Assignment 6

Due date: Monday, 13 February (noon)

Ex 20

Let $\phi^{1,2}(x)$ be two real scalar fields in two space and one time dimensions $\left(x^{0}, x^{1}, x^{2}\right)$, and $\phi(x)=\phi^{1}(x)+i \phi^{2}(x)$.

1. Show that the current

$$
j^{\mu}=c \frac{1}{2} \epsilon_{a b} \epsilon^{\mu \nu \rho} \partial_{\nu}\left(\phi^{a} \partial_{\rho} \phi^{b}\right)
$$

is conserved, that is $\partial_{\mu} j^{\mu}=0$, regardless of the equations of motion. Here c is a normalization constant, $\epsilon^{\mu \nu \rho}$ is the totally antisymmetric tensor in three indices with $\epsilon^{012}=1$, and $\epsilon_{a b}$ is the totally antisymmetric tensor in two indices with $\epsilon_{12}=1$. [20 marks]

SOLUTION:

This uses material from last term (or last year) and is hopefully easy: we just calculate

$$
\partial_{\mu} j^{\mu}=c \frac{1}{2} \epsilon_{a b} \epsilon^{\mu \nu \rho} \partial_{\mu} \partial_{\nu}\left(\phi^{a} \partial_{\rho} \phi^{b}\right)=0
$$

which vanishes because $\epsilon^{\mu \nu \rho}$ is totally antisymmetric in its indices, and $\partial_{\mu} \partial_{\nu}\left(\phi^{a} \partial_{\rho} \phi^{b}\right)$ is symmetric in μ, ν if we assume, as we always do, that the scalar fields ϕ^{a} are sufficiently smooth so that partial derivatives commute.
2. Assume that $|\phi| \rightarrow v$ at spatial infinity, where v is a constant. Write down the conserved charge Q associated to the current j^{μ}, and show that Q is equal to the total winding number of the argument of ϕ,

$$
N=\frac{1}{2 \pi} \int_{S_{\infty}^{1}} \nabla \arg (\phi) \cdot d \vec{l}
$$

for a suitable choice of the normalization constant c that you should find. [30 marks]

SOLUTION:

The conserved charge Q is the integral over space (here, \mathbb{R}^{2}) of the charge density

$$
\rho=j^{0}=\frac{c}{2} \epsilon_{a b} \epsilon^{0 \nu \rho} \partial_{\nu}\left(\phi^{a} \partial_{\rho} \phi^{b}\right)=\frac{c}{2} \epsilon_{a b} \epsilon^{i j} \partial_{i}\left(\phi^{a} \partial_{j} \phi^{b}\right) .
$$

In the last equality we have used that $\epsilon^{0 \nu \rho}$ does not vanish only if both ν and ρ are spatial indices, which we can call $i, j \in\{1,2\}$, and $\epsilon^{0 i j}=\epsilon^{i j}$, where $\epsilon^{12}=1$. This charge density is the curl of a 2-vector $\vec{V}=\left(V_{1}, V_{2}\right)$ (recall that in two dimensions the curl of a vector is a scalar):

$$
\rho=\nabla \times \vec{V} \equiv \epsilon^{i j} \partial_{i} V_{j}=\partial_{1} V_{2}-\partial_{2} V_{1}, \quad V_{j}=\frac{c}{2} \epsilon_{a b} \phi^{a} \partial_{j} \phi^{b}=\frac{c}{2}\left(\phi^{1} \partial_{j} \phi^{2}-\phi^{2} \partial_{j} \phi^{1}\right) .
$$

Then by Stokes' theorem

$$
Q=\int_{\mathbb{R}^{2}} d^{2} x \rho=\int_{\mathbb{R}^{2}} d^{2} x \nabla \times \vec{V}=\oint_{S_{\infty}^{1}} \vec{V} \cdot d \vec{l}
$$

There are a number of ways to proceed now. One is to use the complex field $\phi=$ $\phi^{1}+i \phi^{2}=|\phi| e^{i \arg (\phi)}$, in terms of which

$$
\phi^{1} \partial_{j} \phi^{2}-\phi^{2} \partial_{j} \phi^{1}=\operatorname{Im}\left(\bar{\phi} \partial_{j} \phi\right)=\left|\phi^{2}\right| \partial_{j} \arg (\phi) .
$$

At spatial infinity $|\phi| \rightarrow v$, so

$$
Q=\oint_{S_{\infty}^{1}} \vec{V} \cdot d \vec{l}=\frac{1}{2} c v^{2} \oint_{S_{\infty}^{1}} \nabla \arg (\phi) \cdot d \vec{l}
$$

therefore $Q=N$ if

$$
c v^{2}=\frac{1}{\pi} \quad \Longrightarrow \quad c=\frac{1}{\pi v^{2}}
$$

3. Let $z=x^{1}+i x^{2}$ be a complex coordinate on the spatial plane. For each choice of the $\operatorname{sign} \epsilon= \pm 1$, rewrite the Bogomol'nyi equations for the abelian Higgs model

$$
\begin{gathered}
\left(D_{1}-i \epsilon D_{2}\right) \phi=0 \\
F_{12}=\epsilon g^{2}\left(|\phi|^{2}-v^{2}\right)
\end{gathered}
$$

in terms of the complex coordinates (z, \bar{z}) rather than $\left(x^{1}, x^{2}\right)$. Solve the first Bogomol'nyi equation to determine the holomorphic and antiholomorphic components $A_{z}, A_{\bar{z}}$ of the gauge field (remember that A_{μ} is real if $\mu=x^{1}, x^{2}$). Substitute the result in the second Bogomol'nyi equation to obtain a partial differential equation for $|\phi|^{2}$ only.
[50 marks]

SOLUTION:

This final part is challenging, but I wanted to see how you perform in a more advanced and less guided question ${ }^{1}$ I'll give partial credit for partial work where it is due.

[^0]From the change of variables between Euclidean and complex coordinates

$$
x^{1}=\frac{1}{2}(z+\bar{z}), \quad x^{1}=-\frac{i}{2}(z-\bar{z})
$$

and the chain rule we find

$$
\begin{aligned}
& \partial_{z} \equiv \frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x^{1}}-i \frac{\partial}{\partial x^{2}}\right) \equiv \frac{1}{2}\left(\partial_{1}-i \partial_{2}\right) \\
& \partial_{\bar{z}} \equiv \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x^{1}}+i \frac{\partial}{\partial x^{2}}\right) \equiv \frac{1}{2}\left(\partial_{1}+i \partial_{2}\right) .
\end{aligned}
$$

Since the gauge field A_{μ} and the partial derivative ∂_{μ} are linearly combined in the gauge covariant derivative $D_{\mu}=\partial_{\mu}-i A_{\mu}$, they should transform in the same way under a change of coordinates. ${ }^{2}$ (Quoting what I stated in the lecture is also fine.) Therefore

$$
A_{z}=\frac{1}{2}\left(A_{1}-i A_{2}\right), \quad A_{\bar{z}}=\frac{1}{2}\left(A_{1}+i A_{2}\right),
$$

and

$$
D_{z}=\frac{1}{2}\left(D_{1}-i D_{2}\right), \quad D_{\bar{z}}=\frac{1}{2}\left(D_{1}+i D_{2}\right) .
$$

Similarly, we calculate

$$
F_{12}=\frac{\partial z}{\partial x^{1}} \frac{\partial \bar{z}}{\partial x^{2}} F_{z \bar{z}}+\frac{\partial \bar{z}}{\partial x^{1}} \frac{\partial z}{\partial x^{2}} F_{\bar{z} z}=\left(\frac{\partial z}{\partial x^{1}} \frac{\partial \bar{z}}{\partial x^{2}}-\frac{\partial \bar{z}}{\partial x^{1}} \frac{\partial z}{\partial x^{2}}\right) F_{z \bar{z}}=-2 i F_{z \bar{z}}
$$

where in the first equality we used the transformation properties of tensors under changes of coordinates, which I stated in the lecture, and in the second equality we used the antisymmetry of the field strength. (Using $F_{z \bar{z}}=\partial_{z} A_{\bar{z}}-\partial_{\bar{z}} A_{z}$ and the above expressions for $\partial_{z}, \partial_{\bar{z}}, A_{z}, A_{\bar{z}}$ to obtain $F_{z \bar{z}}=\frac{i}{2} F_{12}$ is also fine.)
If $\epsilon=+1$, the first Bogomol'nyi equation is $0=D_{z} \phi=\partial_{z} \phi-i A_{z} \phi$, which determines

$$
A_{z}=-i \frac{\partial_{z} \phi}{\phi}=-i \partial_{z} \log \phi
$$

Complex conjugating and using that A_{1}, A_{2} are real, we find

$$
A_{\bar{z}}=\overline{A_{z}}=i \frac{\partial_{\bar{z}} \bar{\phi}}{\bar{\phi}}=i \partial_{\bar{z}} \log \bar{\phi} .
$$

Setting $X=|\phi|^{2}$ and $\sigma=\arg (\phi)$, we calculate

$$
\begin{aligned}
A_{z} & =-\frac{i}{2} \partial_{z} \log X+\partial_{z} \sigma \\
A_{\bar{z}} & =+\frac{i}{2} \partial_{\bar{z}} \log X+\partial_{\bar{z}} \sigma
\end{aligned}
$$

[^1]which implies (the last equality is not really necessary)
$$
F_{z \bar{z}}=\partial_{z} A_{\bar{z}}-\partial_{\bar{z}} A_{z}=i \partial_{z} \partial_{\bar{z}} \log X=i\left(\frac{\partial_{z} \partial_{\bar{z}} X}{X}-\frac{\left|\partial_{z} X\right|^{2}}{X^{2}}\right) .
$$

Putting everything together, the second Bogomol'nyi equation becomes

$$
2 \partial_{z} \partial_{\bar{z}} \log X=g^{2}\left(X-v^{2}\right)
$$

where $X=|\phi|^{2}$. (To be very precise, there are also some delta functions supported at the points where $\arg (\phi)$ is ill-defined, namely where $\phi=0, \infty$, but let's not worry about that.)
If $\epsilon=-1$, the roles of z and \bar{z} are swapped. The field strength has the opposite sign and the second Bogomol'nyi equation reads

$$
2 \partial_{z} \partial_{\bar{z}} \log X=-g^{2}\left(X-v^{2}\right)
$$

(again, except for some delta functions that are beyond the scope of this exercise).

[^0]: ${ }^{1}$ This final part could become a section B exam question, with some extra help provided. The first two parts together could be a section A question, or perhaps an easier section B exam question.

[^1]: ${ }^{2}$ More precisely, this determines $A_{z}, A_{\bar{z}}$ up to a gauge transformation.

