
Assignment 5

Due date: Monday, 30 January (9am)

Ex 9

Write down the most general real gauge invariant Lagrangian with at most two derivatives
for two complex scalar fields, ϕ of charge 1 and χ of charge 2, and a U(1) gauge field Aµ,
which comprises:

1. kinetic terms for ϕ and χ; [15 marks]

SOLUTION:

Since the scalar fields are charged under a U(1) gauge symmetry, we should replace the
partial derivatives in the standard kinetic term −∂µϕ̄∂µϕ− ∂µχ̄∂µχ by gauge covariant
derivatives. We need to remember that the gauge covariant derivative of a field of
charge q is Dµ = ∂µ − iqAµ. So we have the gauge invariant kinetic terms

Lkin = −(∂µϕ̄+ iAµϕ̄)(∂µϕ− iAµϕ)− (∂µχ̄+ 2iAµχ̄)(∂µχ− 2iAµχ) .

2. a kinetic term for Aµ; [10 marks]

SOLUTION:

This is simply the Maxwell Lagrangian density that we saw in the gauge theory formu-
lation of electromagnetism:

LMaxwell = − 1

4g2
F µνFµν

where Fµν := ∂µAν − ∂νAµ.

3. a real gauge invariant potential which is a polynomial of degree at most 4 in ϕ, χ and
their complex conjugates. [25 marks]

SOLUTION:

We start by noticing that for any fields f1, f2 of charges q1, q2 respectively under a U(1)
symmetry (global or local/gauge), their product f1f2 has charge q1 + q2. Indeed under
a U(1) transformation with group element eiα the fields transform as

(f1, f2) 7→ (eiq1αf1, e
iq2αf2) =⇒ f1f2 7→ ei(q1+q2)αf1f2 .
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This generalizes by induction to monomials in the fields: the charge of a monomial is
the sum of the charges of its factors. In particular, a monomial in the fields is invariant
under a U(1) gauge transformation if and only if it has charge 0.

The scalar potential is a polynomial in ϕ, χ, ϕ̄, χ̄. Demanding gauge invariance (i.e.
vanishing total charge), we see that the only allowed monomials are

1 , |ϕ|2 = ϕ̄ϕ , |χ|2 = χ̄χ , χ̄ϕ2 , ϕ̄2χ

and products/powers thereof. Therefore the most general real gauge invariant potential
which is a polynomial of degree at most 4 in ϕ, χ and their complex conjugates is

V (ϕ̄, χ̄, ϕ, χ) = V0 +m2
ϕ|ϕ|2 +m2

χ|χ|2 +Re(aχ̄ϕ2) + λϕ|ϕ|4 + λχ|χ|4 + λϕχ|ϕ|2|χ|2 ,

where V0,m
2
ϕ,m

2
χ, λϕ, λχ, λϕχ are real constants, and a is a complex constant. The

constant V0 (the ‘vacuum energy density’) is often ignored since it drops out of the
equations of motion, and the energy is defined up to an additive constant.

Ex 10

Consider “scalar electrodynamics”, the field theory with Lagrangian density

L = −DµϕD
µϕ− U(|ϕ|2)− 1

4g2
FµνF

µν , (1.1)

where
Dµϕ = (∂µ − iAµ)ϕ , Fµν = ∂µAν − ∂νAµ .

1. Show that the equations of motion (Euler-Lagrange equations) for the complex scalar
field ϕ and for the real U(1) gauge field Aµ are

DµD
µϕ = U ′(|ϕ|2)ϕ , ∂νF

µν = g2Jµ ,

where
Jµ = −i(ϕ̄Dµϕ− ϕDµϕ) .

[30 marks]

SOLUTION:

We need to use the Euler-Lagrange equation, which for a field X read

0 =
∂L
∂X

− ∂µ
∂L

∂(∂µX)
≡ ∂L

∂X
− ∂0

∂L
∂(∂0X)

− ∂i
∂L

∂(∂iX)
,

applied to X = ϕ̄ and X = Aν . (The Euler-Lagrange equation for X = ϕ is the
complex conjugate of the Euler-Lagrange equation for X = ϕ̄, since the Lagrangian
density is real.)
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Let us first work out the equation of motion for ϕ, which is obtained by using X = ϕ̄
in the Euler-Lagrange equation above. The simplest way to proceed is perhaps to
integrate by parts the kinetic term of ϕ in the action, or write the Lagrangian density
as

L = ϕ̄DµD
µϕ− U(|ϕ|2)− 1

4g2
FµνF

µν + ∂µ(. . . ) ≡ L′ + ∂µ(. . . ) .

The last term is a total derivative, which integrates to a boundary (or ‘surface’) term
in the action, which in turn does not contribute to the equations of motion (which are
obtained by setting to zero the first variation of the action under any variations of the
fields, see Math Phys II or the first term). Then the E-L eqn becomes ∂L′/∂ϕ̄ = 0,
which leads to

DµD
µϕ− U ′(|ϕ|2)ϕ = 0 .

Alternatively, let us write down the covariant derivative explicitly:

L = −(∂µϕ̄+ iAµϕ̄)(∂
µϕ− iAµϕ)− U(|ϕ|2)− 1

4g2
FµνF

µν .

Then

∂L
∂ϕ̄

= −iAµ(∂
µϕ− iAµϕ)− U ′(|ϕ|2)ϕ

∂L
∂(∂µϕ̄)

= −(∂µϕ− iAµϕ) ,

which leads to the E-L equation

0 = (∂µ − iAµ)(∂
µ − iAµ)ϕ− U ′(|ϕ|2)ϕ ≡ DµD

µϕ− U ′(|ϕ|2)ϕ .

The equation of motion for the gauge field (X = Aν) is a little more involved to
derive, but we can make progress if we notice that Aν only appears inside the covariant
derivatives Dνϕ and Dνϕ̄, whereas ∂µAν only appears inside the Maxwell term, which
depends on the field strength. Using the chain rule and ∂Aµ/∂Aν = δνµ, we calculate

∂L
∂Aν

=
∂L

∂(Dµϕ)

∂(Dµϕ)

∂Aν

+
∂L

∂(Dµϕ)

∂(Dµϕ)

∂Aν

= −Dµϕ(−iδνµϕ) + (c.c)

= i(ϕDνϕ− ϕ̄Dνϕ) ≡ Jν .

Then we have

∂L
∂(∂µAν)

=
∂L
∂Fρσ

∂Fρσ

∂(∂µAν)
,

where we first view Fρσ as independent variables that the Lagrangian density depends
on, and then express them as Fµν = ∂µAν − ∂νAµ. Let’s compute the two factors
separately. Being explicit with indices,

∂L
∂Fρσ

= − 1

4g2
ηµαηνβ

∂

∂Fρσ

(FµνFαβ) = − 1

4g2
ηµαηνβ

(
∂Fµν

∂Fρσ

Fαβ + Fµν
∂Fαβ

∂Fρσ

)
= − 1

4g2
ηµαηνβ

(
δρµδ

σ
νFαβ + Fµνδ

ρ
αδ

σ
β

)
= − 1

2g2
F ρσ .
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(Having done this exercise once, later on we will use ∂
∂Xν

(XµXµ) = 2Xν , ∂
∂Xρσ

(XµνXµν) =

2Xρσ etc. without further proof.) For the second factor,

∂Fρσ

∂(∂µAν)
=

∂

∂(∂µAν)
(∂ρAσ − ∂σAρ) = δµρ δ

ν
σ − δµσδ

ν
ρ .

Putting the previous results together, we find

∂L
∂(∂µAν)

=
∂L
∂Fρσ

∂Fρσ

∂(∂µAν)
= − 1

2g2
F ρσ

(
δµρ δ

ν
σ − δµσδ

ν
ρ

)
= − 1

g2
F µν =

1

g2
F νµ

So the equation of motion for the gauge field reads

0 = Jν − ∂µ

(
1

g2
F νµ

)
⇐⇒ ∂µF

νµ = g2Jν .

2. Show that the current Jµ is real, gauge invariant, and conserved (∂µJ
µ = 0) upon using

the equations of motion. [15 marks]

SOLUTION:

Start by writing Jµ = 2Im(ϕ̄Dµϕ), which is manifestly real (Im denotes the imaginary
part of a complex number). Under a U(1) gauge transformation ϕ 7→ eiαϕ, which
implies ϕ̄ 7→ e−iαϕ̄ by complex conjugation, and Dµϕ 7→ eiαDµϕ since Dµ is a covariant
derivative (quoting this result is fine, rederiving it is even better). So

Jµ = 2 Im(ϕ̄Dµϕ) 7→ 2 Im(ϕ̄e−iαeiαDµϕ) = 2 Im(ϕ̄Dµϕ) = Jµ .

To see that Jµ is conserved, use the equation of motion for the gauge field and the
antisymmetry of the field strength and the commutativity of partial derivatives:

∂νJ
ν =

1

g2
∂ν∂µF

νµ = − 1

g2
∂ν∂µF

µν = − 1

g2
∂µ∂νF

µν = −∂νJ
ν ,

which implies ∂νJ
ν = 0.

Alternatively, use the explicit form of Jµ and calculate its divergence. (It might help
to use DµJ

µ = ∂µJ
µ, which follows from the fact that Jµ is gauge invariant (in other

words, it has charge zero), and Dµϕ = Dµϕ̄, where in the last expression the covariant
derivative is understood to be in the representation of charge −1, since ϕ̄ has opposite
charge to ϕ. Then

∂µJ
µ = DµJ

µ = −i
(
(Dµϕ̄)(Dµϕ) + ϕ̄(DµD

µϕ)− (Dµϕ)(D
µϕ̄)− ϕ(DµD

µϕ̄)
)

The first and the third term are equal and opposite and cancel out; the second and
the fourth term cancel out upon using the equation of motion for ϕ and the complex
conjugate equation of motion for ϕ̄ (noting that the scalar potential U is real).
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3. Show that the conserved current Jµ in the gauge theory and the conserved current jµ in
the scalar field theory with U(1) global symmetry, which is obtained by setting Aµ = 0
in the Lagrangian (1.1), are related by

Jµ = jµ + bAµ|ϕ|2 ,

for a constant b that you should find. [5 marks]

SOLUTION:

Jµ = 2 Im(ϕ̄Dµϕ) = 2 Im
(
ϕ̄(∂µ − iAµ)ϕ

)
= 2 Im(ϕ̄∂µϕ) + 2 Im(−iAµ|ϕ|2)

= 2 Im(ϕ̄∂µϕ) + 2Aµ|ϕ|2Im(−i) = jµ − 2Aµ|ϕ2| ,

where we used that Aµ and |ϕ|2 = ϕ̄ϕ are real. Hence b = −2.


