0 is for time.)
Unless we explicitly state otherwise, we will typically assume that all fields are smooth.
10|Bµϕ|2 is a short-hand notation for Bµϕ̄Bµϕ, where Einstein summation convention (repeated indices are

summed over) is understood. Recalling that we work with Minkowski metric rηµνs “ p´1,`1,`1,`1q, this
means that |Bµϕ|2 “ ´|B0ϕ|2 ` |Biϕ|2 “ ´| 9ϕ|2 ` |∇ϕ|2.
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and of a conserved charge

Q “

ż

d3x j0

d

dt
Q “ 0

(5.34)

by Noether’s theorem.

2. A global symmetry relates physically distinct configurations.

˚ EXERCISE:

[Ex 6] Consider a field theory with action (5.32) and scalar potential

V pϕ, ϕ̄q “ λp|ϕ|
2

´ a2q2 ,

with parameters λ, a ą 0, see figure 5.1.

1. Calculate the energy (or “Hamiltonian”)

E “

ż

d3x
`

|B0ϕ|
2

` |Biϕ|
2

` V pϕ, ϕ̄q
˘

“

ż

d3x
´

| 9ϕ|
2

` |∇ϕ|
2

` V pϕ, ϕ̄q

¯

.

You may use the relation between the Lagrangian and Hamiltonian densities, or cal-
culate the Noether charge associated to invariance under time translations t ÞÑ t`c.

2. Show that the configurations of least energy (“vacua”, or “ground states”) parametrize
a circle in field space.

3. Show that different vacua are related by global Up1q transformations.

5.3 Up1q gauge symmetry
To make the global symmetry local, or a gauge symmetry, we promote the constant param-
eter α to a function of spacetime αpxq. For subtle reasons that we might return to later, the
parameter αpxq of a gauge transformation should approach 0 (sufficiently fast) at infinity.

If we try to write a kinetic term for ϕ, we immediately seem to run into trouble. Under a Up1q

gauge transformation

Bµϕ ÞÑ Bµϕ
1

” Bµpeiαϕq “ eiα pBµϕ ` ipBµαqϕq (5.35)
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Figure 5.1: The scalar potential V pϕ, ϕ̄q “ λp|ϕ|2 ´ a2q2.

since now α depends on spacetime. Therefore the naive kinetic term ´|Bµϕ|2 is not invariant
under a Up1q gauge transformation. We say that it is not gauge invariant.

This is a serious problem. But there is a way to fix it: we replace the derivative Bµϕ by the so
called gauge covariant derivative

Dµϕ :“ Bµϕ ´ iAµϕ (5.36)

which includes a new field Aµ (the gauge field), whose purpose is to transform under gauge
transformations precisely in such a way to cancel the unwanted second term in (5.35). This
happens if under a Up1q gauge transformation

Aµ ÞÑ A1
µ “ Aµ ` Bµα , (5.37)

because then

Dµϕ “ pBµϕ ´ iAµϕq ÞÑ D1
µϕ

1
” pBµϕ

1
´ iA1

µϕ
1
q

“ eiα pBµϕ ` ipBµαqϕ ´ iAµϕ ´ ipBµαqϕq

“ eiα pBµϕ ´ iAµϕq “ eiαDµϕ ,

(5.38)

using (5.35) and (5.37). Replacing derivatives Bµ by gauge covariant derivativesDµ makes the
gauge kinetic term of ϕ invariant under Up1q gauge transformations.

Note that (5.37) mimics precisely the gauge transformation (5.26) of the 4-vector potential in
the theory of electromagnetism. Having introduced a new Up1q gauge field Aµ, we now need
to write a gauge invariant kinetic term for it. But we know how to do it: we just write the
Maxwell Lagrangian from the theory of electromagnetism.
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Putting everything together, we find that the action

Srϕ, ϕ̄, Aµs “

ż

d4x Lpϕ, ϕ̄, Aν , Bµϕ, Bµϕ̄, BµAνq ,

L “ L0pϕ, ϕ̄,Dµϕ,Dµϕq ` LMaxwellpBµAνq

“ ´DµϕD
µϕ ´ Up|ϕ|

2
q ´

1

4g2
FµνF

µν ,

(5.39)

where Aµ is a real gauge field (or mathematically, a “gauge connection”) and

Dµϕ :“ pBµ ´ iAµqϕ covariant derivative of ϕ
Fµν :“ BµAν ´ BνAµ field strength of Aµ ,

(5.40)

is invariant under G “ Up1q gauge transformations

ϕpxq ÞÑ eiαpxqϕpxq

Aµpxq ÞÑ Aµpxq ` Bµαpxq .
(5.41)

REMARKS:

1. To linear order in the gauge field Aµ

L “ L0 ` jµAµ ` . . . (5.42)

The scalar field is coupled (via covariant derivatives) to the gauge fieldAµ, and not to the
field strength Fµν . To leading order, the gauge fieldAµ couples directly to the conserved
current jµ of the theory withUp1q global symmetry, which is built out of the scalar field.
This type of coupling is called theminimal coupling.

A common alternative normalization to the one we use is obtained by rescaling the
gauge field by one power of the gauge coupling: Aµ Ñ gAµ. In that normalization the
Lagrangian density is

L “ ´
`

pB
µ

` igAµ
qϕ̄
˘

pBµ ´ igAµqϕ ´ Up|ϕ|
2
q ´

1

4
FµνF

µν

“ L0 ` gjµAµ ` . . .

where the ellipses denote terms quadratic in the gauge field. This alternative normal-
ization makes it clear that the gauge coupling g controls the strength of the coupling
between the conserved current jµ of the theory with Up1q global symmetry and the
gauge field Aµ. In the following we will typically stick to the convention in which the
gauge coupling g appears in front of the kinetic term for the gauge field, rather than
inside gauge covariant derivatives.
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2. The group of gauge transformations

G “ Up1q :“

#

g : R1,3 Ñ G “ Up1q

xµ ÞÑ gpxq “ eiαpxq

+

(5.43)

is infinite-dimensional, since it associates independent transformations gpxq for the
fields at different points xµ, and there are infinitely many points in space-time. We use
calligraphic letters to distinguish the gauge group from the associated finite-dimensional
(for G “ Up1q, one-dimensional) Lie group. Later on, once we have familiarized our-
selves with this distinction, we will typically drop this notation and simply use G for
the gauge group, with a common abuse of notation.

3. A “gauge symmetry” relates physically equivalent configurations, which are to be
identified. The term “ gauge symmetry” is therefore amisnomer: it isnot a symmetry,
but rather a redundancy in our description of the theory.

The identification of field configurations which differ by a gauge transformation11 leads
to non-trivial topological properties of gauge fields, which in turn ensure the existence
of topological solitons and instantons, non-trivial gauge field configurations which are
stable for topological reasons. We will study these configurations in later chapters.

From now on we omit writing the dependence on the space-time coordinate x. It is
understood that all fields and all gauge transformation parameters depend on x.

4. Under a Up1q gauge transformation (5.41),

Dµϕ ÞÑ eiαDµϕ ,

Fµν ÞÑ Fµν

(5.44)

We say that the covariant derivativeDµϕ of ϕ is gauge covariant, because it transforms
in a representation of G for all x (the same representation of ϕ, namely the charge 1
representation here), and that the field strength Fµν is gauge invariant, because it does
not change under a gauge transformation (in fancy language, it transforms in the trivial,
or “singlet”, representation).

5. It is useful to think of the covariant derivativeDµ “ Bµ´iAµ as a differential operator,
which acts on everything to its right. The partial derivative Bµ acts by differentiating all
that appears to its right, while the gauge field Aµ, like all functions of x, acts by multi-
plying all that appears to its right. Requiring that under a Up1q gauge transformation

Dµ ” Bµ ´ iAµ ÞÑ D1
µ ” Bµ ´ iA1

µ “ eiαDµe
´iα , (5.45)

11See section 2.6 of [Manton and Sutcliffe, 2004] if you want to read more about this.
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so that
Dµϕ ÞÑ eiαDµe

´iαeiαϕ “ eiαDµϕ (5.46)
as desired, implies the gauge transformation of the gauge field

Aµ ÞÑ A1
µ “ Aµ ` Bµα (5.47)

and vice versa.

Proof. We have already proven the implication (5.45) ð (5.47) in (5.38). For the opposite
implication (5.45) ñ (5.47), we expand (5.45) and act with Bµ on everything to its right.
There are two options: either Bµ acts on e´iα, which produces the function pBµe

´iαq “

´i e´iαpBµαq, or Bµ goes through e´iα, which produces the differential operator e´iαBµ.12
Then we find

Dµ ” Bµ ´ iAµ ÞÑ D1
µ ” Bµ ´ iA1

µ “ eiαpBµ ´ iAµqe´iα

“ eiαe´iα
p´iBµαq ` eiαe´iα

Bµ ´ ieiαe´iαAµ

“ Bµ ´ ipAµ ` Bµαq ,

which comparing the initial expression and the final result implies

Aµ ÞÑ A1
µ “ Aµ ` Bµα .

Furthermore, defining the commutator rX, Y s :“ XY ´ Y X , we have

rDµ, Dνs “ ´iFµν , (5.48)

so the field strength controls the non-commutativity of covariant derivatives.

Proof. [Ex 7]

6. The gauge field Aµ is only defined locally, namely in a patch, which we take to be
such that the Poincaré lemma applies. As we saw in the gauge theory formulation of
electromagnetism, the Bianchi identity ϵµνρσBνFρσ “ 0 implies Fµν “ BµAν ´BνAµ only
if the Poincaré lemma applies.

What this means is the following. Consider two patches U p1q and U p2q with a non-trivial
overlap U p1q XU p2q ‰ H. Then the gauge fieldsAp1q

µ andAp2q
µ defined in the two patches

are related by a gauge transformation

Ap1q
µ “ Ap2q

µ ` Bµα
p12q

12If you are confused by these statements and manipulations, act with the differential operator on any smooth
test function fpxq. If X and Y are two differential operators, then X “ Y iff Xf “ Y f for all smooth test
functions. Similarly X ÞÑ Y iff Xf ÞÑ Y f for all smooth test functions.
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Figure 5.2: Two patches which cover a 2-sphere S2, and their overlap.

on the overlap U p1q X U p2q, so that the field strengths agree: F p1q
µν “ F

p2q
µν .13 Mathe-

matically, the gauge transformation parameter αp12q that relates the gauge fields in the
two patches is called a “transition function”. Charged fields are also defined locally,
in patches. For consistency, they also transform by a gauge transformation when we
switch to another patch.

This local definition ofAµ is responsible for most of the topological and geometric prop-
erties of gauge theories. To give you an appetizer, consider a space-time of the form
R ˆ pR3zpq, where the first factor of R is parametrized by time, and the second factor
is space, which is flat Euclidean space R3 except that we excise the point p (we could
equally excise a 3-ball).14 It turns out that this space-time is not contractible to a point,
but only to a 2-sphere surrounding the point p. (Perhaps you can figure it in your mind.
If not, just trust me for now.) Last term, when you learned about stereographic pro-
jections, you saw that a 2-sphere can be covered by two patches, see figure 5.2. For
instance, we can take patch U p1q to cover everything north of the southern tropic, and
patch U p2q to cover everything south of the northern tropic. The two patches overlap
in the region between the two tropics near the equator, so we need to specify how the
gauge field in the northern patch and the gauge field in the southern patch are related
in this region where both are defined. As we will see, this freedom allows us to define a
magnetic monopole, namely a pointlike magnetic charge, sitting at point p. This is very
surprising, because Maxwell’s equations allow electric charge densities but not mag-
netic charge densities in the right-hand sides. As we will see later, we can by-pass this
limitation by exploiting the topology of the gauge field.

˚ EXERCISE:
13Naively you might want to impose the simpler identificationAp1q

µ “ A
p2q
µ , but taking into account that gauge

fields are only definedmodulo gauge transformations, one is led to the more general (andmathematically correct)
identification in the main text. It took physicists several decades to appreciate this point.

14I use the symbol z to denote set difference. If you are use to the ordinary ´ sign to denote set difference as
well, please let me know and I’ll change my notation accordingly.
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[Ex 8] So far I have assumed for simplicity that the complex scalar field ϕ has charge 1.
Go through this chapter and work out how all formulae change if ϕ has charge q P Z
rather than charge 1.

5.4 Gauge redundancy and gauge fixing
A good reference for this topic is section 6 of David Tong’s QFT lecture notes [Tong, 2006].

Let us start from the equations of motion (EoM) of the theory of scalar electrodynamics,
which is described by the action (5.39). We recall here the Lagrangian density

L “ ´|Dµϕ|
2

´ V pϕ̄, ϕq ´
1

4g2
F 2
µν ,

where F 2
µν ” FµνF

µν etc, and the scalar potential takes the form V pϕ̄, ϕq “ Up|ϕ|2q to ensure
gauge invariance. Then the Euler-Lagrange equations are

1q DµD
µϕ “ ´

BV

Bϕ̄
” ´U 1

p|ϕ|
2
qϕ

2q BνF
µν

“ g2Jµ

(5.49)

where
Jµ “ ´ipϕ̄Dµϕ ´ ϕDµϕ̄q “ jµ ´ 2Aµ|ϕ|

2 (5.50)

is a conserved current. The EoM for ϕ̄ is the complex conjugate of the EoM for ϕ, so I will not
write it explicitly. Note that upon gauging the global U(1) symmetry, the conserved current jµ
(5.34) of the scalar field theory with global Up1q symmetry gets a correction term, due to the
presence of the gauge field Aµ in the covariant derivatives.

Proof. [Ex 10]

Let us now consider the transformation properties of the EoM (5.2) under a Up1q gauge trans-
formation (5.41). The equations transform as

1q ÞÑ eiα1q pgauge covariantq
2q ÞÑ 2q pgauge invariantq

(5.51)

Therefore, if a field configuration pϕ,Aµq solves the EoM (5.49), then any gauge transformed
field configuration pϕ1 “ eiαϕ,A1

µ “ Aµ ` Bµαq also solves the EoM (5.49): the EoM only
determine pϕ,Aµq up to a gauge transformation.

Given some initial data pϕp0q, A
p0q
µ q specifying the field configuration at an initial time t0, we

cannot uniquely determines the field configuration pϕ,Aµq at a later time t ą t0. Indeed
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Figure 5.3: The space of all field configurations decomposes into the disjoint union of gauge
orbits, each represents a single physical configuration. A complete gauge fixing selects a single
representative for each orbit.

pϕ1 “ eiαϕ,A1
µ “ Aµ ` Bµαq is as good a solution of the EoM as pϕ,Aµq, and obeys the same

initial condition provided that the gauge parameter α obeys the conditions αpt0, x⃗q “ 0 (mod
2π) and Bµαpt0, x⃗q “ 0 at the initial time t0.

We appear to be in trouble: we would like the EoM to define awell-posed initial value prob-
lem and determine uniquely physically observable fields at later times. This is not the case if
we regard field configurations which differ by a gauge transformation as physically inequiv-
alent. If instead we declare field configurations which differ by a gauge transformation to be
physically equivalent, then the issue disappears and the initial value problem is well-posed.
We will therefore identify field configurations related by a gauge transformation,

pϕ,Aµq „ pϕ1
“ eiαϕ,A1

µ “ Aµ ` Bµαq . (5.52)

Physically observable quantities must then be gauge invariant, such as for example the
field strength Fµν , the magnitude of the scalar field |ϕ|2, or the conserved current Jµ. This
explains remark 3 in the previous section.

The picture to keep in mind for gauge theories is that field space F “ tϕpxq, Aµpxqu is foli-
ated15 by gauge orbits traced by the action of the gauge group

G ¨ pϕpxq, Aµpxqq “ tpeiαpxqϕpxq, Aµpxq ` Bµαpxq | αpxq „ αpxq ` 2πu .

In down to earth terms, a gauge orbit simply consists of all the field configurations which are
related by a gauge transformation.

Then the identification (5.52) of field configurations related by gauge transformations states
15Foliation is a mathematical term, from ‘folia’, Latin for ‘leaf’. You can look up the technical definition if you

are interested. For our purposes, you can take it to mean that field space is a union of disjoint orbits of the gauge
group.
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the correspondence16

Physical configuration ÐÑ Gauge orbit .

Rather than working with the redundant description of field space F subject to the gauge
symmetry G, it is often useful to “fix a gauge” (or pick a gauge, that is, picking a single
representative for each gauge orbit). Any representative does the job – after all any two
representatives of a given gauge orbit are physically equivalent – but we need to ensure that
the gauge fixing cuts each orbit once and only once, as in figure 5.3. If that is not the case,
and there is some leftover gauge symmetry that is not fixed, we refer to the gauge fixing as
partial or incomplete, and further conditions must be specified in order to have a complete
gauge fixing. The topic of gauge fixing is rather technical, and plays an important role in the
quantization of gauge theories. Here we will content ourselves with giving a few standard
examples of (partial) gauge fixing, which may be useful later on.

EXAMPLES:

1. Lorenz gauge:
This gauge is defined by imposing the constraint

BµA
µ

“ 0 (5.53)

on the gauge field 4-vector Aµ. This can always be achieved. Indeed, if we are given a
representative Aµ which does not obey the Lorenz gauge condition (5.53), then we can
find another representative A1

µ “ Aµ ` Bµα in the same gauge orbit which obeys the
Lorenz gauge constraint

0 “ BµA
1µ

“ BµA
µ

` BµB
µα (5.54)

by picking α to be a solution of the inhomogeneous equation

BµB
µα “ ´BµA

µ , (5.55)

which exists.17

Let us discuss pros and cons of the Lorenz gauge. The main advantage of the Lorenz
gauge is that the constraint (5.53) is Lorentz invariant.18 The main disadvantage of the

16If you are formally minded, you would say that the physical configuration space C is the quotient of the field
space F by the gauge group G,

C “ F{G ,

namely the set of equivalence classes of field configurations under the equivalence relation (5.52).
17Here the right-hand side ´BµA

µ is given and acts as a source in a relativistic Poisson equation for α. Solu-
tions can be found by the method of Green’s functions.

18The Lorenz gauge is due to the Danish physicist Ludvig Lorenz, not to be confused with the more famous
Dutch physicist Hendrik Lorentz, who is responsible for the Lorentz transformations which leave the laws of
special relativity invariant, as well as for introducing the Lorentz force which acts on relativistic particles moving
in a magnetic field. Click on the names of the physicists to see who is who.

https://en.wikipedia.org/wiki/Ludvig_Lorenz
https://en.wikipedia.org/wiki/Hendrik_Lorentz
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Lorenz gauge is that it only fixes the gauge partially. Indeed, if we are in Lorenz gauge
we are free to perform gauge transformations with parameters α such that BµBµα “ 0
and we will remain in the Lorenz gauge. (This corresponds to adding a solution of the
homogeneous equation in (5.55).)

2. Coulomb gauge (or radiation gauge):
This gauge is defined by imposing the constraint

∇ ¨ A⃗ “ 0 (5.56)

on the vector potential A⃗, which is the spatial part of the 4-vector Aµ. This can always
be achieved, by a similar reasoning to above.

Compared to the Lorenz gauge, the Coulomb gauge has the clear drawback of not being
Lorentz covariant. So this gauge fixing spoils the manifest relativistic symmetry of the
formalism, which is not ideal. (The physics of the system remains Lorentz invariant,
because gauge transformations are unphysical, they are just a redundancy in our de-
scription.) Another drawback, in common with the Lorenz gauge, is that the Coulomb
gauge constraint (5.56) only fixes the gauge partially. The argument is the same as for
the Lorenz gauge, except that we are using spatial indices only instead of full space-time
indices.

On the other hand, a pro of the Coulomb gauge is that the temporal componentA0 of the
gauge potential (aka the ‘electric scalar potential’ in electromagnetism) is determined by
the charge density ρ “ J0 as in electrostatics:

A0pt, x⃗q9

ż

d3x1 ρpt, x⃗1q

|x⃗ ´ x⃗1|
. (5.57)

So if the charge density ρ “ 0, for instance for ‘pure electromagnetism’, in which there
is no charged matter ϕ, we have

A0 “ 0

in Coulomb gauge. On the other hand, if there are charged fields and hence ρ ‰ 0, then
A0 ‰ 0.

˚ EXERCISE:

Determine the proportionality factor in (5.57). [Hint: use∇2 1
4π|x⃗|

“ δp3qpx⃗q.]

REMARK: [Ex 11]
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It is often possible to fix a gauge where19

A0 “ 0 .

In this gauge the energy (or more precisely the Hamiltonian) of scalar electrodynam-
ics (5.39) is

E “

ż

d3x

„

|B0ϕ|
2

` |p∇ ´ iA⃗qϕ|
2

` Up|ϕ|
2
q `

1

2g2
pE⃗2

` B⃗2
q

ȷ

(5.58)

where
Ei “ ´B0Ai , Bi “

1

2
ϵijkFjk (5.59)

are the electric and magnetic field.

5.5 Up1q Wilson line and Wilson loop
Let us conclude this chapter with an appetizer of geometric aspects that we will hopefully
return to later. A good reference for this section is section 15.1 of the book by Peskin and
Schroeder [Peskin, 1995].

We start by recalling that if ϕ is a charged scalar (of charge 1 for definiteness), then its partial
derivative is not gauge covariant, that is, it does not transform under a well-defined repre-
sentation of the Up1q gauge group. You have seen this explicitly in the first term, when you
worked out how Bµϕ transforms under a Up1q gauge transformation (5.41). One can fix this
problem by introducing the gauge covariant derivativeDµϕ “ pBµ ´ iAµqϕ, which transform
covariantly as a field of charge 1 under the gauge transformation (5.41). Hopefully this is all
clear by now at a technical level. But why is this, conceptually?

To analyze all the partial derivatives in one fell swoop, let us consider the total differential
of ϕpxq,

dϕpxq “ lim
ϵÑ0

ϕpx ` ϵdxq ´ ϕpxq

ϵ
“ Bµϕpxqdxµ , (5.60)

where I have introduced an infinitesimal book-keeping parameter ϵ in front of the line incre-
ment dxµ, so that I could write the total differential as a limit. The final expression, which
writes the total differential of ϕpxq as the 4-vector Bµϕpxq contracted with the differential in-
crement dxµ, follows from Taylor expanding the numerator inside the limit and by taking the
limit (see Calculus and AMV).

The reason why the total differential (5.60) of ϕ (and hence its partial derivatives) does not
transform covariantly under gauge transformations is that the two terms that we are sub-

19This is allowed because A0 has no kinetic term which involves its time derivative in (5.39). A0 is therefore
non-dynamical: it can be determined at all times from Ai and the values of other charged fields in the theory.
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Figure 5.4: An open curve from point x1 to point x2.

Figure 5.5: A closed curve (or ‘loop) with base-point x1 “ x2.

tracting inside the limit have different gauge transformation properties

ϕpx ` ϵdxq ÞÑ eiαpx`ϵdxqϕpx ` ϵdxq

ϕpxq ÞÑ eiαpxqϕpxq ,

because αpx ` ϵdxq ‰ αpxq.

This problem can be fixed by introducing the ‘Wilson line’, or, as wewill learn in later chapters,
the mathematical notion of ‘parallel transport’.

Let C be an open curve (or a path) from point x1 to point x2, see figure 5.4. Mathematically,
this is a smooth map from an interval to space-time R1,3

C : I “ rτ1, τ2s ÞÑ R1,3

τ ÞÑ xµ
pτq

with xpτ1q “ x1 and xpτ2q “ x2 at the endpoints.

The Wilson line (of charge 1) along the path C is defined to be

WCpx2, x1q :“ exp

„

i

ż x2

x1, C

Aµpxqdxµ

ȷ

” exp

„

i

ż τ2

τ1

Aµpxpτqq 9xµ
pτqdτ

ȷ

, (5.61)
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where the first integral is the line integral from x1 to x2 along C , and the second integral is its
expression in the parametrization xµpτq. If C is a closed path (or a ‘loop’), namely if x1 “ x2

as in figure 5.5, then

WC :“ exp

»

–i

¿

C

Aµpxqdxµ

fi

fl (5.62)

is called the Wilson loop (of charge 1) along the curve C . By standard results from multi-
variate calculus, the line integral

ű

C
Aµpxqdxµ only depends on the curve C and not on the

base-point x1 “ x2.

Under a Up1q gauge transformation (5.41), we claim that the Wilson line (5.61) transforms as20

WCpx2, x1q ÞÑ eiαpx2qWCpx2, x1qe
´iαpx1q . (5.63)

Proof.

WCpx2, x1q “ ei
şx2
x1, C

Aµdxµ

ÞÑ ei
şx2
x1, C

pAµ`Bµαqdxµ

“ei
şx2
x1, C

Aµdxµ

ei
şx2
x1, C

Bµαdxµ

“WCpx2, x1qeipαpx2q´αpx1qq

“eiαpx2qWCpx2, x1qe
´iαpx1q .

To go from the second to the third line, we have used the fact that Bµαdx
µ “ dαpxq is an exact

differential, so its integral along a curveC only receives contribution from the boundary terms.

A corollary of the gauge transformation (5.63) is that the U(1) Wilson loop (5.62) is gauge in-
variant. To see that, simply set x1 “ x2, or use the fact that the integral of an exact differential
along a closed curve vanishes.

Now we can combine the gauge transformation of a charged scalar field and of a Wilson line
of the same charge (here 1 for simplicity) to find that the gauge transformation of the product
of the charged scalar ϕpx1q at x “ x1 and the Wilson line from x1 to x2 along C

WCpx2, x1qϕpx1q ÞÑ eiαpx2qWCpx2, x1qe
´iαpx1qeiαpx1qϕpx1q

“eiαpx2qWCpx2, x1qϕpx1q
(5.64)

is by the same phase eiαpx2q as for ϕpx2q.
20For the gauge group G “ Up1q, which we are considering here, the Wilson line and the gauge transforma-

tions eiαpxiq commute, so we could have written the gauge transformation of the Wilson line simply as

WCpx2, x1q ÞÑ eipαpx2q´αpx1qqWCpx2, x1q .

I wrote the result like (5.63) for comparison to the case of a non-abelian gauge group, which we will study later.
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Therefore it makes sense to consider the total covariant differential

Dϕpxq “ Bµϕpxqdxµ :“ lim
ϵÑ0

ϕpx ` ϵdxq ´ WdCpx ` ϵdx, xqϕpxq

ϵ
, (5.65)

where we have inserted the Wilson line along an infinitesimal line element dC connecting x
to x ` ϵdx in front of ϕpxq. This ensures that the terms which are subtracted inside the limit
have the same gauge transformation property.

Expanding to first order in ϵ,

ϕpx ` ϵdxq “ ϕpxq ` ϵBµϕpxqdxµ
` Opϵ2q

and

WdCpx ` ϵdx, xq “ exp

„

i

ż x`ϵdx

x, dC

Aµpx1
qdx1µ

ȷ

“ exp
“

iAµpxqϵdxµ
` pϵ2q

‰

“ 1 ` iϵAµpxqdxµ
` Opϵ2q ,

(5.66)

and substituting in (5.65) we find

Dϕpxq “ lim
ϵÑ0

1

ϵ

“

ϕpxq ` ϵBµϕpxqdxµ
´ ϕpxq ´ iϵAµpxqϕpxqdxµ

` Opϵ2q
‰

,

“ pBµϕpxq ´ iϵAµpxqϕpxqq dxµ
” Dµϕpxqdxµ ,

(5.67)

which precisely reproduces the previous definition (5.40) of the covariant derivative of a scalar
field ϕpxq of charge 1!

REMARKS:

1. In QM, the Wilson line WCpx2, x1q is the phase picked up by the wave-function of a
charged point particle slowly (more precisely, ‘adiabatically’) moving from x1 to x2 along
a path C in the presence of a gauge field.

2. The Wilson loop (5.62) is gauge invariant and therefore physically observable. It is the
phase picked up by the wave-function of a charged point particle slowly moving along a
loop C . This phase controls the Aharonov-Bohm effect in QM, a subtle and unexpected
form of quantum interference which arises because the wave-function couples directly
to the gauge potential Aµ rather than to the physical electric and magnetic fields E⃗, B⃗.

If the loop C is the boundary of a surface Σ, then by a higher-dimensional version of Stokes’
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theorem (see Differential Geometry III) one has
¿

C

Aµpxqdxµ
“

1

2

ż

Σ

Fµνpxqdxµ
^ dxν

”
1

2

ż

x´1pΣq

Fµνpxpσqq

ˆ

Bxµpσq

Bσ1

Bxνpσq

Bσ2
´

Bxνpσq

Bσ1

Bxµpσq

Bσ2

˙

dσ1dσ2

(5.68)

where xµpσq ” xµpσ1, σ2q is a parametrization of the surface Σ.21 The previous formula is a
higher-dimensional analogue of Stokes’ theorem

¿

C

A⃗ ¨ d⃗l “

ż

Σ

p∇ ˆ A⃗q ¨ n̂ d2σ “

ż

Σ

B⃗ ¨ n̂ d2σ , (5.69)

which is used in electromagnetism to relate the circulation of the vector potential A⃗ along C
to the magnetic flux through a surface with boundary C . The formula (5.68) tells us that the
field strength Fµν encodes the value of infinitesimal Wilson loops.

If the loop C is not contractible to a point, it may happen that Aµ ‰ 0 and therefore
¿

C

Aµdx
µ

‰ 0

even if the field strength Fµν “ 0 vanishes everywhere in the region probed by a quantum-
mechanical particle (or by a charged scalar field). Examples of spaces which allow these phe-
nomenon are R2zp, for loops which encircle the removed point p, or the torus T n, for loops
that wind non-trivially around a circle direction in the torus.

Time permitting, wewill return to theAharonov-Bohm effect later. For an accessible summary,
see section 10.5.3 of [Nakahara, 2003], up to equation (10.100).

21F “ 1
2Fµνdx

µ^dxν is called a differential 2-form. It can be shown that the surface integral of a differential 2-
form is independent under reparametrizations of the surface that preserve its orientation, much like line integrals
of a differential 1-form A “ Aµdx

µ.



Chapter 6

Applications of abelian gauge theories

In this chapter we will study non-trivial field configurations of abelian gauge theories (with
and without charged matter fields) whose existence and stability is ensured by topology. We
will see that this topology is associated to maps from a circle to a circle, and we will investigate
some of the underlying geometry and physics.

6.1 Global vortices
Two good references for this section of the notes are section 3.1 of [Weinberg, 2012] and
sections 7.1, 7.2 of [Manton and Sutcliffe, 2004].

Vortices are topological solitons, finite energy localized solutions of the field equations
whose shape is protected by topology, which look like particles in 2 space and 1 time di-
mensions.1

Three-dimensional Minkowski spacetime has coordinates px0 “ t, x1, x2q. It is convenient to
introduce a complex coordinate

z “ x1
` ix2

“ reiθ (6.1)
for space R2, viewed as the complex plane C. We consider a complex scalar field ϕ of charge
1 under a Up1q internal global symmetry. The Lagrangian density has the standard canonical
kinetic term ´pBµϕ̄qpBµϕq and a Up1q-symmetric scalar potential

V pϕ̄, ϕq “ Up|ϕ|
2
q “

λ

2
p|ϕ|

2
´ v2q2 , (6.2)

1We are always free to add extra spatial dimensions on which the solutions do not depend. If we add one extra
dimension to get to 3+1 spacetime dimensions, vortices look like strings. If we add another extra dimensions to
get to 4+1 spacetime dimensions, vortices look like membranes. And so on and so forth.

26
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where λ, v ą 0 are constants. See figure 5.1.

We will be interested in static field configurations, which have 9ϕ ” B0ϕ “ 0). Their energy is

E “

ż

d2x
“

|∇ϕ|
2

` Up|ϕ|
2
q
‰

. (6.3)

The vacua of the system (static minimum energy configurations) are given by

ϕ “ |ϕ|ei argpϕq
“ veiα (6.4)

where α „ α ` 2π is an arbitrary constant that labels the vacuum. These configurations
parametrize the vacuum manifold (or ‘moduli space of vacua’)

V – S1 , (6.5)

which is a circle of radius v in field space (i.e. ϕ space).

It is not the vacua that we are interested in, however. Rather, we will focus on less trivial
static field configurations of finite energy, which look as follows if we draw the vector field
ϕ⃗ “ pReϕ, Imϕq ” pϕ1, ϕ2q

2 on the spatial plane R2:

Figure 6.1: Sketch of the field ϕ⃗ “ pϕ1, ϕ2q for a vortex solution.

We demand that the magnitude |ϕ⃗| of ϕ⃗ (or equivalently |ϕ| in the complex representation
for the scalar field) tends to v at spatial infinity, which is a necessary condition to have finite
energy, and that the vector ϕ⃗ rotates by 2π as we follow the circle at spatial infinity.

REMARKS:
2Note that in this representation ϕ⃗ transforms as a doublet (or vector) under the SOp2q internal global sym-

metry. We are using the obvious isomorphism between Up1q and SOp2q.
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1. Such a field configuration cannot be deformed continuously to the vacuum, if we keep
the asymptotics at spatial infinity fixed. (In order to deform to a vacuum, where ϕ⃗ is
constant and points in a fixed direction, we would need to provide infinite energy.)

2. Field configurations which obey this asymptotics requirement can be deformed contin-
uously until the energy (6.3) is minimized. The resulting minimum energy configuration
solves the EoM [Ex 14] and is called a global vortex.3

There is some interesting topology underlying these field configurations. Given a smooth
configuration on ϕ, we can define the vorticity / vortex number / winding number asso-
ciated to a loop C

N rCs :“
1

2π

¿

C

∇ argpϕq ¨ d⃗l ”
1

2π

¿

C

Bi argpϕqdxi , (6.6)

which is the circulation of the vector field ∇ argpϕq along the loop C . (Notation: d⃗l “

pdx1, dx2q is the infinitesimal line element.)

REMARKS:

1. If ϕ ‰ 0 alongC , then argpϕq is well defined and (6.6) counts the number of full rotations
that argpϕq makes during one counterclockwise circuit along C , which is an integer.

2. If we deform C continuously, the vortex number N rCs also changes continuously. But
it’s an integer, so it can only be continuous by being a constant. (One says that N rCs

is topologically conserved.)

3. There is an exception to the previous fact: if C passes through a point P where ϕ “ 0,
then argpϕq is ill-defined, and so is the vortex number (6.6). (A similar argument applies
to points where ϕ Ñ 8, if we allow them.) If C and C 1 are two loops which only differ
by how they avoid P , as in figure 6.2, we have

N rCs ´ N rC 1
s “ N rCP s (6.7)

where CP is an infinitesimal loop that encircles the point P .

˚ EXERCISE:

[Ex 15]
3Global because it is invariant under a global internal Up1q symmetry. Vortex because, as we will see later,

the flow lines of the gradient of argpϕq resemble a vortex.
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Figure 6.2: Infinitesimal deformation of a contourC toC 1 through a zero of ϕ, andCP “ C´C 1

(in homology, really).

(a) Use Stokes’ theorem to write the vortex number as a surface integral, and show
that it can only receive contributions from points where ϕ “ 0 or 1{ϕ “ 0 (you
can assume that ϕ is smooth otherwise).

(b) Assume for simplicity that ϕ is a holomorphic function of z. Let z0 be a zero of
ϕ of order n if n ą 0, and a pole of order |n| if n ă 0, that is ϕpzq « cpz ´ z0q

n

near z “ z0, where c ‰ 0. Show thatN rCz0s “ n for any infinitesimal loop Cz0

which encircles z0 counterclockwise.

(c) Generalize the previous calculation to ϕpz, z̄q « cpz ´ z0q
npz ´ z0q

m.

We say that there are:

N rCP s vortices sitting at P if N rCP s ą 0
´N rCP s antivortices sitting at P if N rCP s ă 0 .

4. From the previous remarks we conclude that

N rCs “ # pvorticesq ´ # pantivorticesq enclosed by C . (6.8)

Letting C “ S1
8, the circle at spatial infinity (parametrized by θ as r Ñ 8), we find the

total vortex number

N ” N rS1
8s “ total # pvorticesq ´ total # pantivorticesq . (6.9)

5. Topology is the branch of mathematcis that studies shapes up to continuous deforma-
tions, and maps between them. Topologically, C » S1 and

argpϕq|C : C » S1
ÝÑ S1

counts how many times the spatial loop C winds around the circle parametrized by
argpϕq in field space (or ‘target space’). ContinuousMaps fromS1 toS1 are labelled by an
integer, the winding number of the map. This is what N rCs represents mathematically.
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Now let’s look for a static solution of the field equations

∇2ϕ ´ λp|ϕ|
2

´ v2q “ 0 (6.10)

with total vortex numberN “ 1. Solving this equation in general is hard, so let’s simplify our
lives by making the ansatz

ϕpx⃗q “ fprqeiθ , (6.11)
which clearly has unit vortex number. Note that (6.11) is invariant under a combined rotation
in the spatial plane R2 and a phase rotation of ϕ.

If we further demand that ϕ be invariant under a reflection about the x1 axis combined with
complex conjugation of ϕ, that is

ϕpr, θq “ ϕpr,´θq , (6.12)

it follows that
fprq P R . (6.13)

Substituting (6.11) and (6.13) in the equation of motion (6.10), one finds the ODE

f2
`

1

r
f 1

´
1

r2
f ` λpv2 ´ f 2

qf “ 0 (6.14)

for the radial profile fprq.

Proof. [Ex 16].

We impose the boundary conditions

fp0q “ 0 , fp8q “ v (6.15)

which are necessary for ϕ to be non-singular at the origin and for the integral of the energy
density to converge at spatial infinity. With these boundary conditions, the ODE (6.14) can
be solved numerically. However we run into a problem: even though Up|ϕ|2q Ñ 0 at spatial
infinity, the static energy (6.3) is infinite because ∇ϕ��Ñ0 at spatial infinity, due to the θ-
dependence in (6.11).

˚ EXERCISE:

[Ex 17]

1. Let ϕpx⃗q “ ρpx⃗q exppiαpx⃗qq, where ρpx⃗q, αpx⃗q are real functions. Show that

E “

ż

d2x

„

p∇ρq
2

` ρ2p∇αq
2

` `
λ

2
pρ2 ´ v2q2

ȷ

.
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2. Let ϕ “ fprq exppiθq where pr, θq are polar coordinates on the spatial plane, and
fprq is a real function which obeys the boundary conditions fp0q “ 0 and fp8q “ v.
Show that

ρ2p∇αq
2

“
f 2

r2

and use the boundary conditions to show that this causes a logarithmic divergence
of the energy E as r Ñ 8. That is, let

ER ”

ż

rďR

d2x E

and show that ER „ logR as R Ñ 8.

6.2 Derrick’s theorem
The previous negative result is not an accident, but rather a particular case of a general theo-
rem due to Derrick [Derrick, 1964]. See section 3.2 of [Weinberg, 2012] for this section.

Consider a scalar field theory in D space dimensions, with Lagrangian density

L “ ´
1

2
GabpϕqBµϕ

a
Bµϕ

b
´ V pϕq (6.16)

where the matrix Gabpϕq is positive definite for all values of the scalar fields ϕa and V pϕq

vanishes at its global minima. (The latter can always be arranged by a shift of the potential.)
Then any finite energy static solution of the field equations is a stationary point of the
static energy functional

Erϕs “ EKrϕs ` EV rϕs ,

EKrϕs “

ż

dDx
1

2
GabpϕqBiϕ

a
Biϕ

b

EV rϕs “

ż

dDx V pϕq .

(6.17)

Spatial indices i “ 1, 2, 3 are summed over in the kinetic static energy Ek, and we do not dis-
tinguish upper and lower indices. Internal indices a, b are also summed over. Both the kinetic
static energy Ek and the potential static energy EV are non-negative, by our assumption.

˚ EXERCISE:

[Ex 18.1] Prove the claim made above (6.17). [Hint: treatErϕs as an action for static field
configurations, and derive its Euler-Lagrange equations.]
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Take a static solution of the equations ofmotion, ϕpxq “ ϕ1pxq, and consider the one-parameter
family of field configurations

ϕpxq “ ϕλpxq :“ ϕ1pλxq (6.18)

labelled by the constant λ ą 0. Then

Erϕλs “ EKrϕλs ` EV rϕλs

“ λ2´DEKrϕλs ` λ´DEV rϕλs .
(6.19)

Proof. [Ex 18.2].

We know that the static solution ϕ1pxq of the equations of motion is a stationary point of the
functionalErϕs, that is δErϕs “ 0 at ϕ “ ϕ1 for any infinitesimal variation δϕ. If we restrict to
the one-parameter family ϕλpxq, this means that Erϕλs, which is a function of λ, is stationary
at λ “ 1. In equations,

0 “
d

dλ
Erϕλs

ˇ

ˇ

λ“1

“ p2 ´ Dqλ1´DEKrϕ1s ´ Dλ´1´DEV rϕ1s
ˇ

ˇ

λ“1

“ p2 ´ DqEKrϕ1s ´ DEV rϕ1s .

(6.20)

What do we learn from this?

• D=1: We find
EKrϕ1s “ EV rϕ1s , (6.21)

which allows finite energy solutions of the field equationswhich depend non-trivially on
the space coordinates, as long as their kinetic energy is equal to their potential energy.

• D=2: We find
EV rϕ1s “ 0 , (6.22)

which implies that ϕ “ ϕ1 minimizes the scalar potential for all x. This rules out a global
vortex solution, which does not minimize the scalar potential everywhere (in particular,
ϕ “ 0 at the core of the vortex).

• D>2: The two terms in the last line of (6.20) cannot have opposite signs. Hence the
only solution to (6.20) is

EKrϕ1s “ EV rϕ1s “ 0 , (6.23)

which means that ϕ1 is a vacuum solution (constant and a global minimum of the scalar
potential).
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The conclusion is Derrick’s theorem: there are no non-trivial (that is, non-constant) finite
energy static solutions to scalar field theories of the form (6.16) in D ą 1 space dimensions.

If we want to find non-trivial static solutions in more than one space dimensions, we need to
modify our assumptions and allow fields of different type. One can add spinors, but a similar
argument applies. The way out is to introduce gauge fields.

6.3 Gauged vortices
For this part see section 3.3 of [Weinberg, 2012], sections 7.1 and 7.3 of [Manton and Sutcliffe,
2004] and subsection 2.5.2 of [Tong, 2018].

Let’s return to our model for vortices in 2 ` 1 spacetime dimensions, but now let’s gauge
the Up1q symmetry. The theory that we obtain is called the Abelian Higgs model and has
Lagrangian density

L “ ´
1

4g2
F µνFµν ´ DµϕDµϕ ´

λ

2
p|ϕ|

2
´ v2q

2 , (6.24)

where λ and v are positive constants and

Fµν “ BµAν ´ BνAµ

Dµϕ “ Bµϕ ´ iAµϕ .
(6.25)

In a gauge where A0 “ 0 (known as ‘temporal gauge’, or ‘Weyl gauge’), the energy of static
field configurations (which have B0ϕ “ 0, B0Ai “ 0), is

E “

ż

d2x

«

2
ÿ

j“1

|Djϕ|
2

`
λ

2

`

|ϕ|
2

´ v2
˘2

`
1

2g2
B2

ff

(6.26)

where
B “ F12 “ B1A2 ´ B2A1 (6.27)

is the magnetic field, which is a scalar under spatial rotations in two dimensions.4

Proof. This follows from [Ex 11] in the problem sheet, specialized to two space dimensions
and static fields.

REMARKS:
4If we add a third spatial dimension, B becomes the magnetic field transverse to the plane.
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1. The vacua of the system are zero energy field configurations and obey
p1q Djϕ ” Bjϕ ´ iAjϕ “ 0

p2q |ϕ| “ v

p3q B “ 0 .

(6.28)

Equation p2q sets ϕ “ veiαpx⃗q, and substituting in equation p1q we can solve for
Aj “ ´iBj log ϕ “ Bjα , (6.29)

which is a ‘pure gauge’ configuration, namely a gauge field configuration which is
gauge equivalent to 0. This implies that the field strength vanishes:

B “ F12 “ 0 , (6.30)
consistently with equation p3q.5

2. A necessary condition for the static energy E to be finite is that the fields ϕ,Aµ

approach a vacuum at spatial infinity. It would be nice if we could argue that ϕ has a
limiting form on the circle at spatial infinity S1

8, but this is not possible because of gauge
invariance. However, from the expression for the static energy in polar coordinates pr, θq

E “

ż 8

0

r dr

ż 2π

0

dθ

„

|Drϕ|
2

`
1

r2
|Dθϕ|

2
`

λ

2

`

|ϕ|
2

´ v2
˘2

`
1

2g2
1

r2
F 2
rθ

ȷ

(6.31)

we see that we must have Drϕ “ Brϕ ´ iArϕ Ñ 0 as r Ñ 8, which implies that
Ar ´ Br argpϕq Ñ 0 and Br|ϕ| Ñ 0. Let’s now switch to the radial gauge in which
Ar “ 0, which we can do by applying a gauge transformation with group element eiβ
given by

βpr, θq “

ż 8

r

dr1Arpr
1, θq , (6.32)

which is smooth and obeys β “ 0 at spatial infinity. This gauge transformation also
changes ϕ ÞÑ eiβϕ and Aθ ÞÑ Aθ ` Bθβ, but they both remain smooth if they were
smooth in the first place, which we assume. In the radial gauge, the boundary condition
that Drϕ Ñ 0 as r Ñ 8 simplifies to Brϕ Ñ 0, so ϕ has a limiting value along each
radial line, and we can set

lim
rÑ8

ϕpr, θq “ veiα8pθq

lim
rÑ8

Aθpr, θq “
d

dθ
α8pθq ,

(6.33)

5A side remark: Any choice of a vacuum value for the complex scalar field breaks the abelian Up1q gauge
symmetry. This is called spontaneous breaking of the Up1q gauge symmetry, since the symmetry is preserved
by the action but is broken by the state of the system. This is in constrast to explicit symmetry breaking, where
a term that breaks the symmetry is added to the action. In quantum field theory, the spontaneous breaking
of a continuous internal global symmetry implies the existence of massless particles, called Nambu-Goldstone
bosons. The spontaneous breaking of a gauge symmetry instead to the famous Higgs mechanism in quantum
field theory, in which the gauge boson (the quantum of the gauge field) gains a mass in a way that is consistent
with gauge invariance, by ‘eating’ the degree of freedom of the would-be Goldstone boson. This is the reason for
the name ‘abelian Higgs model’.
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where we denoted the argument of ϕ on the circle at spatial infinity by α8pθq. In the
second line of (6.33) we used the boundary condition limrÑ8 Dθϕ “ 0 to solve for the
limit of Aθ in terms of the limit of ϕ.

3. The total vortex number / winding number

N “ N rS1
8s :“

1

2π

¿

S1
8

∇α8 ¨ d⃗l “
1

2π

ż 2π

0

dθ
dα8pθq

dθ
“

1

2π
pα8p2πq ´ α8p0qq (6.34)

is gauge invariant and proportional to the total magnetic flux ΦpBq through the
spatial plane:

N “
1

2π

¿

S1
8

A⃗ ¨ d⃗l “
1

2π

ż

R2

d2x B “
1

2π
ΦpBq . (6.35)

We used (6.33) in the first equality and Stokes’ theorem in the second equality. This
means in particular that the magnetic flux through the spatial plane is quantized in
units of 2π.6

4. The asymptotic profile α8pθq of arg ϕ on S1
8 defines a continuous map

α8 : S1
8 Ñ S1 . (6.36)

Continuous maps from a circle to a circle fall into disjoint classes labelled by the integer
N , the winding number, which counts the number of times α8pS1

8q winds around S1.
The precise mathematical statement is that the 1st homotopy group (or the funda-
mental group) of S1 is the integers:

π1pS
1
q “ Z . (6.37)

Now that we have understood the global topological nature of the field configurations, the
next question to ask is whether we can find static solutions of the equations of motion with
nontrivial winding number, for exampleN “ 1. In the temporal and radial gauge (A0 “ Ar “

0), we can use the ansatz

ϕ “ veiθfpvrq

Aj “ ϵjkx̂
k apvrq

r

(6.38)

where f and a are real functions of a single variable vr. We rescale the radial coordinate by v
because that’s the only (inverse length) scale in the problem.

REMARKS:
6For those who are studying QM: there is a hidden reduced Planck constant ℏ which I set to 1.
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1. The ansatz (6.38) is rotationally symmetric: the effect of a spatial rotation can be undone
by a gauge transformation.

2. The ansatz (6.38) is invariant under a reflection about thex1-axis combinedwith complex
conjugation of ϕ.

3. We require that
f, a ÝÝÑ

rÑ0
0 , f, a ÝÝÝÑ

rÑ8
1 , (6.39)

to ensure regularity at the origin (the center of the vortex) and the boundary condi-
tions at infinity.

4. Using the ansatz (6.38), the equations of motion reduce to a system of two ODEs for
f and a [Ex 19]. The solutions are not known analytically, but they are easy to find
numerically and look like this:

Figure 6.3: Qualitative behaviours of the magnitude of the scalar field |ϕ| and the magnetic
field B for the Nielsen-Olesen vortex.

They are calledNielsen-Olesen vortices and play an important role in several areas of
physics, including the theory of superconductors (where they are known as Abrikosov
vortices).

5. The physics of multiple vortices turns out to depend on the ratio between the length
scales ξ9 1

mϕ
and L9 1

mγ
associated to (quanta of) the ϕ field and of the electromagnetic

field, due to a competition between an attractive force felt in regions where ϕ « 0, and
a repulsive force felt in regions where B ‰ 0.

• Type I (ξ ą L): attraction wins. Separate vortices combine into one big multi-
vortex, inside which we are just in a normal vacuum.

• Type II (ξ ă L): repulsionwins. If there aremany vortices, the energy isminimized
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when the individual vortices form a triangular lattice, known as the Abrikosov
lattice.

• ξ “ L: attraction and repulsion cancel, leading to a zero net force. This happens
when λ “ g2 in the Lagrangian density (6.24). We study this case next.

6.3.1 Bogomol’nyi vortices
If λ “ g2, we can massage the static energy (6.26), using a trick originally due to Bogomol’nyi
[Bogomol’nyi, 1976], to find a lower bound for the energy for every fixed value of the vortex
number N . The argument involves completing the square, which means writing a2 ` b2 “

pa ˘ bq2 ¯ 2ab, twice, and goes as follows:

E “

ż

d2x

«

2
ÿ

j“1

|Djϕ|
2

`
g2

2
p|ϕ|

2
´ v2q

2
`

1

2g2
B2

ff

“

ż

d2x
”

|D1ϕ ´ iϵ1D2ϕ|
2

` iϵ1
`

D1ϕD2ϕ ´ D2ϕD1ϕ
˘

`
1

2g2
`

B ´ ϵ2g
2
p|ϕ|

2
´ v2q

˘2
` ϵ2Bp|ϕ|

2
´ v2q

ı

(6.40)

where ϵ1, ϵ2 are signs (i.e. ϵ21 “ ϵ22 “ 1). Integrating by parts and using the boundary conditions
to drop boundary terms, we can write

ż

d2x
´

pD1ϕqpD2ϕq ´ pD2ϕqpD1ϕq

¯

“ ´

ż

d2x ϕ̄rD1, D2sϕ

i

ż

d2x ϕ̄F12ϕ “ i

ż

d2x B|ϕ|
2 .

(6.41)

Hence

E “

ż

d2x
”

|pD1 ´ iϵ1D2qϕ|
2

`
1

2g2
`

B ´ ϵ2g
2
p|ϕ|

2
´ v2q

˘2

´ ϵ1B|ϕ|
2

` ϵ2Bp|ϕ|
2

´ v2q
ı

,

(6.42)

where we notice that the first line is non-negative, being a sum of squares. Picking the two
signs to be equal, ϵ1 “ ϵ2 ” ϵ, the B|ϕ|2 terms cancel out in the second line and we find the
lower bound

E ě ´ϵv2
ż

d2x B “ ´2πϵv2N . (6.43)

Since this holds for both values of ϵ, we can take ϵ “ ´signpNq to obtain the Bogomol’nyi
bound

E “ 2πv2|N | , (6.44)
which is a lower bound for the energy in terms of the absolute value of the vortex number (a
topologically conserved charge).
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The static solutions which saturate the bound, that is which have E “ 2πv2|N |, obey the 1st
order Bogomol’nyi equations

pD1 ´ iϵD2qϕ “ 0

B “ ϵg2p|ϕ|
2

´ v2q
(6.45)

where ϵ “ ´signpNq. They are called Bogomol’nyi vortices / antivortices, according to
the sign of the total vortex number N . It can be proven that a solution that contains both
vortices and antivortices does not solve the Bogomol’nyi equations. The general solution
to the Bogomol’nyi equations can be found numerically and has 2|N | real parameters, the
positions of the centres of the N vortices (or ´N antivortices) in the plane.

6.4 The Dirac monopole (à la Wu and Yang)
For this topic, see sections 1.9, 9.4.1 and 10.5.2 of [Nakahara, 2003].

If we extend theAbelianHiggsmodel to 3`1 spacetime dimensions, static gauged vortices look
like static strings extending along the coordinate x3 that parametrizes the extra dimension: the
magnetic field is localized in the px1, x2q plane, near the core of the vortex strings, much like
as it were in the interior of a solenoid extending along x3. So we can localize the magnetic
field along a line. This leads to the following natural question: can we have a magnetic
field localized near a point in space R3? The resulting putative configuration is called a
magnetic monopole, to contrast it with the magnetic dipoles which are physically realized
and observed in real world magnets and have two poles.

We can already ask the question of the mathematical existence of magnetic monopoles in
pure electromagnetism. The immediate answer that comes to mind is that no, magnetic
monopoles are forbidden by Maxwell’s equations

BνF
µν

“ Jµ

BνF̃
µν

“ 0
(6.46)

where F̃ µν :“ 1
2
ϵµνρσFρσ is the dual field strength which is obtained from the original field

strength by the replacement pE,Bq Ñ pB,´Eq. The vacuum Maxwell equations which
are obtained by setting to zero the sources for the electric and magnetic fields in the right-
hand side, are invariant under the electric-magnetic duality that sends pE,Bq ÞÑ pB,´Eq or
equivalently Fµν ÞÑ F̃µν . But the sources break this symmetry: in the first equation of (6.46)
we have the electric current 4-vector Jµ, but there is no analogous magnetic current 4-vector
J̃µ in the second equation. It is precisely the absence of a magnetic current 4-vector in the
Maxwell equations that allows us to write the field strength in terms of a gauge field. For static
field configurations, we have

B “ ∇ ˆ A ùñ ∇ ¨ B “ 0 , (6.47)
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with no magnetic charge density ρ̃ in the right-hand side to source the magnetic fieldB.

The previous argument seems to suggest that if we accept Maxwell’s equations as the cor-
rect mathematical description of the phenomena of electromagnetism, then pointlike electric
charges are allowed, but pointlike magnetic charges are not. But Dirac [Dirac, 1931] found a
loophole in this reasoning and was able to describe a magnetic monopole, which is dubbed
the Dirac monopole since. Or almost... Dirac’s argument involves a so-called Dirac string,
which has a localized magnetic flux inside it, much like an infinitesimally thin solenoid. The
Dirac string ends at a point, from which a radial magnetic field emanates, analogously to
the electric field that emanates from an electrically charged point particle. That’s the Dirac
monopole. The location of the Dirac string turns out to be be unphysical, as it can be moved
around by performing a gauge transformation, but the endpoint of the string, which is the
center of the monopole, is physical. Then by a quantum-mechanical consideration (requiring
that the wave-function of a charged particle is single-valued when the particle loops around
the Dirac string, which is equivalent to requiring that the Wilson line around the Dirac string
is equal to 1) it follows that the magnetic charge is quantized. Note that in Dirac’s point of
view there is no pointlike magnetic charge really, just the endpoint of a movable Dirac string
coming in from infinity. The magnetic flux through a 2-sphere that surrounds the endpoint of
the Dirac string is zero, because the magnetic flux that enters the sphere from the Dirac string
is equal and opposite to the flux that exits the sphere having emanated from the endpoint of
the Dirac string (or the Dirac monopole).

The explanation of the Dirac monopole with the Dirac string can be confusing. Luckily, one
can improve on Dirac’s intuition, reinterpreting it in more geometric terms, to actually de-
scribe a genuine pointlike magnetic charge. This was achieved by Wu and Yang [Wu and
Yang, 1975,Wu and Yang, 1976b,Wu and Yang, 1976a], and it’s their modern description of
the Dirac monopole that we will present here. The key point that will allow us to introduce a
magnetic monopole is to remove from space R3 a point, the position of the monopole, which
we will set to be the originO in what follows. Then, while∇ ¨B “ 0 everywhere inR3zO, we
can still have a non-vanishing magnetic flux through any 2-sphere surrounding the location
of the monopole, which is measured by themagnetic charge

m “
1

2π

ż

S2

B ¨ d2σ , (6.48)

where d2σ is the infinitesimal area element of the sphere, see figure 6.4.

REMARK:
We could equivalently work on R3 and use Gauss’ theorem to rewrite ∇ ¨ B “ 0 on R3zO
together with (6.48) as [Ex 21]

∇ ¨ B “ 2πm δp3q
pxq in R3 , (6.49)

but it is preferable to work in R3zO, which allows us to use gauge fields.
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Figure 6.4: Magnetic flux produced by a magnetic monopole at the origin.

Using polar coordinates in R3, we have the identities

∇1

r
“ ´

x

r3
, ∆

1

r
“ ´4πδp3q

pxq , (6.50)

where r “ |x| and ∆ ” ∇2 is the Laplacian. Then we can solve (6.49) by

B “
m

2

x

r3
“

m

2

1

r2
x̂ , (6.51)

similarly to how we describe pointlike electric charges.

What about the vector potential or gauge field A? We cannot write a smooth A which is
defined everywhere in R3, such that B :“ ∇ ˆ A obeys (6.49), because then we would have
∇ ¨ p∇ˆAq “ 0. Next, we can try to write a smoothAwhich is defined everywhere inR3zO,
such that B :“ ∇ ˆ A obeys ∇ ¨ B “ 0. But this fails too. Indeed, consider for instance the
vector potentialA` given by7

A`
x “ ´

m

2

y

rpr ` zq
, A`

y “ `
m

2

x

rpr ` zq
, A`

z “ 0 . (6.52)

The corresponding magnetic field is [Ex 21]

∇ ˆ A`
“

m

2

x

r3
(6.53)

as we hoped, but unfortunately this only holds where (6.52) is defined, namely on R3 minus
the origin and the negative z axis. We can try harder, but we will only be able to move the
semi-infinite open path where the gauge field is ill-defined (different choices are related by
singular gauge transformations).

The reason why it is not possible to find a globally defined gauge field on R3zO – Rą0 ˆ S2

is that in this space there is a two-sphere surrounding the origin, and the two-sphere is a
differentiable manifold which requires at least two charts (or patches) with the topology of an

7The subscript ` is simply a label, the reason for which will become clear later.
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Figure 6.5: Spherical coordinates.

open disc. Working in polar coordinates pr, θ, φq, see figure 6.5, we can take the two patches
on S2 to be8

U` “ tpθ, φq | 0 ď θ ă
π

2
` ϵu

U´ “ tpθ, φq |
π

2
´ ϵ ă θ ď πu

(6.54)

for a constant ϵ P p0, πq. The two patches overlap in a region

U` X U´ “ tpθ, φq |
π

2
´ ϵ ă θ ă

π

2
` ϵu (6.55)

near the equator, which has the topology of an open interval (parametrized by θ) times as circle
(parametrized byφ). Thenwe can viewA`, defined in (6.52) in terms of Cartesian coordinates,
as a gauge field defined in the northern patch U`. We now need to define a gauge field in the
southern patch U´, and to figure out how A` and A´ are related on the overlap U` X U´.
The key idea is that on the overlap U` X U´ the two gauge fields are allowed to differ by a
gauge transformation, since field configurations which are related by a gauge transformation
are physically equivalent. On the southern patch U´ we can take the gauge field to be A´,
defined by

A´
x “ `

m

2

y

rpr ´ zq
, A´

y “ ´
m

2

x

rpr ´ zq
, A´

z “ 0 , (6.56)

which also has magnetic field
∇ ˆ A´

“
m

2

x

r3
(6.57)

where it is defined.

Since the gauge fields A` and A´ lead to the same gauge invariant magnetic field B` :“
∇ ˆ A`

“ ∇ ˆ A´
“: B´ in the overlap region U` X U´ where they are both defined, we

8These spherical coordinates are ill-defined near the poles, but this won’t be important for what follows. One
can find a set of well-defined coordinates in the two patches, for example the stereographic coordinates that you
encountered in the first term. What matters is that there is no single set of coordinates which cover the whole
S2.
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might expect them to be gauge equivalent. To see this explicitly, it is easier to switch to polar
coordinates. Using differential form notation we find9 [Ex 22]

A˘
“ A˘

x dx ` A˘
y dy ` A˘

z dz “ A˘
r dr ` A˘

θ dθ ` A˘
φdφ

“
m

2
p˘1 ´ cos θq dφ .

(6.58)

Then we find that on the overlap of the two patches U` X U´ the two gauge fields differ by

A`
´ A´

“ m dφ “ dpmφq ” dα`´ ” ´ig´1
`´dg`´ (6.59)

where the transition function, namely the parameter of the Up1q gauge transformation that
relates the gauge fields in the two patches, is

g`´pφq “ eiα`´pφq
“ eimφ

P Up1q . (6.60)

Since φ „ φ ` 2π, g`´pφq is single-valued (or periodic) if we do one lap around the φ circle
(e.g. , the equator) if and only if the magnetic chargem is an integer:

g`´pφ ` 2πq “ g`´pφq ðñ m P Z . (6.61)

We learn that the quantization of the magnetic charge follows from carefully considering
gauge fields defined locally on the two patches of S2, and gluing them consistently by Up1q

gauge transformations in the overlap of the two patches. The Up1q-valued transition function
g`´ on the overlap tells us how to relate gauge transformation parameters g˘ on U` and U´

along the overlap: g` “ g`´g´, or equivalently α` “ α´ ` α`´. Mathematically, the Up1q

gauge transformation parameters define sections of a so called principal Up1q bundle over S2;
the gauge fieldsA˘ are (local) connections for this principalUp1q bundles. If you want to learn
about the definition of these bundles, their sections and connections, and how they provide a
mathematical definition of gauge groups and gauge fields, see the bonus chapter 9.

REMARK:
In this formulation we can calculate the magnetic flux through the 2-sphere surrounding the
origin (the position of the magnetic monopole) as follows. Call UN and US the northern and
southern hemisphere respectively, which are the limits as ϵ Ñ 0 of U˘, so that the overlap
reduces to the equator S1

eq. Then the contributions of the two hemispheres to the magnetic
9The vanishing ofA` at the north pole and ofA´ at the south pole is what ensures that they are well defined

there, even if the polar coordinates are ill defined. This can be checked explicitly by switching to stereographic
coordinates or to Cartesian coordinates.
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Figure 6.6: Oriented hemispheres and their oriented boundaries.

flux add up:

1

2π
ΦS2pBq “

1

2π

ż

S2

B ¨ d2σ “
1

2π

ż

UN

B`
¨ d2σ `

1

2π

ż

US

B´
¨ d2σ

“
1

2π

ż

UN

p∇ ˆ A`
q ¨ d2σ `

1

2π

ż

US

p∇ ˆ A´
q ¨ d2σ

“
1

2π

¿

S1
eq

A`
¨ dl ´

1

2π

¿

S1
eq

A´
¨ dl

“
1

2π

¿

S1
eq

pA`
´ A´

q ¨ dl “
1

2π

¿

S1
eq

pA`
´ A´

q

“
1

2π

¿

S1
eq

dα`´ “
m

2π

ż 2π

0

dφ “ m .

(6.62)

To go from the second to the third line we used Stokes’ theorem. The relative minus sign
between the two terms is there because the two hemisphere have opposite orientations, so
that BUN “ S1

eq but BUS “ ´S1
eq (the equatorial circle with the opposite orientation), see

figure (6.6). This reproduces the desired result (6.48).

This is very nice! We can describe a static solution of Maxwell’s equations which is a
pointlike magnetic charge (magnetic monopole) by excising the location of the monopole
from space and exploiting the geometry and topology of gauge fields over R3zO (or equiv-
alently of S2). But unfortunately it is not hard to see that a Dirac monopole has infinite
energy [Ex 22]. As we will see, this problem can be fixed if we embed the Up1q gauge group
into a bigger nonabelian gauge group, such as SUp2q.



Chapter 7

Non-abelian gauge theories

In this chapter we will learn how to formulate gauge theories with a non-abelian (that is,
non-commutative) gauge group. Non-abelian gauge theories are namedYang-Mills theories,
after Chen-Ning Yang and Robert Mills, who developed the formalism in 1954 [Yang andMills,
1954].

The formalism of Yang and Mills became prominent in the late 1960s, and has remained cen-
tral in modern physics ever since. Non-abelian gauge theories are the language of the Stan-
dardModel of Particle Physics, and have also established very fruitful interactions between
Physics and Maths, which have led to numerous developments in both subjects and quite a
few Nobel prizes and Fields medals.

We will spend the rest of the term studying the geometry (and some topology) underlying
non-abelian gauge field configurations. But let’s start by introducing the main characters.

7.1 Compact Lie algebras
This section is mostly a review of material from the previous term, but I will introduce new
conventions following the Physics literature. I will also introduce some new terminology and
definitions along the way. There will be a number of exercise that I recommend attempting to
make sure that you understand the concepts. An excellent reference is section 1.8.1 of Argyres’
supersymmetry lecture notes [Argyres, 2001], of which this section is a shameless rip-off.

We start by recalling that a Lie algebra g is a vector space1 endowed with an additional
1We will only consider finite-dimensional vector spaces. We refer to the dimension of this vector space as the

dimension of the Lie algebra, which we denote as dim g.

44
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structure, the Lie bracket
r , s : g ˆ g Ñ g ,

which is antisymmetric and bilinear. The vector space has a basis ttau
dim g
a“1 of so called gen-

erators ta. In this basis the Lie bracket reads

rta, tbs “ ifab
ctc pa, b, c “ 1, . . . , dim gq (7.1)

where fab
c are real structure constants, which express the component of the Lie bracket

rta, tbs along the generator tc. Repeated indices are summed over. Note the i in the right-hand
side in my conventions. I’ll return to why that might be useful shortly. In the rest of the
course we will content ourselves with matrix Lie algebras, in which case the Lie bracket is
simply the commutator of two matrices, that you are familiar with from Linear Algebra. You
can always keep that in mind whenever I use the term Lie bracket. But the abstract definition
of Lie algebras and the Lie bracket (7.1) is more general.2

The associativity of the Lie bracket is expressed by the Jacobi identity

rrta, tbs, tcs ` rrtb, tcs, tas ` rrtc, tas, tbs “ 0 (7.2)

which expressed in the basis of generators is the identity

fab
dfdc

e
` fbc

dfda
e

` fca
dfdb

e
“ 0 (7.3)

for the structure constants.

An r-dimensional representation (rep) of g is a realization of the generators ttau as a set of
rˆrmatrices satisfying (7.1), where now r , s is interpreted as the commutator of matrices:
rA,Bs “ AB ´BA. We will often denote an r-dimensional representation as r and its gener-
ators as tprq

a . If there are multiple representations with the same dimension we will distinguish
them by primes or other notation. We might omit the subscript tprq

a when it is clear from the
context which representation we are discussing.

A compact Lie algebra is one which can be represented by finite-dimensional hermitian
matrices:3

t:
a “ ta . (7.4)

REMARK:
The imaginary unit i “

?
´1 in the right-hand side of the Lie bracket (7.1), which is common in

2In Killing and Cartan’s classification of simple Lie algebras, written in its definitive form by Dynkin, the
matrix Lie algebras form four infinite series, the so called classical Lie algebrasAn “ supn`1q,Bn “ sop2n`1q,
Cn “ uspp2nq, Dn “ sop2nq. But there are a few more exceptional Lie algebras which are not of matrix type:
E6, E7, E8, F4, G2. See [Cahn, 2014] for a down-to-earth introduction to the subject, and [Harris et al., 1991]
for a more advanced perspective.

3This is the result of a theorem, if one starts from standard definition of compactness, but we will take it to
be our definition of compact Lie algebra.
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the physics literature, is there to ensure the hermiticity of generators of compact Lie algebras
(7.4). This convention is convenient tomanifest the reality (and positive definiteness) of energy
functionals or other physical quantities. The maths literature (and Andreas) typically uses
t̃a “ ita as generators, which are anti-hermitian for compact Lie algebras: t̃:

a “ ´t̃a.

It is a theorem that any compact Lie algebra can be decomposed into the direct sum of up1q

Lie algebras and of simple Lie algebras:

g “ p‘
h
i“1up1qq ‘ p‘

l
i“1giq “ up1q ‘ ¨ ¨ ¨ ‘ up1q ‘ g1 ‘ ¨ ¨ ¨ ‘ gl . (7.5)

Let’s recall up1q and simple Lie algebras in turn:

1. The up1q Lie algebra is the compact Lie algebra with a single generator t. By the anti-
symmetry of the Lie bracket, we have

rt, ts “ 0 , (7.6)

so the algebra is abelian. Its irreducible representations (irreps) are 1-dimensional

t “ q1 pq P Zq (7.7)

where the integer q is called the charge of the representation and 1 is the identity
operator.

2. a simple Lie algebra4 is characterised by structure constants such that

fab
c

‰ 0 @a (7.8)

(or equivalently for all b, or for all c, it turns out).

One can show that there is a basis of generators, which we will adopt from now on, such that

trrpt
prq
a t

prq

b q “ Cprqδab , (7.9)

The real number Cprq, which is positive for representations of compact Lie algebras, is called
the quadratic invariant of the representation r.

REMARKS:
4Here are some definitions. A Lie subalgebra h of a Lie algebra g is a subspace h Ď g that is closed under the

Lie bracket: rh, hs Ď h, which is a shorthand for rX,Y s P h for allX,Y P h. An ideal i Ď g is a subalgebra that
obeys the stronger condition ri, gs Ď i, namely rX,Y s P i for allX P g and Y P i. Examples of ideals of g which
always exist are the subalgebra consisting of the zero element, which is called the zero ideal, and the Lie algebra
g itself. An ideal is called proper if it is not the full algebra g. A Lie algebra is called simple if it is non-abelian
and contains no nonzero proper ideals. A Lie algebra is called semisimple if it is isomorphic to a direct sum of
simple Lie algebras.
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1. There is a normalization ambiguity: rescaling

pta, fab
c, Cprqq ÝÑ pλta, λfab

c, λ2Cprqq (7.10)

by a constant λ ‰ 0 leaves all the previous equations invariant.

2. For the adjoint representation r “ adj, which we will review later, equation (7.9)
defines the Killing form5

K : g ˆ g Ñ R
pv, wq ÞÑ Kpv, wq :“ trpadv ˝ adwq

(7.11)

where v “ vata, w “ wata, and adx denotes the adjoint action of x on the Lie algebra.
The Killing form K is bilinear and symmetric.

3. We can use δab / its inverse δcd to lower/raise Lie algebra indices.6

˚ EXERCISE:

[Ex 23.1] Show that fabc is totally antisymmetric in its indices:

fabc “ ´fbac “ ´fcba . (7.12)

[Ex 23.2] Show that for any representation r of a simple Lie algebra

trrpt
prq
a q “ 0 , (7.13)

where trr is the trace in the representation r, which is nothing but the trace of rˆ r
matrices.

We can obtain a Lie group G from a Lie algebra g by applying the exponential map7

exp: g Ñ G
α “ αata ÞÑ g “ eiα

ata (7.14)

5Named after Wilhelm Killing. No humans or animals were harmed in the production of this lecture course.
6More precisely, one should use the Killing form and its inverse to lower and raise indices. Since we can pick a

basis in which the Killing form is proportional to the identity and since the normalization is arbitrary, we do not
lose much by using δab instead of the Killing form. It may sound silly to distinguish upper and lower indices if we
are raising and lowering them using the identity matrix. I am mentioning this distinction because in a different
basis of the Lie algebra the Killing form might be a less trivial non-degenerate symmetric matrix Kab. In such a
basis you would use this matrix Kab to lower Lie algebra indices, and its inverse Kab to raise indices. (This is
completely analogous to raising/lowering spacetime indices with the Minkowski metric ηµν and its inverse ηµν .)

7More precisely, the exponential map of the Lie algebra produces a subgroupwhose elements are continuously
connected to the identity (aka the connected component of the identity).
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where αa P R.

Substituting the abstract generators ta of the Lie algebra by their realizations tprq
a in a repre-

sentation r, we obtain representations of the Lie group G. In an r-dimensional rep r, the
group element g is realized as an r ˆ r unitary matrix:

g : ϕ ÞÑ pgϕq :“ rpgq ¨ ϕ “ eiα
at

prq
a ¨ ϕ , (7.15)

where ϕ and its transformed pgϕq are r-vectors, while rpgq “ exp
”

iαat
prq
a

ı

is an r ˆ r matrix.
In components,

g : ϕj
ÞÑ pgϕq

j
“ rpgq

j
kϕ

k
“ peiα

at
prq
a q

j
kϕ

k , (7.16)

We will refer to the action (7.15)-(7.16) of a group element on ϕ as the finite transformation
of ϕ.

Conversely, we recover the action of the Lie algebra from the action of the Lie group if the
group parameters αa are infinitesimal. Then to linear order ϕ ÞÑ ϕ ` δαϕ, with

δαϕ
j

“ iαa
ptprq

a q
j
kϕ

k , (7.17)

which we will refer to as the infinitesimal transformation of ϕ.

Next we define the complex conjugate representation r̄ of a representation r as the repre-
sentation with complex conjugate representation matrix:

r̄pgq :“ rpgq
˚

” rpgq , (7.18)

where we use star or bar interchangeably to denote complex conjugation.

[Ex 24] ˚ EXERCISE:

1. Show explicitly that if the r-vectorϕ transforms in irrep r, then its complex conjugate
ϕ˚ ” ϕ̄, which is also an r-vector, transforms in irrep r̄.

2. Show that, as r ˆ r matrices,
tpr̄q
a “ ´ptprq

a q
T , (7.19)

where the subscript T denotes the transposition of a matrix.

3. Denote ϕ̄j :“ pϕjq˚ and construct the row r-vector ϕ: “ ϕ̄T “ pϕ̄1, . . . , ϕ̄rq. Show
that the inner product ϕ:ϕ is invariant under the action of G.
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Next we introduce the adjoint representation adj, which is the pdim gq - dimensional irrep
defined by

ptpadjq
a q

b
c “ ifac

b
pb, c “ 1, . . . , dim gq . (7.20)

[Ex 25] ˚ EXERCISE:

1. Check that (7.20) defines a representation of g.

2. Recall that the adjoint action of the Lie algebra g on itself is given by

ad: g Ñ g
y ÞÑ adxpyq :“ rx, ys

(7.21)

for all Lie algebra elements x P g. Show that

adtapybtbq “ ptpadjq
a q

b
cy

ctb . (7.22)

[Remark: this has a nice interpretation: the adjoint representation (7.20) is nothing
but the adjoint action of the Lie algebra on itself, expressed in a basis.

3. Show that the quadratic invariant of the adjoint representation is

Cpadjq “
fabcf

abc

dim g
,

where Lie algebra indices are raised (/lowered) using δab (/δabq.

Finally we introduce the notion of fundamental representation. Consider amatrix group G,
that is a group whose elements are square matrices and where the group composition law is
matrix multiplication. Let n be the size of thematrices. The fundamental representation (or
defining representation) of a matrix group G is the representation in which G acts by matrix
multiplication:

rpgq
i
j “ gij (7.23)

where g P G is a matrix. We denote the fundamental representation by fund or by n according
to its dimension.

[Ex 26] ˚ EXERCISE:

Let MatnpFq denote n ˆ n matrices whose entries are in the field F , and 1n the n ˆ n
identity matrix. The ‘classical’ compact simple Lie groups are

SUpNq “ tg P MatNpCq | g:g “ 1N , det g “ 1u

SOpNq “ tg P MatNpRq | gTg “ 1N , det g “ 1u

USpp2Nq “ tg P Mat2NpCq | g:g “ 12N , gTJg “ Ju
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where the p2Nq ˆ p2Nq antisymmetric matrix

J “

ˆ

0N 1N

´1N 0N

˙

is called the symplectic form.

1. Characterize the Lie algebras supNq, sopNq, and uspp2Nq as vector spaces of matri-
ces subject to certain linear conditions, which you should find.
[Hint: You can assume that a group element takes the exponential form g “ exppiαataq

and Taylor expand for infinitesimal α.]

2. Find the generators of the fundamental representation fund and its complex con-
jugate rep fund (the so called antifundamental representation) for G “ SUpNq,
SOpNq, USpp2Nq.

3. For G “ SOpNq, USpp2Nq, show that fund and fund are equivalent representa-
tions, namely

tpfundq
a “ V tpfundq

a V ´1
@a

for some invertible matrix V .8

7.2 Non-abelian gauge theories: fields
This section introduces the cast of characters whichwewill use in the next section to formulate
actions which are invariant under non-abelian gauge transformations. The cast of characters
will consist of:

• Charged fields (scalars or spinors), collectively denoted as ϕ, transforming in a repre-
sentation r9 of the gauge group G;10

• Their covariant derivatives Dµϕ;

• The gauge field Aµ, which is hidden inside the covariant derivative;

• The field strength Fµν of the gauge field,
8For compact Lie groups and algebras, V is unitary: V : “ V ´1.
9If the representation r is irreducible we think of ϕ as a single field; if representation r is reducible, namely it

is the direct sum of multiple irreps of G, then we think of ϕ as describing multiple charged fields.
10Note: from now on I will ignore the distinction between the Lie group G and the gauge group G, which

consists of coordinate-dependent elements of G. I will simply use G for the gauge group.



CHAPTER 7. NON-ABELIAN GAUGE THEORIES 51

and their gauge transformations.

References for this section are section 1.8.1 of [Argyres, 2001] and section 2.1 of [Tong, 2018].

We will be more general later, but let us start slowly and assume that the gauge group G is
a classical group (e.g. SUpNq), whose elements are matrices, and that the charged field ϕ
transforms in the fundamental representation fund (that is N for SUpNq). This means that
the gauge transformation of the charged field ϕ is

ϕ ÞÑ gϕ “ eiα
ataϕ (7.24)

where ϕ is a column vector (N -dimensional for G “ SUpNq, that is ϕ “ pϕjqNj“1 P CN ), the
Lie algebra generators ta are matrices (N ˆ N hermitian traceless for G “ SUpNq), and the
group element g is also a matrix (N ˆN unitary and with unit determinant forG “ SUpNq),
which acts on ϕ by matrix multiplication. Recall that both the field ϕ “ ϕpxq and the group
element g “ gpxq, and therefore the gauge parameter α “ αpxq, depend on the space-time
point x.

Given the charged field ϕ, we define its (gauge) covariant derivative

Dµϕ :“ Bµϕ ´ iAµϕ (7.25)

where the gauge field Aµ is now a matrix, which will turn out to be an element of the Lie
algebra to ensure the consistency of its gauge transformation:

Aµ “ Aa
µta . (7.26)

We require that under the non-abelian gauge transformation (7.24) the covariant derivative
transforms in the same way as ϕ:

Dµϕ ÞÑ gDµϕ . (7.27)
Viewing the covariant derivative11

Dµ :“ 1Bµ ´ iAµ (7.28)

as amatrix-valued differential operator, which in components reads

pDµq
j
k “ δjkBµ ´ ipAµq

j
k ,

11Here 1 is the identity matrix of the same size as Aµ, e.g. the N ˆ N identity matrix for G “ SUpNq. It is
customary to omit the identity matrix from the notation and simply write, and I’ll follow that convention and
only restore 1 when it helps to understand what is going on. If you are formally minded and want to be very
precise, you might write the covariant derivative as

Dµ “ Bµ b 1 ´ iAa
µpxq b ta ,

which acts on the tensor productC8pUq bV of the vector space C8pUq of smooth functions defined on a patch
U of space-time and of the finite-dimensional vector space V associated to the fundamental representation. We
won’t need to worry about such level of abstraction and formality.
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we require the gauge transformation

Dµ ÞÑ gDµg
´1 . (7.29)

In terms of the gauge field, the gauge transformation of the covariant derivative is

Bµ ´ iAµ ÞÑ Bµ ´ iA1
µ “ gpBµ ´ iAµqg´1

“ gpBµg
´1

q ` gg´1
Bµ ´ igAµg

´1 .
(7.30)

Note that the gauge group element g and the gauge field Aµ are matrices now, so they do not
commute: their order matters!

Comparing the initial and final result, we obtain the following gauge transformation for the
gauge field Aµ:

Aµ ÞÑ A1
µ “ gAµg

´1
` igpBµg

´1
q

“ gAµg
´1

´ ipBµgqg´1 ,
(7.31)

where I have used parenthesis to make it clear that all objects are (matrix-valued) functions,12
not differential operators. I have used the identity

0 “ pBµ1q “ pBµpgg´1
qq “ pBµgqg´1

` gpBµg
´1

q (7.32)

to go from the first line to the second line.

REMARKS:

1. The first term in the gauge transformation (7.31) of the gauge field Aµ is the adjoint
action of the Lie group G on a Lie algebra element. This clarifies why Aµ belongs to
the Lie algebra g “ LiepGq.

2. The second term in (7.31) is a correction term to the adjoint action, which involves a
derivative. This is also an element of the Lie algebra g, since pBµgqg´1 “ Bµg|g“1, which
is the very definition of an element of the Lie algebra of G as a tangent vector to the
identity element of the group.

Finally, in analogy with the G “ Up1q case, we define the field strength

Fµν :“ irDµ, Dνs . (7.33)

As in the Up1q case, in the above definition we view both sides as differential operators, except
that now they are matrix-valued. As we will see shortly, despite appearance Fµν turns out to

12The derivative of a (matrix-valued) function is a (matrix-valued) function.
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be a multiplicative operator, which means that it is a (matrix-valued) function that simply
acts by (matrix) multiplication, no differentiations are involved.

By construction, under a gauge transformation (7.24) the field strength transforms as

Fµν ÞÑ gFµνg
´1 . (7.34)

Proof. We simply need to use the gauge transformation property (7.29) and basic properties
of the commutator:

Fµν “ irDµ, Dνs ÞÑ F 1
µν “ irgDµg

´1, gDνg
´1

s

“ grDµ, Dνsg´1
“ gFµνg

´1 .

Calculating the commutator in (7.33), we find the following expression for the field strength:

Fµν “ BµAν ´ BνAµ ´ irAµ, Aνs . (7.35)

Proof. Restoring the identity matrix 1 for clarity (feel free to omit it if you are comfortable
without it),

´iFµν “ rDµ, Dνs “ r1Bµ ´ iAµ,1Bν ´ iAνs

“ r1Bµ,1Bνs ´ ir1Bµ, Aνs ´ irAµ,1Bνs ´ rAµ, Aνs

“ 0 ´ ipBµAνq ` ipBνAµq ´ rAµ, Aνs

“ ´i pBµAν ´ BνAµ ´ irAµ, Aνsq .

REMARK:
The finite gauge transformations (7.29) of the covariant derivative Dµ and (7.34) of the field
strength Fµν is by the adjoint action of the Lie group on the Lie algebra. This means that Dµ

and Fµν transform in the adjoint representation adj of G.

[Ex 28] ˚ EXERCISE:

By considering infinitesimal gauge transformations (|αa| ! 1)

g “ eiα
ata ” eiα “ 1 ` iα ` Opα2

q (7.36)

and Taylor expanding finite gauge transformations to leading order in α P g “ LiepGq,
show that the infinitesimal gauge variations of the fields are

δαϕ “ iαϕ

δαAµ “ irα,Aµs ` Bµα

δαFµν “ irα, Fµνs ,

(7.37)
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where ϕ ÞÑ ϕ ` δαϕ ` Opα2q and so on.

REMARKS:

1. The field strength Fµν transforms in the adj rep of g under infinitesimal gauge transfor-
mations.

2. The gauge field Aµ doesn’t quite transform in adj, as the first term in its variation sug-
gests, because of the additional derivative term, which we have already encountered
when we studied g “ up1q. People often say (and I might also say in the future) that Aµ

transforms in the adjoint representation adj, but that’s an abuse of terminology.

3. On the other hand the covariant derivativeDµ does transform in the adj representation.

Everything that we have seen so far generalizes to an arbitrary Lie group G and a charged
field ϕ transforming in an r-dimensional representation r. Now ϕ is a column vector with r
components, and we simply need to replace the group element g in previous formulae by the
appropriate r ˆ r representation matrix

rpgq “ exp
“

iαatprq
a

‰

. (7.38)

For instance
Dµϕ “ Bµϕ ´ iAµϕ :“

`

1rBµ ´ iAa
µt

prq
a

˘

ϕ , (7.39)
and

Fµνϕ “ irDµ, Dνs

“ pBµAν ´ BνAµ ´ irAµ, Aνsqϕ

“ pBµA
a
ν ´ BνA

a
µ ` fbc

aAb
µA

c
νqtprq

a ϕ ,

(7.40)

where it is understood that if ϕ transforms in the representation r, then

Aµϕ :“ Aa
µt

prq
a ϕ

Fµνϕ :“ F a
µνt

prq
a ϕ

(7.41)

etc. Similarly, I should warn you that it is customary to simply write gϕ, to mean the abstract
action of g on ϕ in the appropriate representation, rather than the explicit multiplication rpgqϕ
by the representation matrix rpgq. Of course one needs to specify the representation r before-
hand, or it wouldn’t be clear what gϕ means.

In components,
pAµϕq

i
“ Aa

µptprq
a q

i
jϕ

j
pi, j “ 1, . . . , rq (7.42)

etc.
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[Ex 29] ˚ EXERCISE:

Show that, if G “ Up1q, all the equations written so far in this section reduce to those
introduced in chapter 5, both for the charge 1 representation, which is analogous to the
fundamental representation, and for the more general charge q representation.

[Ex 30] ˚ EXERCISE:

Consider a field ϕ in the adj representation, with components ϕa, where a “ 1, . . . , dim g.

1. Show that
pAµϕq

a
“ ifbc

aAb
µϕ

c (7.43)

and similarly for pFµνϕqa.

2. Let Φ :“ ϕata, and Aµ “ Aa
µta, Fµν “ F a

µνta as usual. Show that

pAµϕq
ata “ rAµ,Φs (7.44)

and similarly for Fµνϕ. Show that therefore

DµΦ “ BµΦ ´ irAµ,Φs

rDµ, DνsΦ “ ´irFµν ,Φs .
(7.45)

The lesson here is that the action of the adjoint representation on itself is by com-
mutators (or Lie brackets). This is simply a consequence of what we have seen in Ex
25.

7.3 Non-abelian gauge theories: action and EoM
Let us start by constructing a gauge invariant action for the (Lie algebra valued) non-
abelian gauge fieldAµ “ Aa

µta. This is easy: since the field strength Fµν “ F a
µνta transforms

as
Fµν ÞÑ gFµνg

´1 (7.46)

under a gauge transformation, it follows immediately that trpFµνF
µνq is gauge invariant and

can therefore be used as a term in the Lagrangian density.

Proof. Under a gauge transformation,

trpFµνF
µν

q “ tr
`

gFµνg
´1gF µνg´1

˘

“ tr
`

g´1gFµνg
´1gF µν

˘

“ trpFµνF
µν

q .
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where we have used the cyclic property of the trace.

REMARKS:

1. In the previous equation the trace is over the vector space on which the group element
g acts naturally by matrix multiplication. Therefore tr ” trfund, the trace over the fun-
damental representation. This is what we will mean by the trace tr unless we specify a
representation.

2. We could equally well use any other irreducible representation r, in which case F prq
µν “

F a
µνt

prq
a , where we have specified the representation explicitly in the superscript. Under

a gauge transformation
F prq
µν ÞÑ rpgqF prq

µν rpgq
´1 , (7.47)

therefore trrpFµνF
µνq :“ trrpF

prq
µν F prqµνq (we will use both notations interchangeably)

is also gauge invariant, by the same logic as above.

3. Any two such choices are proportional to one another:

trrpF
prq
µν F

prqµν
q “ F a

µνF
b µν trrpt

prq
a tprq

v q

“ F a
µνF

b µνCprqδab

“ CprqF a
µνF

a µν ,

(7.48)

where we have used (7.9). Then
1

Cprq
trrpF

prq
µν F

prqµν
q “ F a

µνF
a µν (7.49)

is independent of the choice of representation r.

We are now ready to define the Yang-Mills action

SYM rAs “

ż

d4x LYM ,

LYM “ ´
1

2g2YM

trpFµνF
µν

q ,
(7.50)

where again tr ” trfund and we work in a normalization where

Cpfundq “
1

2
, (7.51)

so, being explicit with the representation used,

LYM “ ´
1

4g2YM

1

Cprq
trfundpF pfundq

µν F pfundqµν
q

“ ´
1

4g2YM

F a
µνF

a µν .
(7.52)
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gYM is called the Yang-Mills coupling constant13 and controls the strength of the interac-
tions. (To see that, it helps to rescale Aµ Ñ gYMAµ.)

[Ex 32] ˚ EXERCISE:

Show that, for any irreducible representation r,

LYM “ ´
1

2g2YM

1

T prq
trrpF

prq
µν F

prqµν
q , (7.53)

where the Dynkin index

T prq :“
Cprq

Cpfundq
(7.54)

of the irreducible representation r is invariant under changes of normalization (7.10) of
the Lie algebra.

It turns out that there is a second gauge invariant term that one can add to the action. It is the
theta term

SθrAs “

ż

d4x Lθ ,

Lθ “
θ

16π2
tr
´

FµνF̃
µν
¯

,

(7.55)

where θ is called the theta angle (more about why it is an angle in a later chapter), and

F̃ µν :“
1

2
ϵµνρσFρσ (7.56)

is the dual field strength. In (7.56), ϵµνρσ is the completely antisymmetric tensor in four
indices, with ϵ0123 “ 1.

To summarize, the most general gauge invariant action (with two derivatives) which contains
a kinetic term for the non-abelian gauge field Aµ, as well as interaction terms, is

SgaugerAs “ SYM rAs ` SθrAs ,

Lgauge “ LYM ` Lθ “ ´
1

2g2YM

trpFµνF
µν

q `
θ

16π2
tr
´

FµνF̃
µν
¯

.
(7.57)

[Ex 33] ˚ EXERCISE:
13It’s constant in the sense that it does not depend on space-time. In quantum field theory, gYM develops a

dependence on the energy scale at which we are probing the system, so ‘constant’ is a misnomer. With that in
mind, even though it’s not relevant for this course, I’ll typically call gYM simply the ‘Yang-Mills coupling’.
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1. Express the Lagrangian density Lgauge in terms of Aa
µ and the structure constants

fab
c, and identify quadratic terms involving derivatives of the gauge field, and cubic

and quartic terms in Aµ, which represent interactions.

2. Show that the theta term (7.55) can be written as a surface (or ‘boundary’) term:

Sθ “
θ

8π2

ż

d4x BµK
µ ,

Kµ
“ ϵµνρσ tr

ˆ

AνBρAσ ´
2i

3
AνAρAσ

˙

.

(7.58)

3. Show that the equations of motion (EoM) obtained from the action Sgauge are
DµF

µν
” BµF

µν
´ irAµ, F

µν
s “ 0 . (7.59)

4. Show, without using the EoM, that the Bianchi identity
DµF̃

µν
“ 0 . (7.60)

holds.

If in addition to the gauge fieldAµ there are also charged fields ϕ transforming in a represen-
tation r (reducible or irreducible), then we can write a gauge invariant action for them using
covariant derivatives. For instance for G “ SUpNq, we have

Smatterrϕ, ϕ
:, As “

ż

d4x Lmatter ,

Lmatter “ ´pDµϕq
:Dµϕ ´ V pϕ, ϕ:

q ,

(7.61)

where we require the scalar potential V to be gauge invariant, that is, V ÞÑ V under non-
abelian gauge transformations. This generalizes to other classical groups G by using the ap-
propriate inner product in the kinetic term.

[Ex 34] ˚ EXERCISE:

Consider the action
Srϕ, ϕ̄, As “ SYM rAs ` SθrAs ` Smatterrϕ, ϕ̄, As .

1. Show that the EoM are

DµD
µϕ “

BV

Bϕ:

DνF
µν

“ g2YMJµ

(7.62)

for a current Jµ “ Ja
µta that you should find.
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2. Show that under a gauge transformation the current Jµ transforms as

Jµ
ÞÑ gJµg´1 , (7.63)

and that Jµ is covariantly conserved, namely

DµJ
µ

“ 0 . (7.64)

7.4 * Non-abelian Wilson lines and Wilson loops
This is a bonus section on advanced non-examinable material (hence the ˚ in the section title),
which I am including for completeness.

I will write this section up later, when I have time. In the meantime, if you are interested in
this topic please see my handwritten lecture notes.



Chapter 8

Applications of non-abelian gauge
theories

In this chapter we will study interesting smooth localised field configurations in nonabelian
gauge theories, whose existence is ensured by topology, and study some of their geometric and
physical properties. We will encounter ’t Hooft-Polyakov monopoles, which are magnetically
charged particle-like objects, and instantons, which are localized in (Euclidean) space-time.
Good references for this chapter are [Manton and Sutcliffe, 2004] and [Weinberg, 2012].

8.1 The ’t Hooft-Polyakov monopole
In 1974 Gerard ’t Hooft and Aleksandr M. Polyakov discovered that nonabelian gauge the-
ories with scalar fields transforming in the adjoint representation admit smooth magnetic
monopoles as static finite energy solutions of their equations of motion [Hooft, 1974,Polyakov,
1974] .

The field theory of interest is the so-called Georgi-Glashow model (or SUp2q adjoint Higgs
model) [Georgi and Glashow, 1972] a field theory in three space and one time dimension,
with G “ SUp2q gauge group, a scalar field Φ transforming in the (3-dimensional) adjoint
representation, which we represent as a 2 ˆ 2 traceless hermitian matrix. The Lagrangian
density is

L “ ´
1

2g2YM

trpFµνF
µν

q ´ trppDµΦqpDµΦqq ´ V pΦq ,

V pΦq “ λ

ˆ

1

2
tr
`

Φ2
˘

´ v2
˙2

,

(8.1)

60
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where λ, v ą 0 are constants and

Fµν “ BµAν ´ BνAµ ´ irAµ, Aνs

DµΦ “ BµΦ ´ irAµ,Φs .
(8.2)

We can calculate the Hamiltonian (or energy) density H as the Legendre transform of the
Lagrangian density L, and from it the total energy E “

ş

d3x H of the system, which is by
construction gauge invariant (as should be the case for all physically observable quantities).
We will be interested in static field configurations, so we can drop all time derivatives B0. It
is then convenient to work in the temporal gauge A0 “ 0, which we can always achieve by
a suitable gauge transformation, so that we can drop all time covariant derivatives D0. In the
temporal gauge, the energy of static field configurations is

E “

ż

d3x

„

1

g2YM

trpBiBiq ` trppDiΦqpDiΦqq ` V pΦq

ȷ

, (8.3)

where Bi “ 1
2
ϵijkFjk are the components of the nonabelian magnetic fieldB. i “ 1, 2, 3 runs

over spatial Euclidean indices (which we write up or down since the spatial metric is δij), and
as usual repeated indices are summed over.

The energy is the integral of a sum of squares, and is minimized by setting

B “ 0 , DΦ “ 0 , tr
`

Φ2
˘

“ 2v2 . (8.4)

The first vector equation tells us thatFij “ 0, so the vector potentialA “ pA1, A2, A3q is ‘pure
gauge’: Aj “ ihpBjh

´1q “ ´ipBjhqh´1 for a function hpxq which takes values in SUp2q. The
second vector equation tells us that the adjoint scalar field Φ is covariantly constant. The final
scalar equation tells us that Φ minimizes the scalar potential. By a gauge transformation we
can setA “ 0, then the second equation sets Φ to be constant. Letting Φ “ ϕaσa, where pσaq

are the Pauli matrices, we find that

tr
`

Φ2
˘

“ 2v2 ô pϕ1
q
2

` pϕ2
q
2

` pϕ3
q
2

“ v2 , (8.5)

so the vacuum manifold is a 2-sphere of radius v:

V “ tΦ “ ϕaσa P sup2q | tr
`

Φ2
˘

“ 2v2u

“ tϕ “ pϕ1, ϕ2, ϕ3
q P R3

| ϕ2
“ v2u – S2 .

(8.6)

By a constant gauge transformation, we can take

Φ “

ˆ

v 0
0 ´v

˙

“ vσ3 ϕ “ p0, 0, vq . (8.7)

Any choice of vacuum breaks the gauge group G “ SUp2q down to a subgroup H “ Up1q

which leaves the vacuum invariant. This type of symmetry breaking, where the action is
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invariant under a symmetry (here elements ofGwhich are not elements ofH), but the vacuum
(or ground state) is not, is called spontaneous symmetry breaking in physics.

REMARK:
If a continuous internal global symmetry is spontaneously broken, then there is a massless
scalar field (called Nambu-Goldstone bosons) for each spontaneously broken symmetry gen-
erator [Nambu, 1960, Goldstone, 1961] If the symmetry is gauged, as it is here, the would-
be Nambu-Goldstone bosons are not physical as they can be absorbed by a gauge transfor-
mation, but the gauge fields associated to the spontanously broken gauge symmetry gain a
mass, which is otherwise forbidden by gauge invariance. This is called the (Anderson-Brout-
Englert-Guralnik-Hagen-) Higgs (-Kibble) mechanism [Anderson, 1963, Englert and Brout,
1964,Higgs, 1964,Guralnik et al., 1964], which is a key phenomenon in the Standard Model of
Particle Physics.1 If you want to understand these statements in the Georgi-Glashow model,
try to solve the advanced parts of [Ex 36], which are indicated by a star. This is usually taught
in Quantum Field Theory, but as you will see if you solve the exercise, it is already there in
classical field theory.

In order for the energy (8.3) to be finite, we demand the boundary conditions

B Ñ 0 , DΦ Ñ 0 , tr
`

Φ2
˘

Ñ 2v2 as |x| Ñ 8 , (8.8)

so the fields must tend to a vacuum at spatial infinity. Note: this can be a different vacuum for
each direction. As in the abelian Higgs model, we can use the gauge redundancy to work in a
radial gauge, where Ar “ 0. Then the limits of the fields as r Ñ 8 with pθ, φq fixed exist. In
particular, the limit of the adjoint scalar field at spatial infinity defines a map

Φ8: S2
8 Ñ V – S2

pθ, φq ÞÑ Φ8pθ, φq :“ lim
rÑ8

Φpr, θ, φq , (8.9)

which is characterized by an integer, the topological degree of the map, which is a gener-
alization of the winding number for maps from S1 to S1:2

ν “
1

8πv3

ż

S2
8

ϵijkϕ8 ¨ pBjϕ8 ˆ Bkϕ8q d2σi , (8.10)

where ϕ8 “ ppϕ8q1, pϕ8q2, pϕ8q3q. Note: the prefactor of v´3 is there because the target
(image) of ϕ8 is a 2-sphere of radius v.

1In the standard model, the gauge Lie algebra is g “ sup3q ‘ sup2q ‘ up1q. The fluctuations of the corre-
sponding gauge fields are the gluons which mediate the strong force (for sup3q), the weak bosons which mediate
the weak force (for sup2q), and an abelian gauge field which mediates the ‘hyper-charge’ force (for up1q). A
scalar field called the Higgs field is charged under sup2q ‘ up1q and is non-vanishing in the ground state, spon-
taneously breaking sup2q ‘up1q down to a up1q subalgebra, whose associated gauge field is the electromagnetic
gauge field. The fluctuations of the gauge fields associated to the broken symmetry are the massive electroweak
bosons which have been observed at the LEP experiment at CERN: two charged electroweak bosons W˘

µ and a
neutral electroweak boson Zµ. So all in all g “ sup3q ‘ sup2q ‘ up1q, and h “ sup3q ‘ up1q.

2Mathematically, this is because Π2pS2q “ Z.
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[Ex 37.4] ˚ EXERCISE:

Define
FUp1q
µν :“

1

2v
trpΦ8Fµνq (8.11)

to be the field strength of the unbroken H “ Up1q subgroup of the gauge group G “

SUp2q. Show that the magnetic charge

mUp1q :“
1

2π

ż

S2
8

BUp1q
¨ d2σ⃗ (8.12)

of this unbroken Up1q is proportional to the topological degree ν of Φ8, and find the
proportionality factor.

As an example, the map
Φ8 “ v x̂ ¨ σ , (8.13)

where x̂ “ x{|x| “ x{r and σ “ pσ1, σ2, σ3q, has degree ν “ 1. This is the identity map from
S2 to S2, up to an overall constant factor that takes care of the radius of the target sphere. We
note incidentally that we can write (8.13) as

Φ8 “ ve´iασ3e
iα (8.14)

with
α “

θ

2
p´ sinφ σ1 ` cosφ σ2q “

θ

2
e´iφσ3{2 σ2 e

iφσ3{2 . (8.15)

So Φ8 reduces to the constant vacuum with Φ “ vσ3 in (8.7), if we perform a gauge trans-
formation with parameter g “ eiα. Note however that this gauge transformation is singular
at θ “ π, the south pole of the 2-sphere, where φ is ill-defined. (The gauge transformation is
regular at the north pole θ “ 0, thanks to the θ prefactor in α. This statement can be checked
by switching to local coordinates which are well-defined at either pole.)

We are now ready to introduce the ’t Hooft-Polyakov ‘hedgehog’ ansatz, so called because
the vector field ϕ points in the radial direction and looks a bit like a hedgehog. We assume
that the adjoint scalar and the gauge field (written as a matrix-valued differentialA “ Aµdx

µ)
take the form

Φ “
x ¨ σ

r2
Hpvrq

A “ σaϵaij
xidxj

r2
r1 ´ Kpvrqs .

(8.16)

Note that the dependence on the angular polar coordinates in space R3 is correlated with the
behaviour in the internal space inwhich the fields take values. We also assume the asymptotics

ξ ” vr Ñ 8 : Hpξq ´ ξ Ñ 0 , Kpξq Ñ 0 (8.17)
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at spatial infinity, to satisfy the boundary conditions (8.8) which are needed for the energy to
be finite,3 and

ξ ” vr Ñ 0 : Hpξq “ Opξq , Kpξq ´ 1 “ Opξq (8.18)

to ensure regularity (smoothness) at the centre of the monopole, and finiteness of the energy
at short distances from the centre.

Note that the adjoint scalar field approaches (8.13) at spatial infinity, which has topological
degree 1. The magnetic field also approaches an abelian magnetic monopole for the unbroken
gauge group H “ Up1q at spatial infinity. Indeed, if one applies the above singular gauge
transformation, the gauge field A

Up1q
µ looks precisely like a Dirac monopole in the northern

patch (or for θ ‰ π). One can find an analogous singular gauge transformation to obtain the
Dirac monopole in the southern patch (or for θ ‰ 0).

One can substitute the ’t Hooft-Polyakov ansatz (8.16) in the equations of motion, to find a
system of two coupled ODE’s for the functions Hpξq and Kpξq. Together with the boundary
conditions (8.17)-(8.18), this defines a well-posed boundary value problemwhich can be solved
numerically. This shows the existence of a finite energy static solution which describes a
magnetically charged object of finite size.

As in the case of gauged vortices in the abelian Higgs model, we can use a Bogomol’nyi-type
argument to find a lower bound for the energy in each topological sector, namely for field
configurations with given topological degree for the adjoint scalar, or equivalently magnetic
charge for the unbroken Up1q gauge field. This is called the Bogomol’nyi-Prasad-Sommerfield
(or BPS) bound [Bogomol’nyi, 1976, Prasad and Sommerfield, 1975]. It is in the context of
magnetic monopoles that the Bogomol’nyi trick was first developed. The argument follows
the same logic of completing squares and reducing to a surface term that we have already
encountered when studying gauged vortices in the abelian Higgs model. We write

E “

ż

d3x

„

1

g2YM

tr
`

B2
˘

` tr
`

pDΦq
2
˘

` V pΦq

ȷ

ě

ż

d3x tr

˜

ˆ

1

gYM

B ¯ DΦ

˙2

˘
2

gYM

B ¨ DΦ

¸

ě ˘
2

gYM

ż

d3x trpB ¨ DΦq “ ˘
2

gYM

ż

d3x trpD ¨ pΦBqq

“ ˘
2

gYM

ż

d3x ∇ ¨ trpΦBq “ ˘
2

gYM

ż

S2
8

trpΦ8Bq ¨ d2σ

“ ˘
4v

gYM

ż

S2
8

BUp1q
¨ d2σ “ ˘

8πv

gYM

mUp1q .

(8.19)

3It can be shown that the solution approaches the limiting values exponentially fast, much faster than is
needed for the integral (8.3) to converge.
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Going from the first to the second line, we dropped the contribution of the (non-negative)
potential energy and completed a square. We then dropped the square to get to the third line,
and then used the Bianchi identity D ¨ B “ 0. Going to the fourth line we took the gauge
covariant divergence outside the trace, and replaced it by a standard divergence since the
trace is gauge invariant. Then we used Gauss’ theorem (aka divergence theorem) to rewrite
the lower bound as a surface integral, which in the last line we related to the magnetic charge
of the unbroken H “ Up1q subgroup of the gauge group, defined in (8.12). We have deduced
the BPS bound

E ě
8πv

gYM

|mUp1q
| , (8.20)

which is a lower bound for the energy in terms of the magnetic charge.

The bound is saturated, that is E “ 8πv
gY M

|mUp1q|, if and only if

λ Ñ 0 keeping v fixed , (8.21)

which is called the BPS limit, and the fields satisfy the 1st order Bogomol’nyi equation

B “ signpmUp1q
qgYMDΦ. (8.22)

Solutions to the Bogomol’nyi equations for monopoles come in infinite families, parametrized
by continuous parameters also known as moduli. For G “ SUp2q, the moduli space of n BPS
monopoles (solutions of the Bogomol’nyi equations with total magnetic charge mUp1q “ n ą

0) has 4n real dimensions.

8.2 Instantons
This is for another year.



Chapter 9

Bundles, connections, curvature and
sections*

This is a bonus chapter that sketches some of the differential geometry that underlies
gauge theories. We won’t have time in the lectures for this advanced material, which
is best learned in a different module. I include it here for completeness for students
who would like to learn more. This material will not be examined.

So far we have learned how to formulate gauge theories in terms of gauge invariant actions
for the gauge field and (potentially) charged fields. Our goal in this chapter will be understand
how to describe gauge transformations, gauge fields, their field strengths, and charged fields
geometrically. We will learn about fibre bundles, which are a consistent way of adding extra
structure on top of a differentiable manifold.

I should warn you that the general formal definition is quite abstract, but I will try to build
towards it slowly by successive generalizations. At the beginning I will give you a flavour of
the abstract “intrinsic” approach, which defines concepts without making reference to a co-
ordinate system. This can be hard to grasp, and this is not a course on differential geometry,
so we will spend most of our time working in the “extrinsic” approach, which uses local co-
ordinates. The extrinsic approach has the disadvantage that one needs to make sure that no
definitions depend on the choice of coordinates used, but the advantage of being more explicit
and accessible to beginners. This will be more than sufficient for our purposes.

This chapter is largely based on lectures 2 and 5 in Ooguri’s lecture course on Mathematics
for Theoretical Physicists [Ooguri, 2010]. Other references which cover the same material in
more detail are [Eguchi et al., 1980,Nakahara, 2003,Naber and Naber, 1997].

66
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Figure 9.1: The basic data of a differentiable manifold.

9.1 The tangent bundle
Recall the definition of a differentiable manifold M (of dimension n) from the first term, see
figure 9.1. It consists of a countable atlas tpUi, φiqiPIu of coordinate charts (or patches) pUi, φiq,
where Ui is an open subset ofM , φi : Ui Ñ Rn is an invertible map from Ui to an open subset
of Rn, and M “

Ť

iPI Ui. Given a point p P M , its image under φippq “ px1
piq, . . . , x

n
piqq under

φi gives the coordinates of point p in the patch Ui. We refer to these as local coordinates. If
two patches Ui and Uj overlap on Ui X Uj ‰ H, then we can use two sets of coordinates. For
any pair of overlapping patches, We require the transition functions

φj ˝ φ´1
i : φipUi X Ujq Ñ φjpUi X Ujq ,

which are invertible, to be smooth. This makesM a differentiable manifold.

Next we give the intrinsic definition of a differentiable (real) function. A function

f̂ : M Ñ R
p ÞÑ f̂ppq

(9.1)

is differentiable (/smooth) if for all charts pUi, φiq, its extrinsic expression in local coordi-
nates

fpiq :“ f̂ ˝ φ´1
i : φipUiq Ñ R

xpiq “ px1
piq, . . . , x

n
piqq ÞÑ fpiqpxpiqq

(9.2)

is a differentiable/smooth function of n real variables. The requirement that the transition
functions φj ˝ φ´1

i of a differentiable manifold are smooth ensures that if f is smooth in one
set of local coordinates, it is smooth in all sets of local coordinates. We denote the set of smooth
function on M by C8pMq.
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In the following, to avoid cluttering the notation, we will drop the subscripts which label the
different patches, unless they are strictly necessary. Note that we have used hats to distinguish
the intrinsically defined value f̂ppq of the function at a point in the manifold from its extrinsic
description fpxq “ pf̂ ˝ φ´1qpxq in terms of local coordinates x “ φppq in a coordinate chart
pU,φq.

Last term you defined tangent vectors to a curve C at a point p in the manifold M . You saw
that the set of tangent vectors to all curves passing through the point p is an n-dimensional real
vector space, which is the tangent space TpM of the manifoldM at point p. Next, we would
like to extend this construction from a single point p to the whole manifoldM . Informally, we
would like to define

TM “
ď

pPM

TpM , (9.3)

a “bundle” of the tangent spaces at all the points in the manifold. This is called the tangent
bundle TM ofM . The question is: how do we define this object properly? To gain intuition,
it is useful to to take an equivalent but complementary view of tangent vectors. (We will see
how this is related to the definitions that you saw last term below.)

We define a tangent vector field v on M as a map

v̂: C8pMq Ñ C8pMq

f̂ ÞÑ v̂pf̂q
(9.4)

which obeys the following two properties:

1. linearity: @a1, a2 P R, @f̂1, f̂2 P C8pMq,

v̂pa1f̂1 ` a2f̂2q “ a1v̂pf̂1q ` a2v̂pf̂2q (9.5)

2. Leibniz rule: @f̂ , ĝ P C8pMq,

v̂pf̂ ĝq “ v̂pf̂qĝ ` f̂ v̂pĝq . (9.6)

Tangent vector fields form a vector space, more about this later.

˚ EXERCISE:

Let v̂, ŵ be tangent vector fields.

1. Show that ŵ ˝ v̂ is not a tangent vector field.
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Figure 9.2: The data needed to define a tangent vector to a curve, applied to a function.

2. Show that rŵ, v̂s “ ŵ ˝ v̂ ´ ŵ ˝ v̂ is a tangent vector field.

Given a tangent vector field v̂ on M and a point p P M , we can (re-)define a tangent vector
v̂p P TpM at a point p by evaluating everything at point p:1

v̂p: C8pMq Ñ R
f̂ ÞÑ v̂ppf̂q :“

´

v̂pf̂q

¯

ppq
(9.7)

See figure 9.2 for a depiction of the relevant data.

You may ask: how is this definition of tangent vectors related to the definition in terms of
tangents to a curve, that you encountered in the first term? Given a smooth curve through p,
which is defined by a map from an interval I to the manifoldM ,

c: I Ď R Ñ R
τ ÞÑ cpτq

(9.8)

with cp0q “ p, we can define a tangent vector v̂p to the curve C “ cpIq by

v̂ppf̂q “
d

dτ
f̂pcpτqq

ˇ

ˇ

ˇ

τ“0
, (9.9)

which is defined intrinsically for all smooth functions f̂ P C8pMq. See figure 9.2 To under-
stand what is going on, let’s express this in local coordinates xµ in a chart pU,φq, where the
curve is parametrized by

pφ ˝ cqpτq ” xpτq “ px1
pτq, . . . , xn

pτqq , (9.10)
1A tangent vector v̂p at a point p is also linear and obeys a form of the Leibniz rule:

1. v̂ppa1f̂1 ` a2f̂2q “ a1v̂ppf̂1q ` a2v̂ppf̂2q

2. v̂ppf̂ ĝq “ v̂ppf̂qĝppq ` f̂ppqv̂ppĝq ,

as an immediate consequence of (9.5) and (9.6) for tangent vector fields. One can also define tangent vectors at
a point more abstractly using the axioms in this footnote without making reference to tangent vector fields, and
the introduce tangent vector fields from this.
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and the function f̂ppq is represented as fpxq “ pf̂ ˝ φ´1qpxq:

v̂ppf̂q “
d

dτ
pf̂ ˝ cqpτqq

ˇ

ˇ

ˇ

τ“0
“

d

dτ
pf̂ ˝ φ´1

˝ φ ˝ cqpτqq

ˇ

ˇ

ˇ

τ“0

“
d

dτ
fpxpτqq

ˇ

ˇ

τ“0
“ 9xµ

pτq
Bfpxq

Bxµ

ˇ

ˇ

ˇ

x“xp0q“φppq
,

(9.11)

where we used basic properties of the composition of functions, as well as the chain rule in
the last equality (dots denote derivatives with respect to τ ). We recognize the result as the
directional derivative of the function f along the tangent to the curve at the point p, which
has coordinates x “ xp0q.

REMARKS:

1. When you described the tangent vector to a curve at a point p using local coordinates
in the first term, 9xµp0q were the components of the tangent vector.

2. To construct a basis of the tangent space TpM , you used curves Ca which fixed all
coordinates xµ ‰ a and varied only xapτq “ xap0q ` τ . The components of the tangent
vector ea to such a curve are then 9xµp0q “ δµa , and we have

eapf̂q “
B

Bxa
fpxq

ˇ

ˇ

ˇ

ˇ

x

“ φppq “
B

Bxa
f̂pφ´1

pxqq

ˇ

ˇ

ˇ

ˇ

x

“ φppq , (9.12)

or for short
ea “ pBaqp , (9.13)

where pBaqp is B

Bxa when we work in local coordinates x “ φppq.

In summary, we can write any tangent vector v̂p P TpM intrinsically as

v̂p “ v̂apBaqp , (9.14)

or extrinsically (in local coordinates) as

v “ va
B

Bxa
, (9.15)

where the components v̂a “ va are n real numbers.

Now let’s consider a collection of tangent spaces over every point onM : the tangent bundle

TM “
ď

pPM

TpM . (9.16)

Using the isomorphism TpM – Rn for all p P M , we can view the tangent bundle locally as as
Ui ˆ Rn. we can see that TM is naturally a manifold of dimension 2n. For each coordinate
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Figure 9.3: The tangent bundle and a tangent vector field.

chart pUi, φiq onM , we define coordinates pxµ, vνq on
Ť

pPUi
TpM , where pxµq are coordinates

on Ui, and we parametrize a tangent vector as

v “ vν
B

Bxν
. (9.17)

We callM the base of the tangent bundle, and Rn – TpM the fibre of the tangent bundle.2

A (smooth) tangent vector field is then (in local coordinates)

v “ vµpxq
B

Bxµ
, (9.18)

with components vµpxq which vary smoothly as p varies over M .

˚ EXERCISE:

Check that the local description (9.18) of a tangent vector field maps smooth functions to
smooth functions, is linear, and obeys the Leibniz rule.

We say that a (smooth) tangent vector field (9.18) is a (smooth) section of the tangent bundle
TM , and write v P ΓpTMq. The reason for this terminology is as follows (see figure 9.3:

• Locally, TM is a product space Ui ˆ Rn, where the fibre is Rn – TpM for every p.

• The vector field v draws a graph pxµ, vνpxqq in φipUiq ˆ Rn, with cuts the fibres of the
tangent bundle TM along the direction of the baseM . Hence the term “section”.

2For the attentive reader: in order to equip TM with the structure of a differentiable manifold, we need to
specify smooth transition functions for all its 2n coordinates, not just for the base coordinates. We will do that
shortly, in equation (9.20).
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What we have seen so far is a local description of the tangent bundle TM in a coordinate
patch. When we change patch from U to Ũ (on their overlap U X Ũ ) in the base M , the
coordinates onM change as3

xµ
ÞÑ x̃µ

“ x̃µ
pxq . (9.19)

In addition, we need to specify how the fibre coordinates change. We require the tangent space
coordinates to change like

vµ ÞÑ ṽµ “
Bx̃µ

Bxν
vν , (9.20)

so that
v “ vµ

B

Bxµ
“ ṽµ

B

Bx̃µ
(9.21)

is independent of the choice of coordinates.

Proof. Using the chain rule,

B

Bxµ
“

Bx̃ν

Bxµ

B

Bx̃ν
ÝÑ vµ

B

Bxµ
“ vµ

Bx̃ν

Bxµ

B

Bx̃ν
“ ṽν

B

Bx̃ν
. (9.22)

Now recall that every vector space V has a dual vector space V ˚, which is the space of linear
functionals on V . Given a basis ea of V , we can choose a basis e˚a of the dual space V ˚ by
requiring that e˚apebq “ δab . Then given v “ vaea P V and w “ wae

˚a, we have wpvq “ wav
a.

We can apply these ideas to the tangent space TpM , and define its dual vector space, the
cotangent space T ˚

p M . An element ω of the cotangent space is a linear functional on the
tangent space,

ω: TpM Ñ R
v ÞÑ ωpvq

(9.23)

such that for all coefficients a1, a2 P R and for all tangent vectors v1, v2 P TpM ,

ωpa1v1 ` a2v2q “ a1ωpv1q ` a2ωpv2q . (9.24)

The dual basis to the basis of partial derivatives
␣

B

Bxµ

(

for the tangent space TpM is the basis
of differentials tdxµu for the cotangent space T ˚

p M , where we require

dxµ

ˆ

B

Bxν

˙

“ δµν . (9.25)

3(In terms of the invertible maps φ : U Ñ Rn and φ̃ : Ũ Ñ Rn, the change of coordinates is given by the
transition function φ̃ ˝ φ´1:

x “ φppq ÞÑ x̃ “ φ̃ppq “ pφ̃ ˝ φ´1qpxq .
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So we can write any cotangent vector ω P T ˚
p M as

ω “ ωµdx
µ . (9.26)

Under a change of coordinates (9.19) on M , we will require that the cotangent space coordi-
nates transform as

ωµ ÞÑ ω̃µ “
Bxν

Bx̃µ
ων , (9.27)

so that
ω “ ωµdx

µ
“ ω̃µdx̃

µ (9.28)
is independent of the choice of coordinates.

˚ EXERCISE:

1. Use the definition dfpxq “
Bfpxq

Bxµ dxµ of the differential of a function to show that
under a coordinate change (9.19)

dxµ
ÞÑ dx̃µ

“
Bx̃µ

Bxν
dxν (9.29)

and therefore
ω “ ωµdx

µ
ÞÑ ω̃ “ ω̃µdx̃

µ
“ ωνdx

ν
“ ω . (9.30)

2. Let v “ vµ B

Bxµ P TpM and ω “ ωµdx
µ P T ˚

p M . Show that

ωpvq “ ωµv
µ (9.31)

and that it is independent of the choice of coordinates:

ωµv
µ

“ ω̃µṽ
µ . (9.32)

With all these data we can construct the cotangent bundle

T ˚M “
ď

pPM

T ˚
p M (9.33)

as a collection of cotangent spaces over every point on M . For each coordinate chart pUi, φiq

on M , we require the cotangent bundle to locally look like T ˚Ui “
Ť

pPUi
T ˚
p M – Ui ˆ Rn,

with coordinates pxµ, ωνq for the base and the fibre respectively. Under a change of coordinates
(9.19) in the baseM , the fibre coordinates change as in (9.27), so that ω “ ωµdx

µ is coordinate
independent.

A (smooth) cotangent vector field is, in local coordinates,

ω “ ωµpxqdxµ , (9.34)
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Figure 9.4: The cotangent bundle and a cotangent vector field.

where ωµpxq are smooth functions. It is a (smooth) section of the cotangent bundle T ˚M , and
we write ω P ΓpT ˚Mq. See figure 9.4

REMARKS:

1. In Lagrangianmechanics, the generalised coordinates qi and the generalised velocities
vj are coordinates on the tangent bundle TM of the configuration spaceM . The gen-
eralised coordinates qi are coordinates on the baseM , and the generalised velocities vj
are coordinates on the fibre TpM . Under time evolution, the trajectory of the generalized
coordinates traces a curve pqiptqq in the configuration space M , while the generalised
velocities pvjptqq “ p 9qjptqq are the components of the tangent vector v “ vjptq B

Bqj
to the

trajectory.

2. In Hamiltonian mechanics, the generalised coordinates qi and the generalised mo-
menta pj are coordinates on the cotangent bundle TM of the configuration spaceM ,
where we identify pj “ BL

Bvj
“ BL

B 9qj
. Now θ “ pjptqdq

j is a cotangent vector. The relation
between Lagrangian and Hamiltonian can be written as

H “ L ´ 9qi
BL

B 9qi
“ L ´ θpvq.

9.2 Fibre bundles
We can generalise the previous construction by replacing the tangent space TpM or cotangent
space T ˚

p M by a more general fibre.

The simplest generalization is the notion of vector bundle E, which consists of a base M “
Ť

i Ui (of dimension dimM “ n) and of a fibreF which is a fixed vector space V (of dimension
dimV “ m) over every point in M . Locally, the vector bundle E looks like Ui ˆ V , with
coordinates px, vq.
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Figure 9.5: Schematic depiction of a vector bundle.

Mathematically, a differentiable manifold E is called a (smooth) vector bundle if:

1. There exists a projection map
π : E Ñ M (9.35)

such that
@p P M π´1

ppq – V , (9.36)
where V is a vector space.

2. There exist atlases of E and of M such that for all charts of M there exists a smooth
map

φ : π´1
pUq Ñ U ˆ V , (9.37)

which is called a local trivialisation of the vector bundle E over M .

Part 1 is a way of saying that the baseM is part of the total space E, and that for each point
in M we have a vector space V . Part 2 means that we can use local coordinates px, vq for E,
where x is a local coordinate for a point p in the base M , and v is a local coordinate of the
fibre, the vector space π´1ppq associated to the point p. The structure of a vector bundle is
summarized in Figure 9.5.

(To be precise, the vector bundle is the collection pE,M, π, V q of the total space E, the base
M which is obtained by the projection map π, and the fibre V , which is the preimage of a
point in the base under the projection map.)

To fully specify the vector bundle when we work in local coordinates, we need to state what
happens to the fibre coordinates when we change coordinates in the base, from a neighbour-
hood U with coordinates x to a naighbourhood Ũ with coordinates x̃. The change of coordi-
nates in the base and the fibre is

xµ
ÞÑ x̃µ

“ x̃µ
pxq

v ÞÑ ṽ “ tpxqv ,
(9.38)
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Figure 9.6: Triple overlap and coordinates in local trivialisations of a vector bundle.

where the transition function for the fibre is an x-dependent invertible linear transforma-
tion:4

tpxq P GLpV q ” GLpm,Rq (9.39)

There is a consistency condition associated to triple overlaps Ui X Uj X Uk, which ensures
the uniqueness of the vector bundle. See Figure 9.6. Let pxi, viq be local coordinates in Ui ˆV ,
and likewise for j and k, and tjÐipxiq be the transition function for the fibre when we switch
to the i-th trivialization to the j-th trivialization, and similarly for other transition functions.5
Then there are two ways of going from the i-th trivialization to the k-th trivialization: we can
either go from i to k directly, or go from i to j and then from j to k. The results of the two
processes are

vk “ tkÐipxiqvivk “ tkÐjpxjqvj “ tkÐjpxjqtjÐipxiqvi . (9.40)

Demanding the compatibility of the two expressions for every vector vi leads to the cocycle
condition

tkÐipxiq “ tkÐjpxjpxiqqtjÐipxiq . (9.41)

It can be proven that there are no further compatibility conditions associated to quadruple or
higher overlaps.

˚ EXERCISE:

Show that the transition functions for the tangent bundle TM and the cotangent bundle
T ˚M obey (9.39) and the cocycle condition (9.41).

4This is for a real vector bundle, in which the fibre V is a real vector space. If V is a vector space over a field
F, replace R by F.

5Here i, j, k are labels, not vector indices. In the notation used at the beginning of this chapter, I would have
written pxpiq, vpiqq etc. I am omitting brackets here to avoid cluttering the notation.
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REMARKS:

1. Unlike for TM and T ˚M , the transition functions for the fibre of a general vector bundle
are independent of the transition functions for the base.

2. We could take x̃µ “ xµ, namely not change coordinates in the base, but still change
coordinates in the fibre. Equations (9.39) and (9.41) must still hold.

Vocabulary: A (usually complex) vector bundle with one-dimensional fibre is called a line
bundle.

We can generalize the previous structure further if we allow the fibre F to be a more general
object than a vector space. We will restrict ourselves to considering fibres F which are dif-
ferentiable manifolds themselves, even though this assumption can be relaxed further. Vector
bundles are included as a special case, since a vector space is a differentiable manifold.

A differentiable manifold E is called a (smooth) fibre bundle if:

1. There exists a projection map
π : E Ñ M (9.42)

such that
@p P M π´1

ppq – F . (9.43)

2. There exist atlases of E and of M such that for all charts of M there exists a smooth
map

φ : π´1
pUq Ñ U ˆ F , (9.44)

which is called a local trivialisation of the fibre bundle E overM .

The interpretation is the same as for vector bundles, with the exception that the fibre need not
be a vector space. In a local trivialisation, we can choose local coordinates px, yq, where x is
a local coordinate on the base M and y is a local coordinate on the fibre F . When we change
coordinates in the base, the fibre coordinates must change appropriately, and the transition
functions for the fibre must obey a cocycle condition.

The transition functions for the fibre are elements of a group, which is called the structure
group of the fibre bundle E.6

EXAMPLE: Principal G-bundle P
6The transition functions for the base M are also elements of a group, the diffeomorphism group of M .
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A principal bundle7 is a fibre bundle where the fibre is a Lie group, F “ G, for example
G “ Up1q, G “ SUp2q or G “ SOp3q. Let px, hq be coordinates in (the image of) a local
trivialization U ˆ G, and px̃, h̃q be coordinates in U ˆ G, where h, h̃ are elements of the
group G. We require the transition function tpxq for the fibre to be a group element itself,
tpxq “ gpxq P G for all x, which acts by group multiplication on the fibre coordinate:

pxµ, hq ÞÑ px̃µ
pxq, h̃ “ gpxqhq . (9.45)

So for a principal G-bundle the fibre is the Lie group G, and the structure group is also G.

REMARKS:

1. This is called a ‘principal’ bundle because of its importance: it controls the structure of
infinitelymany vector bundles. Indeed, for each representation r ofGwe have a vector
space V prq of dimension r and an action of the Lie group G on V prq by a representation
matrix rpgq. We can then define an associated vector bundle E with

fibre F “ V prq

transitions functions tpxq “ rpgpxqq
(9.46)

so that under a change of coordinates

px, vq ÞÑ px̃pxq, ṽ “ rpgpxqqvq . (9.47)

The ‘associated vector bundle’ is associated to the principal bundle P and the represen-
tation r.

2. We can start to observe a correspondence between Maths and Physics emerge:

Maths Physics

Principal G-bundle Gauge symmetry G
(Section of) Associated vector bundle Charged field

We will complete this correspondence in the next section.

˚ EXERCISE:

Up1q bundles over S2, or monopole bundles [SC: To be added]
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Figure 9.7: Schematic depiction of a vector field.

Figure 9.8: Schematic depiction of the notion of parallel transport.

9.3 Connection, holonomy and curvature
Let vpxq be a smooth section of a vector bundle over M , written in local coordinates. See
figure 9.7. Can we define partial derivatives of v, or directional derivatives of v along a curve
C inM , which in local coordinates is parametrised by xµ “ xµpτq?

We immediately run into a problem: we cannot subtract vectors defined at infinitesimally close
points, as wewould do to define a derivative, because these two vectors belong to two different
vector spaces. In order to define a notion of directional derivative, we need away of comparing
vectors defined at different points along the curve. Let p0 “ cp0q and p “ cpτq be two points
along the curve C , with coordinates “ xp0q and xpτq respectively. Associated to those two
points we have two distinct (though isomorphic) vector spaces, V0 ” π´1pp0q “ π´1pcp0qq and
Vτ ” π´1ppq “ π´1pcpτqq. We can compare elements of V0 and elements of Vτ by introducing

7This is often misspelt as principle bundle. We shouldn’t change our principles as we change coordinates in
the base, therefore principle bundles are not a good idea.
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a notion of parallel transport of vectors along the curveC , which is realised by an invertible
linear map

Ωpτq: V0 Ñ Vτ

v0 ÞÑ Ωpτqv0
(9.48)

which obeys Ωp0q “ 1. See figure 9.8. Picking a basis of the vector space V , Ωpτq is a matrix
in GLpV q.

More generally, we can compare vectors in the fibres above any two points cpτq and cpτ 1q

along the curve C by using the map

Ωpτ 1
qΩ´1

pτq : Vτ Ñ Vτ 1 . (9.49)

By comparing the values of the vector field at infinitesimally close points, with coordinates
xµ “ xµpτq and xµpτ ` ϵdτq, we can define the covariant derivative∇µv by

∇v “ ∇µv dxµ :“ lim
ϵÑ0

vpxpτ ` ϵdτqq ´ Ωpτ ` ϵdτqΩ´1pτqvpxpτqq

ϵ
(9.50)

where dxµ “ 9xµpτqdτ in the parametrization of the curve. The parameter ϵ is a book-keeping
device which I have introduced to keep track of infinitesimals and to define the limit.

REMARK:
The definition of the covariant derivative (9.50) of the vector field v depends on the local form
of parallel transport Ω in an infinitesimal neighbourhood of τ . Letting

Ωpτ ` ϵdτq “ Ωpτq ´ ϵApxpτqqΩpτq ` Opϵ2q , (9.51)

the equation (9.50) becomes

∇vpxq “ dvpxq ` Apxqvpxq , (9.52)

whereApxq, which is called the connection of the vector bundle, is a matrix-valued cotangent
vector field (or equivalently, a matrix-valued differential form):

Apxq “ Aµpxqdxµ , (9.53)

with Amu a matrix in glpV q for each µ and x.8

In components, the covariant derivative reads

∇µv
α
pxq “ Bµv

α
pxq ` Aµpxq

α
βv

β
pxq . (9.54)

8Formally, Aµ takes value in the Lie algebra of the structure group of the vector bundle.
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The connection A encodes the infinitesimal version of parallel transport.

Now consider a change of coordinates in the fibre only:

px, vq ÞÑ px, ṽ “ tpxqvq . (9.55)

Being a map from V0 to Vτ , the parallel transport map Ωpτq transforms like

Ωpτq ÞÑ tpxpτqqΩpτqtpxp0qq
´1

under changes of coordinates in the fibres. Using the definition (9.50), it follows that ∇µv
transforms like v:

∇µvpxq ÞÑ tpxq∇µvpxq , (9.56)
or in terms of differential operators

∇µ ÞÑ tpxq∇µtpxq
´1 . (9.57)

This requires the connection to transform as follows:

Aµ ÞÑ Ãµ “ tBµt
´1

` tAµt
´1 . (9.58)

REMARKS:

1. This construction works for any vector bundle E. In fact, it works for any fibre bundle,
with minor adjustments which I leave as an exercise for the interested reader.

2. When E is a vector bundle associated to a principalG-bundleG and a representation r,
the connection is Aµ “ ´iA

prq
µ , with A

prq
µ the gauge field, acting in the representation

r. For a principal G-bundle, Aµ “ ´iAµ, where Aµ is the Lie algebra valued gauge
field which transforms into gAµg

´1 ` igBµg
´1. (The conversion factors of i are conven-

tional: they are there because physicists have good reasons to like unitary and hermitian
operators.)

3. When E is the tangent bundle,Aµ is the affine connection which appears in differential
geometry and general relativity, also known as Levi-Civita connection.

Now let’s return to the finite version of parallel transport. Consider a closed curve (or loop)
C in the base manifold M , starting and ending at the same point p0, which is called the base
point of the loop. See figure 9.9. We can parallel transport a vector v0 P π´1pp0q along the
loop C . When we reach the end of the loop we obtain a new vector ΩCv0 P π´1pp0q, which is
‘rotated’ by a transformation9

ΩC P GLpV q (9.59)
9Recall that π´1pp0q “ V .
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Figure 9.9: Parallel transport and The holonomy ΩC along the loop C .

Figure 9.10: Concatenation of two paths C1 and C2.

compared to the original vector v0. This is called the holonomy (of the connectionAµ) along
the loop C .

Holonomies along loops starting and ending at the same base point p0 form a group, called
the holonomy group, which is a subgroup ofGLpV q. This is a consequence of the definition
of parallel transport and of the fact that closed paths themselves form a group, where the
composition law is the concatenation of paths. A bit more explicitly:

• If we concatenate two loops C1 and C2 to form a new loop C2 ˝ C1 obtained by going
along C1 first and then along C2 (see figure 9.10), we get

ΩC2˝C1 “ ΩC2ΩC1 , (9.60)

which is the composition law (or multiplication) in the holonomy group.

• The homotopy along the trivial loop, which doesn’t move from the base point p0, is
the identity element in the holonomy group.

• Given a loop C , we can define the loop ´C which traces the same curve with opposite
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Figure 9.11: Curvature, from the holonomy along the perimeter of an infinitesimal parallelo-
gram.

orientation. Then
Ω´C “ Ω´1

C (9.61)
is the inverse element of ΩC in the holonomy group.

REMARK:
The holonomy group is generically non-abelian:

ΩC1ΩC2 ‰ ΩC2ΩC1 . (9.62)

If we parallel transport first along C1 and then along C2, we’ll usually get a different result
than if we parallel transported first along C2 and then along C1.10

˚ EXERCISE:

LetM be connected, that is, any two points p0, q0 P M can be connected by a curve inM .
Show that the holonomy groups based at p0 and at q0 are isomorphic.
[Hint: think about the following picture:

]

The curvature Fµν is the holonomy along an infinitesimal loop. More precisely, consider an
infinitesimal loop dC which is the perimeter of a parallelogram with vertices

xµ , xµ
` ϵvµ , xµ

` ϵpvµ ` wµ
q , xµ

` ϵwµ , (9.63)
10There are exceptions, for instance if the structure group of the fibre bundle is abelian, or if the connection

vanishes. Hence the qualifier ‘generically’.
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Figure 9.12: Contractible and non-contractible loops on a 2-torus.

as in figure 9.11. Then
ΩdC “ 1 ` ϵ2Fµνpxqvµwν

` Opϵ3q , (9.64)

where
Fµν “ BµAν ´ BνAµ ` rAµ,Aνs . (9.65)

Proof. Exercise.

Under a change of coordinates in the fibre (9.55), the curvature transforms as follows:

Fµν ÞÑ tFµνt
´1 . (9.66)

REMARKS:

1. For a principalG-bundle,Fµν “ ´iFµν , where Fµν is the field strength ofAµ. (Similarly,
Fµν “ ´iF

prq
µν for an associated vector bundle.

2. Let us assume that the curvature vanishes. This does not mean that the connection
vanishes. This has the surprising consequence that the holonomy can be non-trivial
(that is, ΩC ‰ 1) if the loop C is not contractible to a point. For instance, on a 2-torus
T 2 (the surface of a doughnut), see figure 9.12, the holonomy along the loop C1, which
is not contractible, can be non-trivial, whereas the holonomy along the loop C1, which
is continuously contractible to a point, can be shown to be trivial.

Vocabulary:
if the curvature vanishes, Fµν “ 0, we say that Aµ is a flat connection, or equivalently
that the bundle E is flat. The holonomy of a flat connection is calledmonodromy.

There is a lot more that can be said, but this will be left to future courses. I’ll conclude this
chapter by summarizing the correspondence between the geometry of fibre bundles and the
formulation of gauge theories in physics:
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Geometry Physics

Principal G-bundle P Gauge symmetry G
Connection Aµ of P Gauge field (or vector potential) Aµ

Curvature Fµν of P Field strength Fµν

(Section of) Associated vector bundle Charged field
Covariant derivative∇µ Gauge covariant derivative Dµ

Parallel transport Wilson line
Trace of the holonomy Wilson loop
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