
Assignment 6

Due date: Monday, 13 February (noon)

Ex 20

Let ϕ1,2(x) be two real scalar fields in two space and one time dimensions (x0, x1, x2), and
ϕ(x) = ϕ1(x) + iϕ2(x).

1. Show that the current

jµ = c
1

2
ϵabϵ

µνρ∂ν(ϕ
a∂ρϕ

b)

is conserved, that is ∂µj
µ = 0, regardless of the equations of motion. Here c is a

normalization constant, ϵµνρ is the totally antisymmetric tensor in three indices with
ϵ012 = 1, and ϵab is the totally antisymmetric tensor in two indices with ϵ12 = 1.

[20 marks]

SOLUTION:

This uses material from last term (or last year) and is hopefully easy: we just calculate

∂µj
µ = c

1

2
ϵabϵ

µνρ∂µ∂ν(ϕ
a∂ρϕ

b) = 0 ,

which vanishes because ϵµνρ is totally antisymmetric in its indices, and ∂µ∂ν(ϕ
a∂ρϕ

b) is
symmetric in µ, ν if we assume, as we always do, that the scalar fields ϕa are sufficiently
smooth so that partial derivatives commute.

2. Assume that |ϕ| → v at spatial infinity, where v is a constant. Write down the conserved
charge Q associated to the current jµ, and show that Q is equal to the total winding
number of the argument of ϕ,

N =
1

2π

∫
S1
∞

∇ arg(ϕ) · d⃗l ,

for a suitable choice of the normalization constant c that you should find. [30 marks]
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SOLUTION:

The conserved charge Q is the integral over space (here, R2) of the charge density

ρ = j0 =
c

2
ϵabϵ

0νρ∂ν(ϕ
a∂ρϕ

b) =
c

2
ϵabϵ

ij∂i(ϕ
a∂jϕ

b) .

In the last equality we have used that ϵ0νρ does not vanish only if both ν and ρ are
spatial indices, which we can call i, j ∈ {1, 2}, and ϵ0ij = ϵij, where ϵ12 = 1. This

charge density is the curl of a 2-vector V⃗ = (V1, V2) (recall that in two dimensions the
curl of a vector is a scalar):

ρ = ∇× V⃗ ≡ ϵij∂iVj = ∂1V2 − ∂2V1 , Vj =
c

2
ϵabϕ

a∂jϕ
b =

c

2
(ϕ1∂jϕ

2 − ϕ2∂jϕ
1) .

Then by Stokes’ theorem

Q =

∫
R2

d2x ρ =

∫
R2

d2x ∇× V⃗ =

∮
S1
∞

V⃗ · d⃗l .

There are a number of ways to proceed now. One is to use the complex field ϕ =
ϕ1 + iϕ2 = |ϕ|ei arg(ϕ), in terms of which

ϕ1∂jϕ
2 − ϕ2∂jϕ

1 = Im(ϕ̄∂jϕ) = |ϕ2| ∂j arg(ϕ) .

At spatial infinity |ϕ| → v, so

Q =

∮
S1
∞

V⃗ · d⃗l = 1

2
cv2

∮
S1
∞

∇ arg(ϕ) · d⃗l ,

therefore Q = N if

cv2 =
1

π
=⇒ c =

1

πv2
.

3. Let z = x1 + ix2 be a complex coordinate on the spatial plane. For each choice of the
sign ϵ = ±1, rewrite the Bogomol’nyi equations for the abelian Higgs model

(D1 − iϵD2)ϕ = 0

F12 = ϵg2(|ϕ|2 − v2)

in terms of the complex coordinates (z, z̄) rather than (x1, x2). Solve the first Bogo-
mol’nyi equation to determine the holomorphic and antiholomorphic components Az, Az̄

of the gauge field (remember that Aµ is real if µ = x1, x2). Substitute the result in
the second Bogomol’nyi equation to obtain a partial differential equation for |ϕ|2 only.

[50 marks]

SOLUTION:

This final part is challenging, but I wanted to see how you perform in a more advanced
and less guided question.1 I’ll give partial credit for partial work where it is due.

1This final part could become a section B exam question, with some extra help provided. The first two
parts together could be a section A question, or perhaps an easier section B exam question.
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From the change of variables between Euclidean and complex coordinates

x1 =
1

2
(z + z̄) , x1 = − i

2
(z − z̄)

and the chain rule we find

∂z ≡
∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
≡ 1

2
(∂1 − i∂2)

∂z̄ ≡
∂

∂z̄
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
≡ 1

2
(∂1 + i∂2) .

Since the gauge field Aµ and the partial derivative ∂µ are linearly combined in the gauge
covariant derivative Dµ = ∂µ − iAµ, they should transform in the same way under a
change of coordinates.2 (Quoting what I stated in the lecture is also fine.) Therefore

Az =
1

2
(A1 − iA2) , Az̄ =

1

2
(A1 + iA2) ,

and

Dz =
1

2
(D1 − iD2) , Dz̄ =

1

2
(D1 + iD2) .

Similarly, we calculate

F12 =
∂z

∂x1

∂z̄

∂x2
Fzz̄ +

∂z̄

∂x1

∂z

∂x2
Fz̄z =

(
∂z

∂x1

∂z̄

∂x2
− ∂z̄

∂x1

∂z

∂x2

)
Fzz̄ = −2iFzz̄

where in the first equality we used the transformation properties of tensors under
changes of coordinates, which I stated in the lecture, and in the second equality we
used the antisymmetry of the field strength. (Using Fzz̄ = ∂zAz̄ − ∂z̄Az and the above
expressions for ∂z, ∂z̄, Az, Az̄ to obtain Fzz̄ =

i
2
F12 is also fine.)

If ϵ = +1, the first Bogomol’nyi equation is 0 = Dzϕ = ∂zϕ− iAzϕ, which determines

Az = −i
∂zϕ

ϕ
= −i∂z log ϕ .

Complex conjugating and using that A1, A2 are real, we find

Az̄ = Az = i
∂z̄ϕ̄

ϕ̄
= i∂z̄ log ϕ̄ .

Setting X = |ϕ|2 and σ = arg(ϕ), we calculate

Az = − i

2
∂z logX + ∂zσ

Az̄ = +
i

2
∂z̄ logX + ∂z̄σ

2More precisely, this determines Az, Az̄ up to a gauge transformation.
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which implies (the last equality is not really necessary)

Fzz̄ = ∂zAz̄ − ∂z̄Az = i∂z∂z̄ logX = i

(
∂z∂z̄X

X
− |∂zX|2

X2

)
.

Putting everything together, the second Bogomol’nyi equation becomes

2∂z∂z̄ logX = g2(X − v2)

where X = |ϕ|2. (To be very precise, there are also some delta functions supported
at the points where arg(ϕ) is ill-defined, namely where ϕ = 0,∞, but let’s not worry
about that.)

If ϵ = −1, the roles of z and z̄ are swapped. The field strength has the opposite sign
and the second Bogomol’nyi equation reads

2∂z∂z̄ logX = −g2(X − v2)

(again, except for some delta functions that are beyond the scope of this exercise).


